Review Problems for Exam 1: Problem 1 Find the differential of fx, y y arctanxy. solution) 1 Note that arctan u 1u 2 . f y2 , x 1 x2y2 f xy arctanxy . y 1 x2y2 So, df f x dx f y dy y2 xy dx arctanxy 1 x2y2 1 x2y2 dy. Problem 2 Evaluate the Jacobian of the mapping u sin x cos y, v cos x sin y. solution) u x u y v x v y cos x cos y sin x sin y sin x sin y cos x cos y cos 2 x cos 2 y sin 2 x sin 2 y. z z ax y 0. Problem 3 If z fax 2 by 2 , show that by x solution) Let t ax 2 by 2 . Then by the chain rule, z z t z 2ax t x t x z z t z 2by. t y t y Hence, by z ax z 2abxy z 2abxy z 0. y t t x Problem 4 Go over the problem 7 on page 100. solution) see the homework solution. 1 Problem 5 Functions u and v are defined implicitly as functions of x, y and z by the following equations x 2 yv zu 6 xyz uv 8. u x u y u z Find , and . solution) Taking differentials, we get 2xdx vdy ydv udz zdu 0 yzdx xzdy xydz vdu udv 0. Rewriting the above, zdu ydv 2xdx vdy udz vdu udv yzdx xzdy xydz. By making use of Cramer’s rule to solve for du, we have du 2xdx vdy udz y yzdx xzdy xydz u z y v 2x y u dx v y dy u y yz u xz u xy u uz vy uz vy uz vy 2 2 2 2xu y z uv xyz u xy uz vy dx uz vy dy uz vy dz. dz Thus, 2 u 2xu y z , uz vy x u uv xyz , uz vy y 2 2 u u xy . uz vy z 2 Problem 6 Consider the mapping given by u ux, y, z, v vx, y, z, w wx, y, z. The x,y,z u,v,w Jacobian x,y,z of the mapping is 4. Find the Jacobian u,v,w of the inverse mapping x xu, v, w, y yu, v, w, z zu, v, w. solution) Using the identity x, y, z u, v, w 1 u,v,w x,y,z , we can easily get x, y, z 1. 4 u, v, w Problem 7 Let x r cos , y r sin . Compute x and y . solution) dx cos dr r sin d, dy sin dr r cos d. Solving for dr, we get cos dx d sin dy cos r sin sin sin dx cos dy . r r cos Hence, sin , r x cos . r y 3 Problem 8 Consider the surface x 2 3y 4z 7. Find a) the unit normal to the surface, and b) the equation of the tangent plane at 3, 2, 1. solution) a) Let Fx, y, z x 2 3y 4z. The gradient at 3, 2, 1 is Fx, y, z 2x, 3, 4 F3, 2, 1 6, 3, 4. Hence the unit normal to the surface Fx, y, z 7 at 3, 2, 1 is 6, 3, 4 6, 3, 4 n . 941 14 b) The equation of the tangent plane at 3, 2, 1 is 6x 3 3y 2 4z 1 0 6x 3y 4z 16. Problem 9 Let z x 2 xy y. Find the directional derivative of z along the curve y x 2 x 1 at x, y 2, 1. solution) Parametirc representation of the curve y x 2 x 1 is r t t, t 2 t 1. Note that x, y 2, 1 at t 2. Now, r t 1, 2t 1 r 2 1, 3, and zx, y 2x y, x 1 z2, 1 3, 1. Hence the directional derivative of z along the curve r t at t 2 is z2, 1 r 2 r 2 3, 1 1, 3 0. 10 4 Problem 10 Find such that fx, y, z x 2 y 2 z 2 is harmonic. solution) f 2f 2x 2, x x 2 f 2f 2y 2, y y 2 2f f 2x 2. z z 2 Note that we say that f is harmonic if 2 f 0. Hence, 2f 2f 2f 2f x 2 y 2 z 2 2 2 2 0 2. Problem 11 Let fx, y yx 2 y 2 2 . Use the Laplacian formula in polar coordinates to compute 2 f. 2f 2f f (Hint: 2 f r 2 r12 2 1r r . ) solution) In polar coordinates, f r sin r 2 2 r 3 sin . Now, f f 2f 3r 4 sin 12r 5 sin , r r r r 2 f f 2f r 3 cos r 3 sin . 2 So, 2 2f 1 f 1 f 2f r r r 2 r 2 2 12r 5 sin r 5 sin 3r 5 sin 8r 5 sin . 5
© Copyright 2026 Paperzz