Limits at Infinity and Infinite Limits more examples of limits Motivation: handling infinite variable and infinite function 2 Question. Can we describe in mathematics: (1) infinite value of variable? (2) infinite value of function? f(x)=1/x 1 O 2 Question. Can we describe in mathematics: (1) infinite value of variable? f(x)=1/x 1 O (2) infinite value of function? Application: horizontal and vertical asymptotes Limits at infinity infinite value of variable Definition. L = lim f (x) x→∞ ⇔ ∀ε > 0 ∃N > 0 / x > N ⇒ |f (x) − L| < ε Definition. L = lim f (x) x→∞ ⇔ ∀ε > 0 ∃N > 0 / x > N ⇒ |f (x) − L| < ε 5x + 1 Example: lim =5 x→∞ x − 2 ⇔ ∀ε > 0 ∃N > 0 / x > N 5x + 1 ⇒ − 5 < ε x−2 (in particular, | 5x+1 x−2 − 5| = 11 |x−2| < ε if N = 2 + 11 ε ) Properties: Let lim f (x) and lim g(x) exist, x→∞ x→∞ lim [f (x) + g(x)] = lim f (x) + lim g(x) x→∞ x→∞ x→∞ lim [f (x) − g(x)] = lim f (x) − lim g(x) x→∞ x→∞ x→∞ lim [f (x) · g(x)] = [ lim f (x)] · [ lim g(x)] x→∞ x→∞ x→∞ lim [f (x)/g(x)] = [ lim f (x)]/[ lim g(x)], x→∞ x→∞ x→∞ lim g(x) 6= 0 x→∞ q p n lim g(x) = n lim g(x), lim g(x) > 0, n even x→∞ x→∞ x→∞ EXAMPLES EXAMPLE 1. Evaluate limit 1 lim x→∞ x EXAMPLE 1. Evaluate limit 1 lim x→∞ x As variable x gets larger, 1/x gets smaller because 1 is being divided by a laaaaaaaarge number: 1 1 x = 1010, = 10 x 10 EXAMPLE 1. Evaluate limit 1 lim x→∞ x As variable x gets larger, 1/x gets smaller because 1 is being divided by a laaaaaaaarge number: 1 1 x = 1010, = 10 x 10 The limit is 0. 1 lim = 0. x→∞ x EXAMPLE 2. Limits 1 lim n = 0 x→∞ x 1 lim √ =0 n x→∞ x EXAMPLE 2. Limits 1 lim n = 0 x→∞ x 1 lim √ =0 n x→∞ x By the same argument 1 lim = 0, x→∞ x − 100 1 =0 lim √ n x→∞ x − 10000 EXAMPLE 3. Evaluate limit 1 lim √ x→∞ n x2 + x − C EXAMPLE 3. Evaluate limit 1 lim √ x→∞ n x2 + x − C Recall the graph of 2 y =x +x−C Observation: y= x 2+ x - C x→∞⇒y→∞ Value of C does not matter. The answer is 0. O -1/4-C EXAMPLE 4. Evaluate limit (not evoke graphs) 1 lim 2 x→∞ x − x − 1 EXAMPLE 4. Evaluate limit (not evoke graphs) 1 lim 2 x→∞ x − x − 1 Attention: indeterminacy ∞ − ∞ 1 = lim 1 1 x→∞ 2 x 1− − 2 x x 1 = lim 2 lim x→∞ x x→∞ 1 =0·1=0 1 1 1− − 2 x x EXAMPLE 5. Evaluate limit 5x3 − 2x2 − 1 lim x→∞ x3 − x + 1 EXAMPLE 5. Evaluate limit 5x3 − 2x2 − 1 lim x→∞ x3 − x + 1 Standard trick: divide by the highest degree of x 1 5x3 2x2 2 1 − − 5 − − 3 3 3 3 x x x x x = lim = lim 3 1 1 x→∞ x→∞ x x 1 1− 2+ 3 − + x x x3 x3 x3 5−0−0 = =5 1−0+0 EXAMPLE 6. Evaluate limit lim p x→∞ x−2 2x2 − x + 1 EXAMPLE 6. Evaluate limit lim p x→∞ x−2 2x2 − x + 1 Standard trick: divide by the highest degree of x x 2 x 2 − − 3 = lim √ x x = lim r x x x→∞ 2x2 − x + 1 x→∞ 2x2 x 1 √ − + x2 x2 x2 x2 1−0 1 =√ =√ . 