Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 (/.34 2 ) .0. ./. 2 1 ! " #$ %& ) +,- (* & ' ( ) ) & 1 - 5 ' 6 ,6$0 3( 4 7- 5 ' 6 ,6$0 3( 4 7'2 3( 4 ) ',-. /0 89 (5 89 (5 (, ( 1 $ 1 $ 1 ( : 3( 4 " # # > 1 '2 3( 4 ) ',-. /0 %& ' ( )*( (+ '2 3( 4 ) ',-. /0 $ 1 <=+ 1 (, ( ' "## ( : 3( 4 " # # $ : 1 - 5 ' 6 ,6$0 3( 4 7- 89 (5 $ (1 (2 1 1 $ 1 e-mail: [email protected] - , ($ + () * ' % & % ! " #$ : < = .:/ 2 4 2 # 3$ 8 9 7 2 (! 45 6 3 2 0" 1 / ' %- . - ' ?" C (D 7 EF @ A : >B >= (! ?! >! ) (K " 1 L" : @ /( J= 2 5 , :1 ' ?" 1 HI (! G/ 2 1 OP" , / Q= >=/ M L" - - "(GD (? @ N C( M (! 45 6 2 =1 5 G7 (" 2 ( - ". % =/ =4" .:/ (! 45 6 & =4 @(G$ 2 4 :7 C . C( H O% & = ($ L" R F 2 4 @ :/ - @ &! = 2 4 H = @ "( 4 (! ?! S)/ G7 ? -=1 5 T 2 O U C M (= CV * ! - .:1 5 T UI" 2 2 O Q= 2 WA $ , 5 - ". -! ! " #$ U C ! " #$ C (? ! XG=P 2 4 2 (? = ($ L" C,M >! ) # O 2 Y/ H & % & =4 @(G$ OP" , / 2 O ?" . $( & '( ) !" !! # $ % &' : 10/8/68 : * 9:-; 5 10/8/67 : 234 +, - '6 $ ' ( 3'4 5 N: ) '5 F4 G 6 A +W N: A, G '+ N '. 23 .'6 5 QX .'6 5 = ) G: Y ( 1 8. 5 1 '5 " 8 9 : )$ = C4 5 .3 ' . 5 .3 ' N F: 5 Q 0 5 .3 ' 1 5 )(7 (K K 6 $ 9 .N 5 " Q , 4 5 .1* ?: )(6 Y A . (6 T 4 .1 5 ' 4 ([ 5 : : 1/ 9 : 5 6 9K $5 1 % (4 Y ( (. T U 3'4 1$ / 510/0/. : * +, - A5BC ( ) .) .'+. ? @ 5 5 F5 1- GH + H: .'+ D0 1 (C $ R S2 # % 6 / 5 '4 9 + + '6 E Q '( A5BC O 4 - C O ) .) .1* )' (Z ( , *( ( ' 0 '. (6 9K $5 3 7+. A 0 1 '( + 5 D0 E E 6 ) .I (+ J @ 5A " '. - A E 6 MH 6 5 5 F5 1 . K GH D $ 5 9K $5 I (+ A+ '( 5 N: 9K $5 , (5 , 5 A + ) #5 '6 E ) =+. , '. (H . 9K $5 '6 ) . ( 5N Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 11-15 D. 5 =+ < (5 N: (c %& ) .) 17 TF H 19,20 1 90 1 [ : 1 1 5 (PCOS) < 9 5 D. ' ( p (:1 '+ (6 , ) .T( : E:( QX $ 5 QX " ( 5 9K $5 1 Y A 1* ' -b( u (l . ( '+. .' (6 .' ^ v - 5 1* ' t2 9 , (5 : 3 0). 9 PCOS ) .T' Y . , 4 ( -5 = A A ] 1 : NH(: 6( A >N: QX .1 ) .' 0 . 9 A 3 '+: ) S0 Q A ( 51 T& A 5 F5 T c , 9 5 .N: .' l N: < 9 iv - Insulin-like Growth Factor-1 1( (. A A U CM4 8 9 : : : CM4 ) .T( : QX 1* ' ) ' ) 2 $Y CM4 % , 9 5 .1( (. 6 $Y #[ + ' O 1 ) .N (5 CM4 " [ C 5 & (6 QX 1 ( 1* ' 9 1* ' : 3 0 ( 5 4. (6 95 .': ( : ) #5 g CM4 ) .T( : ) .