The Effects of Prenatal Excess Androgens Exposure on the Gene

Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
(/.34
2
) .0. ./.
2
1
!
" #$ %&
) +,- (* & ' ( ) ) &
1
- 5 ' 6 ,6$0 3( 4 7- 5 ' 6 ,6$0 3( 4 7'2 3( 4 ) ',-. /0
89 (5
89 (5
(, (
1
$ 1
$ 1
( : 3( 4 " # #
>
1
'2 3( 4 ) ',-. /0 %& ' ( )*( (+
'2 3( 4 ) ',-. /0
$
1
<=+
1
(, (
' "##
( : 3( 4 " # #
$
:
1
- 5 ' 6 ,6$0 3( 4 7-
89 (5
$
(1
(2 1
1
$ 1
e-mail: [email protected]
- , ($
+ () * ' % &
%
! " #$
:
< = .:/
2 4 2 # 3$ 8 9
7 2
(! 45 6
3 2 0" 1
/
' %- .
- ' ?"
C
(D 7 EF
@
A : >B >= (! ?!
>! )
(K " 1
L" :
@
/( J= 2 5
,
:1 ' ?"
1 HI
(! G/ 2
1
OP" , / Q=
>=/ M
L" - - "(GD (? @ N C( M (! 45 6
2 =1
5 G7 (" 2
(
- ".
%
=/ =4"
.:/ (! 45 6 & =4 @(G$
2 4 :7 C . C( H O% & = ($
L" R F
2 4 @ :/ - @
&! = 2 4
H = @ "(
4 (! ?! S)/
G7
? -=1 5 T
2 O U C M
(=
CV *
! - .:1 5 T
UI" 2 2 O
Q= 2 WA $ , 5 - ".
-!
! " #$
U C
! " #$
C (? ! XG=P 2 4 2
(? = ($
L"
C,M
>! )
# O 2 Y/ H &
% & =4 @(G$ OP" , / 2 O
?"
.
$(
& '( )
!"
!! # $
% &'
:
10/8/68 : * 9:-; 5 10/8/67 : 234 +, -
'6
$
' (
3'4
5
N:
)
'5
F4 G 6 A +W
N: A,
G
'+ N '.
23
.'6 5
QX .'6 5
= ) G:
Y
( 1
8. 5 1 '5 "
8 9 : )$
=
C4 5
.3 '
. 5
.3 '
N F: 5
Q
0
5 .3 '
1 5 )(7
(K K
6
$
9
.N 5
" Q
, 4 5
.1*
?: )(6
Y A . (6
T 4 .1
5 ' 4 ([ 5
: :
1/ 9
: 5
6
9K $5 1
% (4
Y
( (. T U 3'4
1$
/
510/0/. : * +, -
A5BC
(
) .)
.'+.
? @
5 5 F5
1-
GH
+
H:
.'+
D0 1
(C
$
R
S2 # % 6
/
5
'4 9
+ + '6 E
Q
'(
A5BC
O 4 - C O ) .)
.1* )' (Z (
, *( ( ' 0 '. (6
9K $5
3 7+. A 0 1
'(
+ 5
D0 E
E 6
) .I (+
J @
5A
" '. - A
E 6
MH 6
5 5 F5
1
.
K
GH D $
5
9K $5 I (+
A+
'(
5 N:
9K $5 , (5
, 5 A + ) #5
'6 E
) =+.
,
'. (H
.
9K $5
'6 ) . (
5N
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
11-15
D.
5 =+ < (5
N:
(c
%&
) .)
17
TF H
19,20
1 90 1 [ :
1
1
5
(PCOS) < 9
5 D.
'
( p
(:1
'+
(6
, ) .T( : E:(
QX $
5
QX " (
5
9K $5 1
Y A
1* '
-b( u (l . (
'+.
.' (6
.' ^
v
- 5 1* '
t2
9
, (5
: 3 0). 9
PCOS ) .T'
Y
.
, 4
(
-5
=
A
A
]
1
:
NH(:
6( A
>N:
QX
.1 ) .' 0
. 9 A
3 '+: ) S0 Q A
(
51
T& A
5 F5 T c
,
9
5 .N: .' l
N: < 9
iv - Insulin-like Growth Factor-1
1( (. A
A U
CM4 8 9 :
: : CM4 ) .T( :
QX
1* '
) '
)
2 $Y
CM4 % ,
9
5 .1( (.
6
$Y
#[ +
'
O 1 ) .N (5
CM4 " [ C
5
&
(6
QX 1 (
1* '
9
1* '
: 3 0
( 5 4. (6
95
.':
( : ) #5 g
CM4 ) .T( :
) .(7
6 - CM4
.
K
QX
i
nn
(
H
.'+O
'+ 9. T
5
9+ N
) F0 l .
3( * 0 5 + + 1
) ([ 5
5 (46,XX)
)F 5 %
iii
A +W8.
QX ) =
)
5
5T
9+ 3 ' 1'6
) F0 l . < :F 3
) H ) .A +
O
T& A
( I (+ 1 T C
H ) .A +
5
A (9
5 %c
5
7,8
!
QX N
a+
9K $5
:( 9 ) . ' K
5
1* '
0 .1* '
E:(
$Y
'. - h(
% ,
) ([ 5 >'+
1 ) .' 0
). , 4
:( 9
, *( ( ( % ,
1$
5 8
1
_
O
T( :
). 7:
CM4 ) . 9
T U
5
Y ) G:
( c ) .T'
'. (H : 5
5
++
.1( (.
'. )
'6 b 9c
5 1( (. A
' @ -$ (l .
++
(
) .D+
1-
5 '6 3 = ) . : 5 p
.1* 1 5
% ,
3 0
D0
: NH :
3'4
2 ) ' '0
` M4 8 9 : % ,
)' K ( c 5
(
'
= % H ) .1* , * 0 "
). ( )
(
: NH :
9
) 5 1 ' 90 )$
(
Y
:( 9
) .(7
:
. (5 '+. (H N 5
:( 9 T & 1 (+4 5 .N:
)
5 )' ^
Y )#
D# 1
D0
Y
3( * 0
1 ' 90 1'5 J @
5 '(
T(
) ' K 5TM
:
1* '
5 '(
6(08-W %5 O
1
Y
, * 0 "
/
) K H' " Q
([ 5 .' '6 c [ PCOS
8
.1* '
:
5
.1* '
C4 5
1
9 ).
