08-035_08_AFSM_C08_001-026.qxd 7/19/08 8:41 PM Page 16 2x(0.699) 5 0.301 1 3x(0.602) 1.398x 5 0.301 1 1.806x x 5 20.737 Substitute to determine y y 5 3(5(23 (20.737)) ) y 5 3(521.475 ) y 5 0.279 log 63x 5 log 42x23 17. a) 3x log 6 5 (2x 2 3) log 4 3x(0.778) 5 (2x 2 3)(0.602) 2.33x 5 1.204x 2 1.806 1.13x 5 21.806 x 5 21.60 b) log (1.2)x 5 log (2.8)x14 x log 1.2 5 (x 1 4) log 2.8 0.079x 5 (x 1 4)(0.447) 0.079x 5 0.447x 1 1.789 20.368x 5 1.789 x 5 24.86 c) log 3(2)x 5 log 4x11 log 3 1 log 2x 5 (x 1 1) log 4 log 3 1 x log 2 5 (x 1 1) log 4 0.477 1 0.301x 5 (x 1 1)(0.602) 0.477 1 0.301x 5 0.602x 1 0.602 20.125 5 0.301x x 5 20.42 18. (2x )x 5 10 2 2x 5 10 2 log 2x 5 log 10 x2 log 2 5 1 1 x2 5 log 2 1 Å log 2 x 5 61.82 x56 8.6 Solving Logarithmic Equations, pp. 491–492 1. a) log2 x 5 log2 52 x 5 25 b) log3 x 5 log3 34 x 5 81 c) log x 5 log 23 x58 d) log (x 2 5) 5 log 10 x 2 5 5 10 x 5 15 8-16 e) 2x 5 8 x53 f) log2 x 5 log2 !3 x 5 !3 4 2. a) x 5 625 x 4 5 54 x55 1 b) x2 2 5 6 1 56 !x 1 5 6 !x 1 5 !x 6 1 5x 36 c) 52 5 2x 2 1 25 5 2x 2 1 26 5 2x x 5 13 d) 103 5 5x 2 2 1000 5 5x 2 2 1002 5 5x x 5 200.4 e) x 22 5 0.04 1 5 0.04 x2 1 5 0.04x 2 25 5 x 2 x55 f) 2x 2 4 5 36 2x 5 40 x 5 20 a 1 4.2 3. 6.3 5 log 1.6 a 2.1 5 log 1.6 a 2.1 10 5 1.6 a 125.89 5 1.6 201.43 5 a 3 4. a) x2 5 33 x 3 5 (33 )2 x 3 5 (32 )3 x 3 5 93 x59 2 b) x 5 5 x 5 !5 Chapter 8: Exponential and Logarithmic Functions 08-035_08_AFSM_C08_001-026.qxd 7/23/08 10:48 AM c) 33 5 3x 1 2 27 5 3x 1 2 25 5 3x 25 x5 3 d) 104 5 x x 5 10 000 1 x e) a b 5 27 3 32x 5 33 2x 5 3 x 5 23 1 22 f) a b 5 x 2 x54 5. a) log2 3x 5 3 23 5 3x 8 5 3x 8 x5 3 b) log 3x 5 1 10 5 3x 10 x5 3 c) log5 2x 1 log5 !9 5 2 log5 3 (3)(2x)4 5 2 log5 6x 5 2 52 5 6x 25 5 6x 25 x5 6 x d) log4 5 2 2 x 42 5 2 x 16 5 2 x 5 32 e) log x 3 2 log 3 5 log 9 x3 5 log 9 log 3 x3 59 3 x 3 5 27 x 3 5 33 x53 Advanced Functions Solutions Manual Page 17 f) log3 c (4x)(5) d 54 2 log3 10x 5 4 34 5 10x 81 5 10x x 5 8.1 6. log6 3x(x 2 5)4 5 2 log6 (x 2 2 5x) 5 2 62 5 x 2 2 5x 36 5 x 2 2 5x 2 x 2 5x 2 36 5 0 (x 2 9)(x 1 4) 5 0 x 5 9 or x 5 24 Restrictions: x . 5 (x 2 5 must be positive) so x 5 9 7. a) log7 3 (x 1 1)(x 2 5)4 5 1 log7 (x 2 2 4x 2 5) 5 1 71 5 x 2 2 4x 2 5 x 2 2 4x 2 12 5 0 (x 2 6)(x 1 2) 5 0 x 5 6 or x 5 22 As x must be . 5, 22 is inadmissible. x 5 6 b) log3 3 (x 2 2)x4 5 1 log3 (x 2 2 2x) 5 1 31 5 x 2 2 2x 2 x 2 2x 2 3 5 0 (x 2 3)(x 1 1) 5 0 x 5 3 or x 5 21 As x must be . 