Trig Identities Name: _________________ Reciprocal Identities: sinθ = 1 cscθ = 1 cscθ Objectives: Students will be able to verify and simplify trig identities. sinθ cosθ = 1 secθ secθ = 1 cosθ tanθ = 1 cotθ cotθ = 1 tanθ Quotient Identities: tanθ =sinθ cotθ = cosθ cosθ sinθ Opposite Angle Identities: sin(-θ) = -sinθ cos(-θ) = cosθ Cofunction Identities: sin(π/2 - θ) = cosθ tan(-θ) = -tanθ cos(π/2 - θ) = sinθ tan(π/2 - θ) = cotθ Apr 223:24 PM Pythagorean Identities: sin2θ + cos2θ = 1 The other two Pythagorean Identities can be easily derived from the one above. -Divide the above equation by cos2θ: -Divide the above equation by sin2θ: Apr 223:26 PM 1 Simplifying Expressions : Simplify the trig expressions using the fundamental identities. 1.) sinxcotx 2.) sinθcscθ 3.) cotα cos α 4.) cos(-x) sin(-x) Apr 223:35 PM 5.) sin(π/2 - θ)cscθ 6.) cos θ(1 + tan2θ) 7.) csc 2x(1 - cos2x) Apr 223:47 PM 2 Verifying Trig Identities: Verify the following identities. 1.) sinxcscx = 1 2.) tanθcscθcosθ = 1 3.) 2 - cos2θ = 1 + sin2θ Apr 223:53 PM 4.) sin(π/2 - x)tanx = sinx 5.) sin2x + cos2x = sinx cscx 6.) tan2θ + 4 = sec2θ + 3 Apr 224:01 PM 3 ICE 1.) Simplify sinxcosxtanxcotx. 2.) Verify that sin2x + 1 = 2 - cos2x. Apr 268:43 AM Solve Trig Equations Objectives: Students will be able to solve trig equations. Solve the trig equations on the interval 0 ≤θ<2π. 1.) 2sinx - 1 = 0 2.) 2cosx + √3 = 0 3.) sin2x - sinx = 0 Apr 225:18 PM 4 May 19:03 AM Find the general solution of the equations. 4.) 2sinx - 2 = 0 5.) 3tanx - √3 = 0 6.) ½cosx = - sinxcosx Apr 225:21 PM 5
© Copyright 2026 Paperzz