(7 6 - CM4 . K QX i nn ( H .'+O '+ 9. T 5 9+ N ) F0 l . 3( * 0 5 + + 1 ) ([ 5 5 (46,XX) )F 5 % iii A +W8. QX ) = ) 5 5T 9+ 3 ' 1'6 ) F0 l . < :F 3 ) H ) .A + O T& A ( I (+ 1 T C H ) .A + 5 A (9 5 %c 5 7,8 ! QX N a+ 9K $5 :( 9 ) . ' K 5 1* ' 0 .1* ' E:( $Y '. - h( % , ) ([ 5 >'+ 1 ) .' 0 ). , 4 :( 9 , *( ( ( % , 1$ 5 8 1 _ O T( : ). 7: CM4 ) . 9 T U 5 Y ) G: ( c ) .T' '. (H : 5 5 ++ .1( (. '. ) '6 b 9c 5 1( (. A ' @ -$ (l . ++ ( ) .D+ 1- 5 '6 3 = ) . : 5 p .1* 1 5 % , 3 0 D0 : NH : 3'4 2 ) ' '0 ` M4 8 9 : % , )' K ( c 5 ( ' = % H ) .1* , * 0 " ). ( ) ( : NH : 9 ) 5 1 ' 90 )$ ( Y :( 9 ) .(7 : . (5 '+. (H N 5 :( 9 T & 1 (+4 5 .N: ) 5 )' ^ Y )# D# 1 D0 Y 3( * 0 1 ' 90 1'5 J @ 5 '( T( ) ' K 5TM : 1* ' 5 '( 6(08-W %5 O 1 Y , * 0 " / ) K H' " Q ([ 5 .' '6 c [ PCOS 8 .1* ' : 5 .1* ' C4 5 1 9 ). '6 .' ^ 5 5 .T' A ). 9 5 D# 0 9( % (4 1 ( : 5 < * 0 " G ' :F0( : 1 5% ( J @ ) . 9 ) .1* ) .I (+ b : 6 " W >N: 9 '. (6 5 1 $ A+ 95 T( : A (H ' :( 9 1( (. D $ ( c ) .T' 5 1* Y s4 5 .'+. 9 1 : 3 '+: A 5 EC .1* 1 5 ' ( N .N: D $ ++ 1* ' 3 0T# ). ]+ ) . ( .1( (. D# ) .1( (. " Q , 1 (+4 5 PCOS ) .1* 5 Q 5 1* ' .1* %c ,: 5 ). 9 A = & ' ( 89: 1* ' < (5 a Y 0 1 ' @ 3 '+: % 4 < 1 (+4 5 1 .N: A A (9 T c 16 T 4 . (6 IGF-1 %& ++ F5 (6 . (5 q# " : 0 1[ : ) G D. iv 5 5 5 N: 1 ) (K ) Y 1* ' 18 21 " A (9 r6 ( U 6 5 % ) '+. 1 - " U G p # .' '6 Q J @ a+ 7<. ' (6 10 .N: T ++ 1 5 0 1' @ i - Genital Masculinization ii - Adrenal Hyperplasia iii - Behavioral Masculinization T ) F0 l . 1* ' ) F0 l . < :F 3 D. 9 ii ( ) 5FC " Y 7<0 & ! '5 ) ( ) 1 A (9 rG: ) .R( Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 5N K B AZ = y [ 1' AKT ' .'6 '. A l QX ( ,: ) . x . 1* ' '+ 9. N UO z( 5 [ A (9 , (5 30 . (6 5N # ). A (9 ] 5 D $ H ' ( N: A 22 # IGF1-R 5$ )' ^ 5 ( 6 w (4 5 : ) .1( (. NH : ). $ ' (6 2 T 9 9 9 1 %,6 .'+ 9. w (4 A 1 % H ) .8 $ )' ^ 5 ++ 1 .A Z : ) .1( (. NH : ) 0 1 5 D. % CO .' ^ 1* 'nnnn A +W8. 12 32 : NH : : )= ' StARD1 1* E:( -2A 5 ) ) c %H 0 < StAR ) '++ 8 ]+ A Z A . 9 w U ) .8 $ StAR, CYP17 D. $ LHR, ixStAR, CYP17, CYP19, CYP11 .N: '6 R $K 1* (6 O 1* ' K )mRNA 1 $nn ) 'nnn 32 K v CYP11 .'. 1- ) .R( ' 31 ) .T' 7 . D# ) ? .'. 