2, 21 is inadmissible. x 5 3 x c) log6 51 (x 2 1) x 61 5 (x 2 1) 6x 2 6 5 x 5x 5 6 6 x5 5 d) log 3(2x 1 1)(x 2 1)4 5 log 9 2x 2 2 x 2 1 5 9 2x 2 2 x 2 10 5 0 (2x 2 5)(x 1 2) 5 0 x 5 2.5 or x 5 22 As x must be . 1, 22 is inadmissible. x 5 2.5 e) log 3(x 1 2)(x 2 1)4 5 1 101 5 x 2 1 x 2 2 x 2 1 x 2 12 5 0 (x 1 4)(x 2 3) 5 0 x 5 24 or x 5 3 As x must be . 1, 24 is inadmissible. x 5 3 8-17 08-035_08_AFSM_C08_001-026.qxd 7/23/08 10:49 AM Page 18 f) log2 x 3 2 log2 x 5 8 x3 log2 58 x log2 x 2 5 8 28 5 x 2 4 2 (2 ) 5 x 2 x 5 24 5 16 8. a) Use the rules of logarithms to obtain log9 20 5 log9 x. Then, because both sides of the equation have the same base, 20 5 x. x b) Use the rules of logarithms to obtain log 5 3. 2 Then use the definition of a logarithm x x to obtain 10 3 5 ; 1000 5 ; 2000 5 x. 2 2 c) Use the rules of logarithms to obtain log x 5 log 64. Then, because both sides of the equation have the same base, x 5 64. I 9. a) 50 5 10 log a 212 b 10 I 5 5 log a 212 b 10 5 5 log I 2 log 10212 5 5 log I 2 (212) 27 5 log I 1027 5 I I b) 84 5 10 log a 212 b 10 I 8.4 5 log a 212 b 10 8.4 5 log I 2 log 10212 8.4 5 log (I 1 12) 23.6 5 log I 1023.6 5 I x12 d 5 loga (8 2 2x) 10. loga c x21 x12 5 8 2 2x x21 x 1 2 5 22x 2 1 10x 2 8 2 22x 1 9x 2 10 5 0 2x 2 2 9x 1 10 5 0 (2x 2 5)(x 2 2) 5 0 x 5 2.5 or x 5 2 11. a) x 5 0.80 b) x 5 26.91 c) x 5 3.16 d) x 5 0.34 8-18 12. log5 3 (x 2 1)(x 2 2)4 5 log5 (x 1 6) (x 2 1)(x 2 2) 5 x 1 6 x 2 2 3x 1 2 5 x 1 6 x 2 2 4x 2 4 5 0 Using the quadratic formula 4 6 !16 2 (4)(24) x5 2 4 6 !32 x5 2 x 5 4.83 or x 5 20.83 As x must be . 2, 20.83 is extraneous; x 5 4.83 13. log3 (28) 5 x; 3x 5 28; Raising positive 3 to any power produces a positive value. If x $ 1, then 3x $ 3. If 0 # x , 1, then 1 # x , 3. If x , 0, then 0 , x , 1. 14. a) x . 3 b) If x is 3, we are trying to take the logarithm of 0. If x is less than 3, we are trying to take the logarithm of a negative number. 15. 12 (log x 1 log y) 5 12 log xy 5 log !xy so x1y 5 !xy 5 and x 1 y 5 5!xy. Squaring both sides gives (x 1 y)2 5 25xy. Expanding gives x 2 1 2xy 1 y2 5 25xy; therefore, x2 1 y2 5 23xy. 16. log (35 2 x 3 ) 5 3 log (5 2 x) log (35 2 x 3 ) 5 log (5 2 x)3 35 2 x 3 5 (5 2 x)3 35 2 x 3 5 2x 3 1 15x 2 2 75x 1 125 15x 2 2 75x 1 90 5 0 x 2 2 5x 1 6 5 0 (x 2 3)(x 2 2) 5 0 x 5 3 or x 5 2 17. log2 a 1 log2 b 5 4; log2 ab 5 4; 24 5 ab; 16 5 ab. The values of a and b that satisfy the original equation are pairs that have a product of 16, but a and b must also both be positive. The possible pairs are: 1 and 16, 2 and 8, 4 and 4, 8 and 2, and 16 and 1. 