Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016 Hierarchical iron-containing MnO2 hollow microspheres assembled by thickness-tunable nanosheets for efficient phosphate removal Xiao Ge,a,b Xiangyang Song,a Yue Ma,a Hongjian Zhou,a Guozhong Wang,a Haimin Zhang,a Yunxia Zhang,a,* Huijun Zhao,a,c and Po Keung Wongd a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. b c University of Science and Technology of China, Hefei 230026, P. R. China Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia. d School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China Fig. S1 SEM image of pure γ-MnO2 sample. Fig. S2 FESEM images of the obtained Fe containing γ-MnO2 microspheres using FeCl2 as iron precursor: (a) FMO-1; (b) FMO-2; (c) FMO-3. * Correspondence Author. Email: [email protected] Fax: +86-551-65591434; Tel: +86-551-65592145 Fig. S3 N2 adsorption–desorption isotherm and the corresponding pore-size distribution (the inset) of the obtained products: I. γ-MnO2; II. FMO-1; III. FMO-2; IV. FMO-3. Fig. S4 XRD patterns of FMO-3 samples under different reaction time: I. 5 min; II. 30 min; III. 2h. 25 Qt (mg/g) 20 IV 15 10 III 5 II I 0 0 50 100 150 200 Time (min) Fig. S5 Nonlinear least squares (NLLS) adjustment for the kinetic data on different absorbents: I. γ-MnO2; II. FMO-1; III. FMO-2; IV. FMO-3. Experimental conditions: 10 mg·L-1 of initial phosphate concentration, 0.5 g·L-1 of sorbent dosage, pH 7, and temperature 25◦C. Table S1 The parameters of the Langmuir and Freundlich isotherm models for phosphate adsorption by different absorbents. Material Langmuir model qmax (mgg-1) KL (Lmg-1) Freundlich model R2 KF (mgg-1) 1/n R2 γ-MnO2 0.62 0.009 0.9801 0.0253 0.9755 0.9650 FMO-1 9.65 0.013 0.9799 0.0394 1.0868 0.9345 FMO-2 26.04 0.039 0.9877 2.4422 0.4813 0.9570 FMO-3 112.36 0.049 0.9911 15.5157 0.4044 0.9346 Fig. S6 Distribution of phosphate species under different pH. 8 Phosphate removal Final pH 99.8 7 99.6 6 99.4 5 99.2 4 99.0 Final pH Phosphate removal (%) 100.0 3 98.8 2 98.6 1 2 3 4 5 6 7 8 9 10 Initial pH Fig. S7 Effect of initial solution pH on removal efficiency of PO43- by FMO-3 and final solution pH as a function of initial pH (Initial PO43- concentration 10 ppm, adsorbent dose 0.5 g·L-1, temperature 25 ◦C). Fig. S8 Effect of HCO3- on removal efficiency of PO43- by FMO-3 and final pH as a function of initial pH (Initial PO43- concentration 10 ppm, adsorbent dose 0.5 g·L-1, temperature 25 ◦C). Fig. S9 SEM image of the FMO-3 sample after phosphate treatment. Table S2 Characteristics of water sampled from Nanfei River Parameter Value Parameter Value K+ (mgL-1) 17.90 ± 0.07 Mg2+ ( mgL-1) 9.01 ± 0.02 Ca2+ ( mgL-1) 37.72 ± 0.12 DOC (mg C/L) 30.2 ± 0.20 Na+ 63.88 ± 0.60 pH 7.50 ± 0.10 Cl- ( mgL-1) ( mgL-1) 42.82 ± 0.05 NO3 ( mgL-1) 2- mgL-1) 32.73 ± 0.20 SiO32- mgL-1) 2- mgL-1) 24.34 ± 3.03 SO4 ( CO3 ( - ( 42.43 ± 0.09 0.73 ± 0.04
© Copyright 2026 Paperzz