'6
.' ^
5
5 .T' A
). 9
5
D#
0
9(
% (4 1
(
:
5
< * 0 "
G
'
:F0( : 1
5%
(
J @ ) . 9 ) .1*
) .I (+ b :
6 "
W >N:
9 '. (6 5 1 $
A+
95 T( :
A
(H
'
:( 9 1( (.
D $
( c ) .T'
5
1*
Y s4 5
.'+.
9
1
: 3 '+: A 5 EC
.1* 1 5
' ( N
.N:
D $
++
1* '
3 0T# ).
]+ ) . (
.1( (. D#
) .1( (. " Q
, 1 (+4 5 PCOS
) .1* 5 Q 5 1* '
.1*
%c
,:
5
). 9
A
=
& ' ( 89:
1* '
< (5
a
Y
0 1 ' @ 3 '+:
% 4 < 1 (+4 5 1
.N: A
A (9
T c
16
T 4
. (6
IGF-1 %&
++
F5
(6
. (5
q#
" : 0 1[ :
)
G
D.
iv
5
5
5
N: 1 ) (K
)
Y
1* '
18
21
"
A (9 r6
(
U 6
5 %
) '+. 1 - " U G p
#
.' '6
Q
J @ a+
7<.
' (6
10
.N:
T
++ 1
5
0 1' @
i - Genital Masculinization
ii - Adrenal Hyperplasia
iii - Behavioral Masculinization
T
) F0 l .
1* '
) F0 l . < :F 3
D.
9 ii
(
)
5FC
"
Y
7<0
&
!
'5 ) ( )
1
A (9 rG:
) .R(
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
5N
K
B
AZ
=
y [
1'
AKT
'
.'6 '. A l
QX
(
,: ) . x .
1* '
'+ 9. N UO
z( 5 [ A (9
, (5
30
. (6
5N
#
).
A (9
] 5
D $
H
' (
N: A
22
#
IGF1-R
5$
)' ^
5
(
6 w (4 5
: ) .1( (. NH :
). $
' (6
2 T
9
9
9 1 %,6 .'+ 9. w (4 A
1
% H ) .8 $
)' ^
5
++
1
.A Z
: ) .1( (. NH :
)
0 1 5 D.
% CO
.' ^
1* 'nnnn
A +W8.
12 32
: NH :
: )=
' StARD1 1* E:(
-2A 5 )
) c
%H
0 < StAR
) '++ 8 ]+ A Z
A .
9
w U
) .8 $
StAR, CYP17
D.
$
LHR, ixStAR, CYP17, CYP19, CYP11
.N: '6 R $K 1*
(6
O 1* '
K )mRNA 1 $nn
) 'nnn
32
K
v CYP11
.'.
1-
) .R(
'
31
) .T'
7 .
D# ) ?
.'.
5
T
' 4 5 CYP11 % 4
1 (+4 5
33
.' ^
T#
.N: h G x'+
2 ) 5 ) '+ (
N4 : ) '++
'
'.
) ' K A (9
' . 5-17
1* '
1* '
5
? ) .' ^
c
'
6
Z
25
.
iv
: NH :
1* '
.'5
1 5D $
.' ^(,
(UGCG)
r6
Y
vii
MAP2K4
A
1* ' 8 # 9
29
).
.'6 5 'C
<
5
' (5 '6
-1A (9
.)
)' K
26
5
. (6
A (9 r6
5
NH(:
1 5
D $
27 28
>'+ 9.
F4 .'++
5
5 B(5
) .1*
1* ' )'C ) . ' K A (9
?9
1$
D. A 9l
+- 0 A
:
( ( (K
v
)
( 1 '+?:(K
(6
: 3 0 $ (K
T U 5 EC
iii
w (4
5 '6
D#
++ 1
). ' K
, (5
.'
NH(:
D# )*
2 ` W 'C %&
PCOS
++
:
O 1* ' w U
,
(
0 A : < A 9l
. 5 W
.1-D < /
$
+6
? ). ' K1 5D $
v
) .'+
K
5
%H
.N: '6 '. -
9
) 95(: 1 5 T' A .
$
viii - IR substrate
ix - Steroidogenic Acute Regulatory Protein
x Rate-limiting
23
:
5 WN 5
5
c PCOS )'+?:(K ) .T'
%
) .R(
) -2
) ?|
: NH : '+
% ,
A (9
NH(: N
< *( ( $
{ 5 3 u
N: ) '+ (
9
N:
. ) . ' K A +W
N:
, 4
i
: ) 5
7 .
) =
5 FC 1
24
% H ) .1*
:D 0 5
PDX1
1*
:
l.
: : 1 (+4 5 A (9
$
2 * '. '^
'l
( 5
* '
5 6( ) .T'
). ' K
PCOS
.N: 3 '+: A
1* ' ) #
$ )
) .) =+.
22
% 6 b , 0 ) 5
9
1* '
A
) .1* 1 5 D $
D0
- 5 ' (6
) =+. A
ii
5 '(
, (5
:
.'6 5 1
, (5
: 3 0
" !#$ %& #
1* '
5FC 1
' .) -α-5
9
#'( ) !*
5 .'5
N
AKT A (9
9 q#
#
#
.N: '6 R $K
..
5 s4 5
IRSviii
:( 9
++
(
15
5N
Y 5)
01 .
5 T )'. (6 +
+
#!
A (9
( c T' A .
+
"
# D $ A +W8.
O 1
1( :F (?9
A
D $
nnn+ + 1
' (5
$
&
6 $ ( K rG: D $
A (9
w nnnU
$
$ %
=
% ( (K '
: $ ( K -UDP
vi
(IGF) A (9
C6 '6
%& )'C ) .8 $
QX %
(
H 5' (
5' (
( c T'
, 4
:
PCOS
6( T' < )
++
895
NH(: 5 + +
1
i - Insulin promoter factor 1
ii - Insulin-like Growth Factor1 Receptor
iii - IR-1: insulin receptor substrate-1
iv - Non-alcoholic fatty liver disease
v - UDP- glucose ceramide glucosyltransferase
vi - Insulin–like growth factor
vii- Mitogen-Activated Protein Kinase Kinase 4
:( 9
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
,
+.
0
+ !1 2 1
+ 1 !
:%#$+
87
!#
31
92
, - . - +. ' &.
!#
! 31 StAR 7
$+
" !#$ ..= #
%>#
7<8
'!
: 1
!# + - B #
!#
0 C --17
" !#$
0 . $ ( .+ - -
'
$ +. C19
" !#$ . !
,< 0
+
5
$+ - :
4 1$
1*
:
5
A - 0 D@5
K'++ ' ( 1 (
++
(
([1 .