5 T ' 4 5 CYP11 % 4 1 (+4 5 33 .' ^ T# .N: h G x'+ 2 ) 5 ) '+ ( N4 : ) '++ ' '. ) ' K A (9 ' . 5-17 1* ' 1* ' 5 ? ) .' ^ c ' 6 Z 25 . iv : NH : 1* ' .'5 1 5D $ .' ^(, (UGCG) r6 Y vii MAP2K4 A 1* ' 8 # 9 29 ). .'6 5 'C < 5 ' (5 '6 -1A (9 .) )' K 26 5 . (6 A (9 r6 5 NH(: 1 5 D $ 27 28 >'+ 9. F4 .'++ 5 5 B(5 ) .1* 1* ' )'C ) . ' K A (9 ?9 1$ D. A 9l +- 0 A : ( ( (K v ) ( 1 '+?:(K (6 : 3 0 $ (K T U 5 EC iii w (4 5 '6 D# ++ 1 ). ' K , (5 .' NH(: D# )* 2 ` W 'C %& PCOS ++ : O 1* ' w U , ( 0 A : < A 9l . 5 W .1-D < / $ +6 ? ). ' K1 5D $ v ) .'+ K 5 %H .N: '6 '. - 9 ) 95(: 1 5 T' A . $ viii - IR substrate ix - Steroidogenic Acute Regulatory Protein x Rate-limiting 23 : 5 WN 5 5 c PCOS )'+?:(K ) .T' % ) .R( ) -2 ) ?| : NH : '+ % , A (9 NH(: N < *( ( $ { 5 3 u N: ) '+ ( 9 N: . ) . ' K A +W N: , 4 i : ) 5 7 . ) = 5 FC 1 24 % H ) .1* :D 0 5 PDX1 1* : l. : : 1 (+4 5 A (9 $ 2 * '. '^ 'l ( 5 * ' 5 6( ) .T' ). ' K PCOS .N: 3 '+: A 1* ' ) # $ ) ) .) =+. 22 % 6 b , 0 ) 5 9 1* ' A ) .1* 1 5 D $ D0 - 5 ' (6 ) =+. A ii 5 '( , (5 : .'6 5 1 , (5 : 3 0 " !#$ %& # 1* ' 5FC 1 ' .) -α-5 9 #'( ) !* 5 .'5 N AKT A (9 9 q# # # .N: '6 R $K .. 5 s4 5 IRSviii :( 9 ++ ( 15 5N Y 5) 01 . 5 T )'. (6 + + #! A (9 ( c T' A . + " # D $ A +W8. O 1 1( :F (?9 A D $ nnn+ + 1 ' (5 $ & 6 $ ( K rG: D $ A (9 w nnnU $ $ % = % ( (K ' : $ ( K -UDP vi (IGF) A (9 C6 '6 %& )'C ) .8 $ QX % ( H 5' ( 5' ( ( c T' , 4 : PCOS 6( T' < ) ++ 895 NH(: 5 + + 1 i - Insulin promoter factor 1 ii - Insulin-like Growth Factor1 Receptor iii - IR-1: insulin receptor substrate-1 iv - Non-alcoholic fatty liver disease v - UDP- glucose ceramide glucosyltransferase vi - Insulin–like growth factor vii- Mitogen-Activated Protein Kinase Kinase 4 :( 9 Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 , +. 0 + !1 2 1 + 1 ! :%#$+ 87 !# 31 92 , - . - +. ' &. !# ! 31 StAR 7 $+ " !#$ ..= # %># 7<8 '! : 1 !# + - B # !# 0 C --17 " !#$ 0 . $ ( .+ - - ' $ +. C19 " !#$ . ! ,< 0 + 5 $+ - : 4 1$ 1* : 5 A - 0 D@5 K'++ ' ( 1 ( ++ ( ([1 . 0' N QX N '6 7 $ +. ' @ ) , ) .T( : 37 .N: 1* ' DHT iii ) 1 :( 9 1* ' }( 1 '+?:(K T A w U 1 5 D. + ': c ' ] 5 . 8. 