18. log2 (5x 1 4) 5 3 1 log2 (x 2 1) log2 (5x 1 4) 2 log2 (x 2 1) 5 3 5x 1 4 53 log2 x21 5x 1 4 23 5 x21 8(x 2 1) 5 5x 1 4 8x 2 8 5 5x 1 4 3x 5 12 x54 Chapter 8: Exponential and Logarithmic Functions 7/19/08 8:41 PM Page 19 Substituting 4 in for x in the first equation y 5 log2 ((5)(4) 1 4) y 5 log2 24 2y 5 24 log 2y 5 log 24 y log 2 5 log 24 0.301y 5 1.38 y 5 4.58 19. a) 50 5 log3 x log3 x 5 1 31 5 x x53 b) 21 5 log4 x log4 x 5 2 42 5 x x 5 16 20. (221 )x1y 5 24 (x 2 y)23 5 8 1 23 22x2y 5 24 (x 2 y)23 5 a b 2 1 x2y5 2x 2 y 5 4 2 Adding the two equations gives 1 22y 5 4 2 y 5 22.25 Substituting into the first equation 2x 1 2.25 5 4 2x 5 1.75 x 5 21.75 8.7 Solving Problems with Exponential and Logarithmic Functions, pp. 499–501 1. First earthquake: 5.2 5 log x; 105.2 5 158 489 Second earthquake; 6 5 log x; 106 5 1 000 000 Second earthquake is 6.3 times stronger than the first. 2. pH 5 2log (H 1 ) pH 5 2log 6.21 3 1028 pH 5 2 (27.2) pH 5 7.2 3. 1 000 000 3 10212 W>m2 5 1026 W>m2; the intensity of the sound 1026 L 5 10 log 212 10 L 5 10 log 106 L 5 (10)(6) 5 60 dB Advanced Functions Solutions Manual I I 60 5 10 log 212 212 10 10 6 5 log I 2 log 10212 6.9 5 log I 2 log 10212 6.9 5 log I 1 12 6 5 log I 1 12 25.1 5 log I 26 5 log I 1025.1 5 I 1026 5 I I 5 1 3 1026 I 5 7.9 3 1026 A heavy snore is 7.9 times louder than a normal conversation. 5. a) 9 5 2log H 29 5 log H 1029 5 0.000 000 001 5 H b) 6.6 5 2log H 26.6 5 log H 1026.6 5 0.000 000 251 5 H c) 7.8 5 2log H 27.8 5 log H 10 27.8 5 0.000 000 016 5 H d) 13 5 2log H 213 5 log H 10 213 5 0.000 000 000 000 1 5 H 6. a) pH 5 2log 0.000 32 5 3.49 b) pH 5 2log 0.000 3 5 3.52 c) pH 5 2log 0.000 045 5 4.35 d) pH 5 2log 0.005 5 2.30 7. a) pH 5 2log 1027 5 7 b) Tap water is more acidic than distilled water as it has a lower pH than distilled water (pH 7). I I 118 5 10 log 212 8. 109 5 10 log 212 10 10 10.9 5 log I 2 log 10212 11.8 5 log I 2 log 10212 10.9 5 log I 1 12 11.8 5 log I 1 12 21.1 5 log I 20.2 5 log I 1021.1 5 I 1020.2 5 I I 5 0.079 I 5 0.63 An amplifier is 7.98 times louder than a lawn mower. 9. a) y 5 5000(1.0642)t Investment Growth 12 000 4. 69 5 10 log 10 000 Amount ($) 08-035_08_AFSM_C08_001-026.qxd 8000 6000 4000 2000 0 2 4 6 8 10 Year 8-19
© Copyright 2025 Paperzz