0'
N
QX N
'6
7 $ +.
' @ ) , ) .T( :
37
.N: 1* '
DHT
iii
)
1
:( 9 1* ' }(
1 '+?:(K T
A w U
1 5
D.
+
':
c
'
] 5 .
8. 5
D.
I (+
. (6
'.
K
O 1* '
'+?:(K
E# CYP17A1 1 5
5 .' '6
CYP19
1*
1
:( 9 5
CYP17 D.
:P450SCC 1
) ' 0 s4 5
1 - , ) .T( :
* '
CYP17 1 5
A
) .T( :
AZ
.N:
D$
, ) '++ '
" !#$ :?@
' 6(0
0 A .
( 1 5D $
DENND1Ai 1*
D# .' l
AZ
BC
)(:
PCOS
35
QX ) 5
$
D#
C: +
'
N:
K
α-5
)' '
0 A
'6
N:
U
O 1* ' w U
CYP17
(
0
'6
* '
l .
++ 1
CYP19 1 5 D $
36
5 B(5
=
CYP11
1* A
0
),
5 5 1* A ) G# ) .89
'+?:(K
1 5 D.
.A Z
5 PCOS 5 F C
34
1-
N: iiA ',
-2 " ?c 5 ) , .
) '++ ' ) .1* 1 5 8 ]+
7
!# !
U % 4 1 (+4 5
F
" !#$
.$ !#$
CYP11a
.N: '6 R $K
) .1* ) 0 1 5 D $ )'+?:(K T'
'. - LHR
CYP17 HSD3B1 CYP11A StAR
l . 1' @
iii - Dihydrotestosterone, or 5.-dihydrotestosterone
5
4
!
: /1* ' T U
.T(, ( % , 3'4
' (
( : '
CYP19A1
D.
(, ( 1
$ N U D $
~ 5
A .'.
A
A Y 5 ) , ) .T( :
$
Y 5
DHTiii
4
A (K ) '++
'#
) 0 ) .T(, (
StARD1 1 5 '
N:
(6
.
++ 1
D $
( H )
| D $ ) '+. 1 -
432 + 1
=# 1 !
.
'6 1 5 $
-1 ' (
6
! 31 ;
" !#$
!#
%& #
i - DENN Domain Containing 1A
ii- Connecdenn family
7<=
&
!
9
$ (l .
S0 " (
h # K .'++
'0
A
A
. (6
h(G: .
$
T +
A '5
4(
=
)'+5 8 9#
:
c
5
1
.' =
A
b:
5 B(5
9 q# :1
) .) =+.
9 )
%
K A
4
1
:( 9 %&
* "
Y
0 1 ' @ 3 '+:
1
.1* '
,
) ' 4
5
( N
T
ii
.N: '6 " CQ 1( '+ : ' -A
1
iii
5<
:* 0 9
' . -17
N: CYP21
5 •: 0
F4 43. (6
5
7
Y .N: CYP21
42
=
ACTH
1
.'+
=
CYP21 1* "
=
6
5 _ ' u ) .T( :
) F0 l .
: rG: D $
N: ) SK< @
.N: < 9
MEHP
9 A ) .8 $
)
) F0 l .
>$ (l .
8
Y
T
•
K
A
4 A
46
'5 :2
$
++
41
$ (l .
– b( u (l .
MH
i
5
•
K
5 N:
O DBP w U
O €'. A +
D# 1 "
:
) .R( ) : +
K
1 1 5
:' (6
– b( u (l .
9 ) .1* 1 5
CYP17 1* •
) .) =+.
T
O N: "u
(6 )
.'
9+
QX N
SCarb1 CYP11 CYP17 %&
39 40
A 1'6 T U .'++
.'6 5 '6 =
N: '6 '
% (5 1 )
: NH :
StAR
=+
) SK< @
: )'nnnn+5 :
5 (
c
9 ) .1*
A . '+W . >' K
5 ) .' ^
(, (
5 z( 5 [ (
N6 ' 5 1
O
c ) . H W .1( (.
45
vi
" (
: NH :
(DBP) "u
GnRH r6
5
CYP17
$ < N U y [
38
) SK< @ t
1
3
,5'
) .' ^
:* 0 D.
#'( ) !*
CYP17 7
' (
K'4 O 'H ) 5 T Z (
( Q"?
:
#
:* 0 r6
:
( K'4 O ) . H W)
) 5 .T(, (
+
#!
LH -1*
(5
JO(
75
"
b( u (l . y [ A '5
b( u (l . 5 1
v
&
N? E:( 1
2
'. (H
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
$ %
$ PCOS 5 F C
'
PCOS ) .I (+ '+ 9. 1* A ) .1( : ( )
.
5
1*
1* A D# 5
Tu' : A +W 1 (
1* '
5 ++
(
44
( 5 S
.'+.
PCOS
5
CAH 3 '+:
, $ CYP21
QX € '.
.'6 5
iv
$ >H -, 2
)GnRH N: '6
b( u (l .
s4 5
1*
$
$+ , 2
. 1
D
K G
:
-E F
:GnRH
LH
$ >H K G
!#$)
=
= #.$=FSH
,
-2 ' (
1*
E F
) 5
+ G
SK
+
LH
L
FSH
'++
+
1
([1 .
Q $ (l . A - 0 D@5 5 (6
FSH
5
(6
: A 5 NC& <5' .'+
) SK< @
. J(
1 - 2 %,6
: ' ( N
'+
+ G
GnRH ) '++ ' ( ) .1 ( E:(
). H W % 4A
. $ >H -, 2
-E F
<
LH r6
.1 ' @
1
T +
:* 0 r6
+ $K u
5} 6
:* 0
' @
' @ ) .T(, (
a0 .' (6
r6
c
5 LH
) SK< @
H ) .T(, (
" !#$ J(
.
(
v - Menstrual cycle
vi - World Health Organization (WHO)
(
!#
0
i - Mono-(2-ethylhexyl) Phthalate
ii - A4-androstenedione
iii - Adrenocorticotropic hormone
iv - Hypothalamic–Pituitary–Ovarian axis (HPO axis)
,
TPAix '+
A .
*
N:
35
. (6
" (c A
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
) '. -
$
A
x
1 5 D $
" CQ 7
xii
TNF-.
5J @ ).
(1* '
5 95 ' (
1* '
QX N
TGF=1 AMH 1 5 rG:
+U D.
1 5 D $ 1(
.
'+
K
Y
1* '
55
.N: )(
+ + 16-19 ) .
T , 0) 0
7 .
57
N
9.
