1) Use Green`s Theorem to evaluate the given line integral. Begin by

Leader:
Course:
Instructor:
Date:
Math 265: 14.4
Supplemental Instruction
IowaStateUniversity
Trevor
Math 265
Dr. Castillo-Gil
04/15/14
1) Use Greenโ€™s Theorem to evaluate the given line integral. Begin by
sketching the region S.
a. โˆฎ โˆš๐‘ฆ ๐‘‘๐‘ฅ + โˆš๐‘ฅ ๐‘‘๐‘ฆ, where C is the closed curve formed by ๐‘ฆ =
0, ๐‘ฅ = 2, and ๐‘ฆ =
๐‘ฅ2
2
b. โˆฎ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฅ + (๐‘ฅ + ๐‘ฆ) ๐‘‘๐‘ฆ, where C is the triangle with vertices
(0,0), (2,0), and (0,1)
c. โˆฎ(๐‘’ 3๐‘ฅ + 2๐‘ฆ) ๐‘‘๐‘ฅ + (๐‘ฅ 2 + sin ๐‘ฆ) ๐‘‘๐‘ฆ, where C is the rectangle
with vertices (2,1), (6,1), (6,4) and (2,4).
2) Use the formula for A(S) to find the area of the indicated region S.
Make a sketch.
1
a. S is bounded by the curves ๐‘ฆ = ๐‘ฅ 3 and ๐‘ฆ = ๐‘ฅ 2
2
3) Use the vector forms of Greenโ€™s Theorem to calculate a) โˆฎ ๐น โˆ™ ๐‘› ๐‘‘๐‘  and
b)โˆฎ ๐น โˆ™ ๐‘‡ ๐‘‘๐‘ .
a. ๐น = ๐‘ฆ 2 ๐‘– + ๐‘ฅ 2 ๐‘—; C is the boundary of unit square with vertices
(0,0), (1,0), (0,1), and (1,1)
4) Find the work done by ๐น = (๐‘ฅ 2 + ๐‘ฆ 2 )๐‘– โˆ’ 2๐‘ฅ๐‘ฆ๐‘— in moving a body
counterclockwise around the curve C which is the unit square with
vertices (0,0), (1,0), (0,1), and (1,1).
1060 Hixson-Lied Student Success Center ๏ถ 515-294-6624 ๏ถ [email protected] ๏ถ http://www.si.iastate.edu