Trapezoidal Transcendence aka “a Pi Corral” 2 / sqrt(2) / sqrt(2) : sqrt(Pi) / sqrt(2) / sqrt(2) (1:4 circle-squaring right triangles of D=1,D=2) Trapezoidal Transcendence SoCS Possible squares of a circle from smallest (inscribed square) to largest (inscribed circle). Within this range of objects, the perfect square is sqrt(Pi). The --- value is the length difference between SoCS values (Side of Circle's Square). Given: Diameter = 2.0 (largest circle) SoCS = 2.0 -------------------- = 2(sqrt(1/Pi)) SoCS = sqrt(Pi) -------------------- = sqrt(Pi)/sqrt(2) SoCS = sqrt(2) How do these three possible SoCS correlate? 2.0 / 1.7724538509055160272981674833411.. sqrt(Pi) = 1.1283791670955125738961589031215.. 2(sqrt(1/Pi)) 1.7724538509055160272981674833411.. sqrt(Pi) / 1.4142135623730950488016887242097.. sqrt(2) = 1.2533141373155002512078826424055.. sqrt(Pi)/sqrt(2) 1.1283791670955125738961589031215.. 2(sqrt(1/Pi)) x 1.2533141373155002512078826424055.. sqrt(Pi)/sqrt(2) = 1.4142135623730950488016887242097.. sqrt(2) sqrt(2)^2 = 2.0 The claim? Very tasty portions of Pi. Trapezoidal Transcendence II Point and Counter-Point Derivation of Trapezoidal Transcendence II geometry by analysis of 2(sqrt(1/Pi)) and sqrt(Pi)/sqrt(2) 1.1283791670955125738961589031215.. 2(sqrt(1/Pi)) / 1.4142135623730950488016887242097.. sqrt(2) = 0.79788456080286535587989211986838.. 2(sqrt(1/Pi))/sqrt(2) 1.2533141373155002512078826424055.. sqrt(Pi)/sqrt(2) / 1.4142135623730950488016887242097.. sqrt(2) = 0.8862269254527580136490837416702.. sqrt(Pi)/2 Since 0.79788456.. appeared to be the side of an inscribed square, that circle and its inscribed square were created, followed by the tasty clue 0.88622692.. (sqrt(Pi)/2) ... ... ultimately giving two integrated circles both squared where D = 2(sqrt(1/Pi)) and 1.0. Trapezoidal Concentricity Y(es!) Trapezoidal Concentricity AI Squared circles, ad infinitum. Scalene Concentrizity (D = 2, sqrt(2), 1) Transcendence with scalene authentication. (aka “How can Pi be transcendental?”) Concentrizity Squares “Impossible” geometry needs be a bit complex when hosted by a certain isosceles right triangle. Concentrizity ICU “Impossible” balance of sqrt(Pi) / sqrt(2) Concentrizity Too Trapezoidal concentrizity & similar pentagons.
© Copyright 2026 Paperzz