1
D $ )
.'6 5 .1* 1 5 1 $
D#
K D $
K
: 5
( 1(+
' X
9 A
7 5
t
+U " (
5
O 1* ' w U
:* 0 ) ' K
7
5 =+ N
. (6 GnRH
A +W8.
50 51
(
#+ O 0
,
W1 5
Y
: 3 0
'
9
K
Wnt
1 5D $
9
'nnn++
O
'6 R $K
.1 1 5
5 Dickkopf Homolog 3 1 5 D.
Wnt
9
Y
:
'++
1 (+4 5 Wnt5A
.Wnt-1-responsive cdc42 homolog 1 5 D $
9 ) . G:
vi
b :
A5 ) +
1 5 D.
ix - Tissue Plasminogen Activator
x - Activin beta
xi - Follistatin
xii- Tumor necrosis factor alpha
xiii - Flutamide: Androgen receptor antagonist
xiv - Transforming growth factor-=1 Receptor
1*
Z ' l0 9 (5
AMH
' (
= 3'4 s4 5 $
'+ C4 >N: '6 ' PCOS E 6
1 (+4
: ) E2 5
. 9 A
W .N: Wnt
*
56
5 b( u (l .
Y 5 1* ' D#
„(
49
iii
16
( PgrA+B) B
ii
6 89:
5 19
' @ 1*
b( u (l . T , 0 ) 0 ) 9.
(-
PCOS
1* ' ) ' K
i
'6 LH
N:
).
t ( ' (
:* 0 ) ' K ) .1* (
5 % , ) . MH 6
+ + 20
5 ' (5
1 5
47
:( 9 5 )
1-
5 AMH 1 5
CM4 ) '+.
.'6 5 :( u (l . ) .1 (
1
FSHR )mRNA
TGF=3 1 5 1 $
) ."
)' K1 5t
xiv
.'+
N: A,
) :T U ' '6
$
12
1 - DHT 5
'.
) .R( )
A1
: 5
) .R(
).
:( 9 " ( 0 0
54
> (6
)$ (l . ) .1*
=+. 1 5 Q
48
1 '+?:(K
c
T=R-I
) PCOS T' A
)
O 1
T' A .
'. -
: +6N 5 "
)
%H
5 ) .) =+.
kisspeptin
95
O 1* '
5
'6 $ * ' PCOS T'
0
N: _ ' u
K
kisspeptin
)
9 " Q
D 5
+ + 90-120 ) .
)
BC
4(+
'
GnRH ) .1 ( N U ) '++ 8 ]+
5 B(5
1* '
$ GATA-4 A Z
(
)' K
w U
++
.'6 5 6
O DBP
K
' K N9 (K
1 '+?:(K
)$
ƒ
z( 5 1
5 ) .ƒ(H
xiii
(
) .T( : $ *( ( 8
.
9 ( 1* )mRNA
A
++
FSH r6
GnRH r6
Ki-67 GATA4 E-Cadherin % CO
53
40
xi
)
) '++ ' 1* Kiss 1 1* 1 5
T#
9 ) .1* 1 5 : 5 .N: '6
1 - ' '6
c
A(
1
Y y [
% 4 LH
6 ' (
52
5)
++
1 5
] 5
(, ( 1
++
'. - GnRH )mRNA D $
1* )mRNA 1 5 D.
5 A(
N@
(
>'6 5
( c T' <
1' @
' (
w U
5E 6
' @ ).
D.
5
A >' (6
( 1 5D $
(, ( q #
: : D.
'
c
7<?
Eiv DUSP1 %&
5 •: 0
)
v
) .A Z
( 0(0
.1* A
5 B(5
F4
: 3 0
vii
> ADAMTS-1
0(
W PCOS E 6
5
$ PAIviii
(:
i - POA: Preoptic area
ii - Defeminization
iii - Signaling Pathways
iv - Dual Specificity Phosphatase1
v - Apoptosis
vi - Stress response
vii- A Disintegrinand Metalloprotease with Thrombospondin
Thrombospondin motifs-1
viii - Plasminogen Activator Inhibitor
7<1
&
7
)(:
!
$ %
&
"
caspase-3-positive ) .T( : '
1* '
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
( c T' A
.N6 D $ '. 6
) .1* )DNA 1'6
)'
PCOS 6( T' <
(
TF H D#
I (+
=
iv
.
A
Y A
H (K A +
1'6
(l .
W1 +W
(
.'6
1
T
Y 7 5 "
= y [
v
%9
.
6
* '
PPARG1
(
NCOR
N
(
T' <
1*
A .1 5
%u
,
'
1'6
)(7
(H
) nn - 5
W >'6 5 , * 0 "
EC
CpG
$
1'6
Y
TGF-=
Y
'6
+- 0 A Y 5
DNA 1'6
A
)(7
.'6 5 ' '0 A
1'6
€F H
t 2 .'6 R $K A Y 5
: 3 0
=
'6 : 5
7
325
% H ) .1* (
.'6 5 ) /
'5
) .1*
TGF-= )
: 3 0
, 4
0
'#
B A C + AMHii %&
)' 5
K
7
1* '
(* ) ' 0
.N:
. (6
(
1* 528 1'6
9
.|
Y y [
O
1 5 rG: D.
9K $5
R(
l . '+ 6
) .'+
K
N : 5
: 5
N H
v - Peroxisome Proliferator-activated Receptor Gamma 1
i - Tumor Growth Factor beta
ii - Anti-Mullerian Hormone
(c
' (
' @
PCOS
5 s4 5
( c ) .T'
1
:( 9 " ( 0 0
'6 R $K
:+
( Scr5a1 1*
DNA 1'6
$Y
Y 5 =+
.1* A N &
.'
O
'+ 9.
'6 R $K $ ) 7
1$
62
'+
Y 5 N:
(6 1 ' @ 3( * 0
1* .1* A 1
iii - Luteinizing hormone/choriogonadotropin receptor
receptor
iv - Zebrafish
)(7
.' (6
)DNA 1( :F
' (
'6 '
61
(
A
1* '
'. …(: 7+
)(:
5 ++
5 ++
)
+- 0 .1(
) .1* 1( :F
(0 '+W . " Q A
T'
'+
++
N: A,
'+.
-0 3
.'6 5 6 D# PCOS $ *( 0
) 9. "F ,-
68
2
: 3 0 ) . 9 ) .1* 1'6
60
8 :
66 67
U C[
9 ( AA(
A
5-
R(
' @ )
4
Y )(7 . (5 '6 ' X PCOS 5 B C
/
)(7 A .