2−0+0 2 Indeterminacy: unsuitable breaking in limits Attention: Indeterminacy 2 3 [x + 1] ∞ [x − 1] lim 3 lim 2 x→∞ [x − 3] x→1 [x − 1] ∞ 0 0 Wrong breaking! Limit laws do not apply! lim[1 − cos x][cot x] ( 0 · ∞ ) x→0 Substitution is undefined! p p lim [ x2 + x] − [ x2 − x] ( ∞ − ∞ ) x→∞ Rewrite first! ∞ Indeterminacy : ∞ [x2 + 1] lim 3 x→∞ [x − 3] ∞ Indeterminacy : ∞ [x2 + 1] lim 3 x→∞ [x − 3] division by highest exponent of x: x2 1 + 3 0+0 3 x x lim 3 = =0 x→∞ x 1−0 3 − 3 3 x x 0 Indeterminacy : 0 3 [x − 1] lim 2 x→1 [x − 1] 0 Indeterminacy : 0 3 [x − 1] lim 2 x→1 [x − 1] factoring and re-grouping: 2 2 (x − 1)(x + x + 1) (x − 1) (x + x + 1) lim = lim · x→1 x→1 (x − 1) (x − 1)(x + 1) (x + 1) (x2 + x + 1) 3 3 (x − 1) = [lim ] · [lim ]=1· = x→1 (x − 1) x→1 (x + 1) 2 2 Indeterminacy 0 · ∞: lim[1 − cos x] · [cot x] x→0 Indeterminacy 0 · ∞: lim[1 − cos x] · [cot x] x→0 factoring, re-grouping, and special limits: cos x 1 − cos x x cos x lim(1 − cos x) = lim x→0 sin x x→0 x sin x 1 Indeterminacy 0 · ∞: lim[1 − cos x] · [cot x] x→0 factoring, re-grouping, and special limits: cos x 1 − cos x x cos x lim(1 − cos x) = lim x→0 sin x x→0 x sin x 1 1 − cos x x cos x = [lim ][lim ][lim ] = 0·1·1 = 0 x→0 x→0 sin x x→0 1 x Indeterminacy ∞ − ∞: p p lim [ x2 + x] − [ x2 − x] x→∞ Indeterminacy ∞ − ∞: p p lim [ x2 + x] − [ x2 − x] x→∞ multiplying by conjugate, re-grouping: √ √ √ √ ( x2 + x − x2 − x) ( x2 + x + x2 − x) √ √ = lim x→∞ 1 ( x2 + x + x2 − x) Indeterminacy ∞ − ∞: p p lim [ x2 + x] − [ x2 − x] x→∞ multiplying by conjugate, re-grouping: √ √ √ √ ( x2 + x − x2 − x) ( x2 + x + x2 − x) √ √ = lim x→∞ 1 ( x2 + x + x2 − x) 2 2 x +x−x +x √ = lim √ x→∞ x2 + x + x2 − x 2x √ = lim √ x→∞ x2 + x + x2 − x 2x √ = lim √ x→∞ x2 + x + x2 − x ∞/∞: division by the highest exponent = lim r x→∞ 2x xr x2 x + + x2 x2 x2 x − x2 x2 2 √ =√ =1 1+0+ 1−0 Infinite limits infinite value of function Definition. lim f (x) = ∞ x→c ⇔ ∀M > 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f (x) > M Definition. lim f (x) = ∞ x→c ⇔ ∀M > 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f (x) > M 1 Example: lim =∞ 2 x→2 (x − 2) ⇔ ∀M > 0 ∃δ > 0 / 0 < |x−2| < 1 ⇒ > M (x − 2)2 (in particular, 1 (x−2)2 > M if δ = √1 M ) Example 7. lim f (x) = −∞ x→c ⇔ ∀M < 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f (x) < M Example 7. lim f (x) = −∞ x→c ⇔ ∀M < 0 ∃δ > 0 / 0 < |x − c| < δ ⇒ f (x) < M Example 8. lim f (x) = ∞ x→∞ ⇔ ∀M > 0 ∃N > 0 / x > N ⇒ f (x) > M EXAMPLES EXAMPLE 9. Evaluate infinite limit 1 lim 2 x→1− x − 1 EXAMPLE 9. Evaluate infinite limit 1 lim 2 x→1− x − 1 Factoring and sign analysis: 1 1 = lim = − = −∞ (0 ) · (2) x→1− (x − 1)(x + 1) EXAMPLE 10. Evaluate infinite limit x2 + 3x − 4 lim 2 x→2 x − 4x + 4 EXAMPLE 10. Evaluate infinite limit x2 + 3x − 4 lim 2 x→2 x − 4x + 4 Factoring and sign analysis: (x + 4)(x − 1) (6) · (1) = lim = = −∞ 2 + x→2 (x − 2) (0 ) EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x Sign analysis for one-sided limits: 1 1 lim = + = +∞ (0 ) x→0+ sin x EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x Sign analysis for one-sided limits: 1 1 lim = + = +∞ (0 ) x→0+ sin x 1 1 lim = − = −∞ (0 ) x→0− sin x EXAMPLE 11. Evaluate infinite limit 1 lim x→0 sin x Sign analysis for one-sided limits: 1 1 lim = + = +∞ (0 ) x→0+ sin x 1 1 lim = − = −∞ (0 ) x→0− sin x Limit at 0 does not exist
© Copyright 2026 Paperzz