65
vi - Nuclear Receptor Corepressor
vii- Micronuclei
5 W N 5 1'6
95
( H 5 )
C
3( * 0
(l . 5
h(
59
(l .
7 5' 6
-c
O TGF-=i
0 ) .CpG 1'6
=+ 5
8.
163
A
.'
K'
( * ) .) ' 0
vii
. 7
A
1 - $ PCOS
DNA t : % 6
1-
, * 0
3 F : 1( 9 .
PCOS
5 PCOS
27578 .1(
N K " (
1'6
'6 '
, ' (
7
:
5
CpG 7
59
5 2011 T :
'6 3 =
5 3( * 0
(
R$
.' (5 '6
:
1
.1( 9 .
( ) .1(
).
l .
Y
Y ' (
Y " (
1'6
PCOS 5 1 F C
5 9 #
.N:
) .CpG
0
(
T 4
#Q !
5 W N 5 )
Y ) '. -
PCOS 5 F C 1
l . )
:
5
1
([ 5
:' (6
5 ++ 1
C6 I (+
8.
Y
(
)(7
NCOR1
-c
; +
2 <W( ) .RNA
. '++ '
( 1* '
'
9 "U G
vi
) .1(
:(Z .
= N : 5
: 5 5 1(
) ( ( K ) .T( :
' @
5 + + 3 7+.
DNA 1( :F
PPARG1 ) .1*
0 PCOS
Y A . (6
: 5
=
_
:( 9 w U
62
PCOS
1* A
, * 0 "
U G A
)(7
QX
NH(: I (+
1* '
5 < * 0 D#
•F
%9 A '+W $ ( K )
PCOS C6 ) :
TF H
JO(
64
Y
: NH(: 9
1-
(6
O DHT
75
5 1( c A
Q
5
A
PCOS
5 1* '
' @ 3( * 0
h(
FSHR LHCGR
LHCGR 1'6
1'6
+
$
Y DNA 1( :F
58
iii
0$ P$
:y [
: 5
DHEA 5 '6
20
89 ,
6"
PCOS 5 EC
H19 1*
.R( A 1 ' @
#'( ) !*
!
K 5 NC9 $
NU
) ' K 1* %nnn CO
++
#
$ BCL2L1 1* )mRNA
.'6 '
63
+
#!
)
7:
,
BCL2L1
+U D $
,
H 5 1 5 TF H
9+
) .1* 8. .RNA , A
'2 % , )'
A (9
: 3 0
: NH(:
(6
+- 0
* '
, 4
1* '
(H
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
Y )'+?:(K PCOS T' <
'.
1 ' @ % , )$
5
.'.
A (9
: 3 0
w U
++ 1
36
.
)
%c
(6 G
-
'++
( (.
Y
1
.'+ )$
5
'':
(6
O
65
9K $5
QX
(
) 'U
A + 3( * 0 5 ' (
D01
'++ ' X '. (6 ) 7
: 5
"U G
.'+.
9
c
, * 0 T + ). 9
'6
) (K 5
c
1 +W
I (+
F5 5
55 74 49
G
E 6
T 4 .1*
, 4
Q
c
: 5 ) 5
c
Y y [
U
( (. E 6
% ,
$
.1( (. A
A
>N:
% 6
, * 0
, *
.T'
:
:
, N: A,
N
RNA
11 8
2 ) .RNA ,
, * 0
U G
, * 0
5
. RNA ,
71
.' (6
5 '+
Y
N
.1 D#
2 A +W8.
O €'. y [
A
.T(, (
D# $ PCOS
.'
0
73 74
N: N . $^ c
• 9
. (6 6 SK A + % ,
' @ )RNA ,
" ? DHT 5 '6
' (
C
1,
8 ]+
.N 5
75
.'
1' @
+U
A
* '
5 %c
349 1 5 1 $
.RNA ,
=
.'
l . '+
)
?
R( T'
A
%24 1 5
.1
' @ 1* '
… [ 5 .1
y [ A '5
. RNA , 1 5 + +
i - Ubiquitylation
: 5
.T(, ( ) , ) .T( :
D# PCOS )*( (
9
QX A
( PCOS
1-
1- D
7 (7W
c [ 1
1* 1 5 "
y [
z( 5
R( )
) .1* 1
(5 '. (H _
, *
)$
9(
) K(
.N :
'c
' @ ) .RNA , 1 5 5 SK QX % 4 < 1 (+4
t2
Y s4 5
84
mRNA )
:( 9 D# 1
<
.1( (.
: 5
'6 q@- 1 ' @ 1 [ :
/
51
'
N
9K " U G
.N:
=
Y
0
=
72
A
Ka+ 8. < 9
( A + † H ) .3 '
(c
7
( ( K ) .T( :
5
(, (
3 F : 1( 9 . 1 5
) ([ 5 >'++ ) 5 1 9
† H ) .) =+.
, * 0 "
( c
' @ ) .T(, ( % ,
' ' 0
(H Q $
1
E 6 5 < $
'+.
=
:
DHT 5 '6
'+ 9. '++ '
0
O % ,
(H 8.
.'+ 'U 9
1 '
(
(K K R(@ :
. '+
3 1( 9 . 1
H ) .1* 1 5 N: A,
+6
) U G
9 '
a0 %9 '+W 8.
1 ' @ 3 '+: 89
' (6
5
.3 ' % , '+
. K " Q A . (6
1( :F :
5 N- E
1 ' 90 ) .1*
K" (
'+ 9. N UO A
+ + ) .T( : % ,
5
1* 6( H s4 5 † H )
.'+
.1* '
) '. -
) .1* '
J @ ) . 9 ) .1* 89
H ˆ[ #
: 5
a0 ) . '++ 8 ]+ 1 (+4 5 ' (Z ( N9 5
N:
K
5 '
1( 9 . 1 5
.'6 5 PCOS = % u
T([ 5
Y
"U G
(, (
a0 , N:
A
NU
% @ 3 1( 9 . 1( :F :
) . G:
< D!
A
Y 1* '
K'
3( * 0 N:
A+
=
'5
([ 5
) 5
3 F :
9 ) ( ( K ) .T( :
c < s4 5 N: A,
, * 0 ). 9
PCOS T' ) ." 1 ' @
Y A +W8.
T(Z9 8 $
O 1* '
1* '
PCOS =
62
'+?:(K
K
8
PPARG1 ) .1* 1'6
5- "
(9.
5 1( :F ^(, 5(
/
`(9
% 6
i
8. .1( 9 . 1( :F : )
Y
miR-497
'+
> ( P$
3 1( 9 . 1( :F : rG: D.
miR-15
R $K
[
'
D# $
' @ ) .microRNA 1 5 1 $
.' (6
NCOR1
+- 0 A .
!
'+ 9. 3 1( 9 .
##
(
: 8#9 ).
% CO
.) , : :
69 70
F4 )
K 5
Y
1( :F ?9 1( :F : 1( :F
O €'.
5
9
"
% H ) .1* 8.
76
1*
N: ) U G p
76<
1
'++
:( 9
766
&
1* '
$ %
# 5 ++
(# A ) . 9
T U Š?c
)
3KA
E 6
8
A
.'6 5
51
.)
"
+
#!
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
#'( ) !*
95 T( :
9
). 9
y [
t: +
R(@ : ) . 9
( (.
8 : K'
5 A +W 5 F 5
) . G:
R
1*
) 7- 0
Forsdahl A. Observations throwing light on the high
mortality in the county of Finnmark. Is the high mortality today a late effect of very poor living conditions in
childhood and adolescence? 1973. Int J Epidemiol 2002;
31: 302-8.
Fowden AL,Giussani DA, Forhead AJ. Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda) 2006; 21: 29-37.
Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine
regulation of human fetal growth: the roleof the mother,
placenta, and fetus. Endocr Rev 2006; 27: 141-69.
Day J, Frank A, O'Callaghan J, Jones B and Anderson J.
The effect of age and testosterone on the expression of
glial fibrillary acidic protein in the rat cerebellum.
Experimentalneurology 1998; 151: 343-46.
Belle MDC, Lea RW. Androgen receptor immunolocalization in brains of courting and brooding male and
female ring doves (Streptopelia risoria). General and
comparative endocrinology 2001; 124: 173-87.
BiaOek M, Zaremba P, Borowicz KK, Czuczwar S a J.
Neuroprotective role of testosterone in the nervous
system. Pol J Pharmacol 2004; 56: 509-18.
Filova B, Ostatnikova D, Celec P, Hodosy J. The effect
of testosterone on the formation ofbrain structures. Cells
Tissues Organs 2013; 197: 169-77.
Hines M. Prenatal testosterone and gender-related behaviour. Eur J Endocrinol 2006; 155 Suppl 1: S115-21.
Meyer-Bahlburg HF, Dolezal C, Baker SW New MI.
Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of
degree of prenatal androgen excess. Arch Sex Behav
2008; 37: 85-99.
Berenbaum SA, Duck SC, Bryk K. Behavioral effects of
prenatal versus postnatalandrogen excess in children
with 21-hydroxylase-deficient congenital adrenal hyperplasia. J Clin Endocrinol Metab 2000; 85: 727-33.
Crespi EJ, Steckler TL, MohanKumar PS, Padmanabhan
V. Prenatal exposure to excess testosterone modifies the
developmental trajectory of the insulin-like growth factor system in female sheep. J Physiol 2006; 572: 119-30.
Manikkam M, Thompson RC, Herkimer C, Welch K B,
Flak J, Karsch FJ, et al. Developmental programming:
impact of prenatal testosterone excess on pre- and postnatal gonadotropin regulation in sheep. Biol Reprod
2008; 78: 648-60.
Bruns CM, Baum ST, Colman RJ, Eisner JR, Kemnitz
JW, Weindruch R, et al. Insulin resistance and impaired
insulin secretion in prenatally androgenized male rhesus
monkeys. J Clin Endocrinol Metab 2004; 89: 6218-23.
Eisner J R, Dumesic D A, Kemnitz J W and Abbott D H.
Timing of prenatal androgen excess determines differen-
ˆ:
(, (
.':
.
References
1.
#
(+. '+W . '6 5 Q‰
E 6T + Tc .
SY A 6
' (
&
( w (4 5 5 #
N: 1
c
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
!
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
(, ( T +
?: 5 A(
] 5)
,+
b:
5
,6$0 8 4 5 €
KR( H ) .RNA ,
+- 0 5 '+ ( 5 .
: 5
% CO
A ' 6 N:
(, (
S01 ,
tial impairment in insulin secretion and action in adult
female rhesus monkeys 1. J Clin Endocrinol Metab
2000; 85: 1206-10.
Noroozzadeh M, Tehrani FR, Sedaghat K, Godini A,
Azizi F. The impact of prenatal exposure to a single
dose oftestosterone on insulin resistance, glucose tolerance and lipid profile of female rat’s offspring in
adulthood. J Endocrinol Invest 2015; 38: 489-95.
Cai Z, Xi H, Pan Y, Jiang X, Chen L, Cai Y, et al. Effect
of testosterone deficiency on cholesterol metabolism in
pigs fed a high-fat and high-cholesterol diet. Lipids
Health Dis 2015; 14: 18.
Costello LC, Franklin RB. Testosterone and prolactin
regulation of metabolic genes and citrate metabolism of
prostate epithelial cells. Horm Metab Res 2002; 34: 41724.
Rakha EA, Reis-Filho JS, Ellis IO. Combinatorial biomarker expression in breast cancer. Breast Cancer Res
Treat 2010; 120: 293-308.
Tehrani FR, Noroozzadeh M, Zahediasl S, Piryaei A,
Hashemi S , Azizi F. The time of prenatal androgen
exposure affects development of polycystic ovary syndrome-like phenotype in adulthood in female rats. Int J
Endocrinol Metab 2014; 12: e16502.
Xita N and Tsatsoulis A. Review: fetal programming of
polycystic ovary syndrome by androgen excess: evidence from experimental, clinical, and genetic association
studies. J Clin Endocrinol Metab 2006; 91: 1660-66.
Tehrani FR, Noroozzadeh M, Zahediasl S, GhasemiA,
Piryaei A, Azizi F. Prenatal testosterone exposure
worsen the reproductive performance of male rat at
adulthood. PloS one 2013; 8: e71705.
Sir-Petermann T, Codner E, Pérez V, Echiburú B, Maliqueo M, Ladron de Guevara A, et al. Metabolic and
reproductive features before and during puberty in
daughters of women with polycystic ovary syndrome. J
Clin Endocrinol Metab 2009; 94: 1923-30.
Rae M, Grace C, Hogg K, Wilson L M, McHaffie S L,
Ramaswamy S, et al. The pancreas is altered by in utero
androgen exposure: implications for clinical conditions
such as polycystic ovary syndrome (PCOS). PLoS One
2013; 8: e56263.
Sun M, Maliqueo M, Benrick A, Johansson J, Shao R,
Hou L, et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis,
and leads to long-term health effects in their female
offspring. Am J Physiol Endocrinol Metab 2012; 303:
e1373-85.
Van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, Nilsell K, et al. Mechanisms involved in the regulation of free fatty acid release from
isolated human fat cells by acylation-stimulating protein
and insulin. J Biol Chem 1999; 274: 18243-51.
26.
27.
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
Lazic M, Aird F, Levine JE, Dunaif A. Prenatal androgen treatment alters body composition and glucose
homeostasis in male rats. J Endocrinol 2011; 208: 293300.
Brzozowska MM, Ostapowicz G, Weltman MD. An association between non-alcoholic fatty liver disease and
polycystic ovarian syndrome. J Gastroenterol Hepatol
2009; 24: 243-47.
Vassilatou E, Lafoyianni S, Vryonidou A, Ioannidis D,
Kosma L,Katsoulis K, et al. Increased androgen bioavailability is associated with non-alcoholic fatty liver
disease in women with polycystic ovary syndrome. Hum
Reprod 2010; 25: 212-20.
Hogg K, Wood C, McNeilly AS, Duncan WC. The in
utero programming effect of increased maternal androgens and a direct fetal intervention on liver and me
tabolic function in adult sheep. PLoS One 2011; 6:
e24877.
Yan X, Dai X, Wang J, Zhao N, Cui Y, Liu J. Prenatal
androgen excess programs metabolic derangements in
pubertal female rats. J Endocrinol 2013; 217: 119-29.
Connolly F, Rae M T, Bittner L, Hogg K, McNeilly AS,
Duncan WC. Excess androgens in utero alters fetal testis
development. Endocrinology 2013; 154: 1921-33.
HoggK, McNeilly AS, Duncan WC. Prenatal androgen
exposure leads to alterations in gene and protein expression in the ovine fetal ovary. Endocrinology 2011; 152:
2048-59.
Christenson LK, Strauss JF 3rd. Steroidogenic acute
regulatory protein: an update on its regulation and mechanism of action. Arch Med Res 2001; 32: 576-86.
McAllister J M, Modi B, Miller B A, Biegler J, Bru
ggeman R, Legro RS, et al. Overexpression of a DEN
ND1A isoform produces a polycystic ovary syndrome
theca phenotype. Proc Natl Acad Sci U S A 2014; 111:
E1519-27.
Eriksen MB, Nielsen MF, Brusgaard K, Tan Q, Andersen MS, Glintborg D, et al. Genetic alterations within
the DENND1A gene in patients with polycystic ovary
syndrome (PCOS). PLoS One 2013; 8: e77186.
Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational test
osterone treatment alters fetal ovarian gene expression.
Endocrinology 2011; 152: 4974-83.
Hogg K, Young JM, Oliver EM, Souza CJ, McNeilly
AS, Duncan WC. Enhanced thecal androgen production
is prenatally programmed in an ovine model of polycystic ovary syndrome. Endocrinology 2012; 153: 45061.
Padmanabhan V, Salvetti NR, Matiller V, OrtegaHH.
Developmental programming: prenatal steroid excess
disrupts key members of intraovarian steroidogenic pathway in sheep. Endocrinology 2014; 155: 3649-60.
Thompson CJ, Ross SM, Hensley J, Liu K, Heinze SC,
Young SS, et al. Differentialsteroidogenic gene expression in the fetal adrenal gland versus the testis and rapid
and dynamic response of the fetal testis to di(n-butyl)
phthalate. Biol Reprod 2005; 73: 908-17.
Kilcoyne KR, Smith LB, Atanassova N, Macpherson S,
McKinnellC, van den Driesche S, et al. Fetal programming of adult Leydig cell function by androgenic effects
on stem/progenitor cells. Proc Natl Acad Sci U S A
2014; 111: E1924-32.
Chauvigne F, Plummer S, Lesne L, Cravedi JP, DejucqRainsford N, Fostier A, et al. Mono-(2-ethylhexyl) phthalate directly alters the expression of Leydig cell genes
and CYP17 lyase activity in cultured rat fetal testis.
PLoS One 2011; 6: e27172.
,
76@
42.
Nimkarn S, Gangishetti PK, Yau M, New MI. 21Hydroxylase-deficient congenital adrenal hyperplasia.
2016. Available from: URL: http://www.ncbi.nlm.nih.gov/books/NBK1171/?report=reader
Azziz R, Bradley Jr E, Potter H and Boots L. Adrenal
androgen excess in women: lack of a role for 17hydroxylase and 17, 20-lyase dysregulation. J Clin Endocrinol Metab 1995; 80: 400-05.
Witchel S and Aston C. The role of heterozygosity for
CYP21 in the polycystic ovary syndrome. J Pediatr
Endocrinol Metab 2000; 13: 1315-17.
Marieb EN and Hoehn K, 2007. Human anatomy &
physiology, 7th ed. Pearson Education, Vicksburg, MI,
U.S.A.
Baird D, Balen A, Escobar-Morreale H, Evers J, Fauser
B, Franks S, et al. Health and fertility in World Health
Organization group 2 anovulatory women. Human Rep
roduction Update 2012: dms019.
Vom Saal FS, Bronson FH. Sexual characteristics of
adult female mice are correlated with their blood testosterone levels during prenatal development. Science
1980; 208: 597-99.
Brown R E, WilkinsonD A, Imran S A, Caraty A and
Wilkinson M. Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of
polycystic ovary syndrome (PCOS). Brain Res 2012;
1467: 1-9.
Foecking EM, Szabo M, Schwartz NB, Levine JE. Neuroendocrine consequences of prenatal androgen exposure
in the female rat: absence of luteinizing hormone surges,
suppression of progesterone receptor gene expression,
and acceleration of the gonadotropin-releasing hormone
pulse generator. Biology of Reproduction 2005; 72:
1475-83.
Jansen E, Laven JS, Dommerholt HB, Polman J, van
Rijt C, van den Hurk C, et al. Abnormal gene expression
profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol 2004; 18: 3050-63.
Moeller C, Swindell E C, Kispert A, Eichele G. Carboxypeptidase Z (CPZ) modulates Wnt signaling and
regulates the development of skeletal elements in the
chicken. Development 2003; 130: 5103-11.
West C, Foster DL, Evans NP, Robinson J,Padmanabhan V. Intra-follicular activin availability is altered
in prenatally-androgenized lambs. Mol Cell Endocrinol
2001; 185: 51-9.
Knapczyk-Stwora K, Durlej-Grzesiak M, Ciereszko R E,
Koziorowski M, Slomczynska M. Antiandrogen flutamide affects folliculogenesis during fetal development
in pigs. Reproduction 2013; 145: 265-76.
Rojas-Garcia PP, Recabarren MP, Sir-Petermann T, Rey
R, Palma S, Carrasco A, et al. Altered testicular development as a consequence of increase number of sertoli
cell in male lambs exposed prenatally to excess testosterone. Endocrine 2013; 43: 705-13.
Rojas-Garcia PP, Recabarren MP, Sarabia L, Schon J,
Gabler C, Einspanier R, et al. Prenatal testosterone excess alters Sertoli and germ cell number and testicular FSH
receptor expression in rams. Am J Physiol Endocrinol
Metab 2010; 299: E998-e1005.
Daneshian Z, Ramezani Tehrani F, Zarkesh M, Norooz
Zadeh M, Mahdian R, Zadeh Vakili A. Antimullerian
hormone and its receptor gene expression in prenatally
androgenized female rats. Int J Endocrinol Metab 2015;
13: e19511.
Wu XY, Li ZL, Wu CY, Liu YM, Lin H, Wang SH, et
al. Endocrine traits of polycystic ovary syndrome in
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
767
58.
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
59.
60.
61.
62.
63.
64.
65.
66.
&
!
$ %
&
"
#!
prenatally androgenized female Sprague-Dawley rats.
Endocr J 2010; 57: 201-09.
Esteller M. Epigenetics in evolution and disease. The
Lancet 2008; 372: S90-6. Available from: URL: http://dx.doi.org/10.1016/S0140-6736(08)61887-5
Xu N, Kwon S, Abbott DH, Geller DH, Dumesic DA,
Azziz R, et al. Epigenetic mechanism underlying the
development of polycystic ovary syndrome (PCOS)-like
phenotypes in prenatally androgenized rhesus monkeys.
PloS one 2011; 6: e27286.
Jones M R, Xu N, Goodarzi MO. Recent Advances in
the Genetics of Polycystic Ovary Syndrome, in: Pal, L.
(Ed.), Polycystic Ovary Syndrome: Current and Emerging Concepts. Springer New York, NY, 2014;pp. 2952.
Ghahramani NM, Ngun TC, Chen PY, Tian Y, Krishnan
S, Muir S, et al. The effects of perinataltestosterone
exposure on the DNA methylome of the mouse brain are
late-emerging. Biol Sex Differ 2014; 5: 8.
Xu N, Chua AK, Jiang H, Liu NA, Goodarzi MO. Early
embryonic androgen exposure induces transgenerational
epigenetic and metabolicchanges. Mol Endocrinol 2014;
28: 1329-36.
Zhang D, Cong J, Shen H, Wu Q, Wu X. Genome-wide
identification of aberrantly methylated promoters in
ovarian tissue of prenatally androgenized rats. Fertil
Steril 2014; 102: 1458-67.
Zhu JQ, Zhu L, Liang XW, Xing FQ, Schatten H, Sun
QY. Demethylation of LHR in dehydroepiandrosteroneinduced mouse model of polycystic ovary syndrome.
Mol Hum Reprod 2010; 16: 260-66.
Qu F, Wang FF, Yin R, Ding GL, El-Prince M, Gao Q,
et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa
cells. J Mol Med (Berl) 2012; 90: 911-23.
Moran LJ, Noakes M, Clifton PM, Norman RJ, Fenech
MF. Genome instability is increased in lymphocytes of
+
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
#
#'( ) !*
women with polycystic ovary syndrome and is correlated with insulin resistance. Mutat Res 2008; 639: 5563.
Nersesyan A, Chobanyan N. Micronuclei and other
nuclear anomalies levels in exfoliated buccal cells and
DNA damagein leukocytes of patients with polycystic
ovary syndrome. J buon 2010; 15: 337-39.
Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300: 455.
Li B, Carey M,Workman JL. The role of chromatin
during transcription. Cell 2007; 128: 707-19.
Berger S L. The complex language of chromatin regula
tion during transcription. Nature 2007; 447: 407-12.
Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem
2009; 284: 17897-901.
Toloubeydokhti T, Bukulmez O, Chegini N. Potential
regulatory functions of microRNAs in the ovary. Semin
Reprod Med 2008; 26: 469-78.
Delic D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F. Testosterone-induced upregulation of miRNAs
in the female mouse liver. Steroids 2010; 75: 998-04.
Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ,
et al. Androgens regulate ovarian follicular development
by increasing follicle stimulating hormone receptor and
microRNA-125b expression. Proc Natl Acad Sci U S A
2014; 111: 3008-13.
Hossain MM, Cao M, Wang Q, Kim JY, Schellander K,
TesfayeD, et al. Altered expression of miRNAs in a
dihydrotestosterone-induced rat PCOS model. J Ovarian
Res 2013; 6: 36.
Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational
testosterone treatment altersfetal ovarian gene expression. Endocrinology 2011; 152: 4974- 83.
323/Iranian Journal of Endocrinology and Metabolism
Vol 18 No.4 Oct-Nov 2016
Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017
Review Article
The Effects of Prenatal Excess Androgens Exposure on the
Gene Expression
Salehi Jahromi M1, Ramezani Tehrani F1, Zadeh-Vakili A2
1Reroductive
Endocrinology Research Center, & 2Cellular and Molecular Endocrine Research Center, Obesity
Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran,
I.R. Iran
e-mail: [email protected]
Received: 25/07/2016 Accepted: 06/09/2016
Abstract
Introduction: Prenatal exposure to excess androgens, as environmental factors affecting the
fetal epigenome, and also a potent agent for developing special phenotypes in adulthood, has been
the subject of many studies during recent decades. Results of various molecular studies
conducted in this area indicate that exposure to androgens, during certain periods of growth and
development of the fetus, affects cellular processes, tissues and organ development leading to
phenotype and behavior alterations, one of which is causing susceptibility to polycystic ovary
syndrome in adulthood. Testosterone, the most important androgen, has interfering effects in
metabolic and endocrine pathways, usually a result of epigenetic changes. In recognition of
diverted pathways leading to the development of disease conditions and considering possible
interventions at the molecular level in these directions, control of prenatal environment and
conditions can be taken to account as the first and most important step in prevention of related
diseases. This article reviews the studies on the epigenetic and gene expression changes of
various biological pathways as a result of this exposure, using the polycystic ovarian syndrome as
an appropriate model to illustrate this exposure.
Keywords: Prenatal exposure, Androgen excess, Epigenetics, Gene expression, Fetal development, PCOS