5 D. I (+ . (6 '. K O 1* ' '+?:(K E# CYP17A1 1 5 5 .' '6 CYP19 1* 1 :( 9 5 CYP17 D. :P450SCC 1 ) ' 0 s4 5 1 - , ) .T( : * ' CYP17 1 5 A ) .T( : AZ .N: D$ , ) '++ ' " !#$ :?@ ' 6(0 0 A . ( 1 5D $ DENND1Ai 1* D# .' l AZ BC )(: PCOS 35 QX ) 5 $ D# C: + ' N: K α-5 )' ' 0 A '6 N: U O 1* ' w U CYP17 ( 0 '6 * ' l . ++ 1 CYP19 1 5 D $ 36 5 B(5 = CYP11 1* A 0 ), 5 5 1* A ) G# ) .89 '+?:(K 1 5 D. .A Z 5 PCOS 5 F C 34 1- N: iiA ', -2 " ?c 5 ) , . ) '++ ' ) .1* 1 5 8 ]+ 7 !# ! U % 4 1 (+4 5 F " !#$ .$ !#$ CYP11a .N: '6 R $K ) .1* ) 0 1 5 D $ )'+?:(K T' '. - LHR CYP17 HSD3B1 CYP11A StAR l . 1' @ iii - Dihydrotestosterone, or 5.-dihydrotestosterone 5 4 ! : /1* ' T U .T(, ( % , 3'4 ' ( ( : ' CYP19A1 D. (, ( 1 $ N U D $ ~ 5 A .'. A A Y 5 ) , ) .T( : $ Y 5 DHTiii 4 A (K ) '++ '# ) 0 ) .T(, ( StARD1 1 5 ' N: (6 . ++ 1 D $ ( H ) | D $ ) '+. 1 - 432 + 1 =# 1 ! . '6 1 5 $ -1 ' ( 6 ! 31 ; " !#$ !# %& # i - DENN Domain Containing 1A ii- Connecdenn family 7<= & ! 9 $ (l . S0 " ( h # K .'++ '0 A A . (6 h(G: . $ T + A '5 4( = )'+5 8 9# : c 5 1 .' = A b: 5 B(5 9 q# :1 ) .) =+. 9 ) % K A 4 1 :( 9 %& * " Y 0 1 ' @ 3 '+: 1 .1* ' , ) ' 4 5 ( N T ii .N: '6 " CQ 1( '+ : ' -A 1 iii 5< :* 0 9 ' . -17 N: CYP21 5 •: 0 F4 43. (6 5 7 Y .N: CYP21 42 = ACTH 1 .'+ = CYP21 1* " = 6 5 _ ' u ) .T( : ) F0 l . : rG: D $ N: ) SK< @ .N: < 9 MEHP 9 A ) .8 $ ) ) F0 l . >$ (l . 8 Y T • K A 4 A 46 '5 :2 $ ++ 41 $ (l . – b( u (l . MH i 5 • K 5 N: O DBP w U O €'. A + D# 1 " : ) .R( ) : + K 1 1 5 :' (6 – b( u (l . 9 ) .1* 1 5 CYP17 1* • ) .) =+. T O N: "u (6 ) .' 9+ QX N SCarb1 CYP11 CYP17 %& 39 40 A 1'6 T U .'++ .'6 5 '6 = N: '6 ' % (5 1 ) : NH : StAR =+ ) SK< @ : )'nnnn+5 : 5 ( c 9 ) .1* A . '+W . >' K 5 ) .' ^ (, ( 5 z( 5 [ ( N6 ' 5 1 O c ) . H W .1( (. 45 vi " ( : NH : (DBP) "u GnRH r6 5 CYP17 $ < N U y [ 38 ) SK< @ t 1 3 ,5' ) .' ^ :* 0 D. #'( ) !* CYP17 7 ' ( K'4 O 'H ) 5 T Z ( ( Q"? : # :* 0 r6 : ( K'4 O ) . H W) ) 5 .T(, ( + #! LH -1* (5 JO( 75 " b( u (l . y [ A '5 b( u (l . 5 1 v & N? E:( 1 2 '. (H Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 $ % $ PCOS 5 F C ' PCOS ) .I (+ '+ 9. 1* A ) .1( : ( ) . 5 1* 1* A D# 5 Tu' : A +W 1 ( 1* ' 5 ++ ( 44 ( 5 S .'+. PCOS 5 CAH 3 '+: , $ CYP21 QX € '. .'6 5 iv $ >H -, 2 )GnRH N: '6 b( u (l . s4 5 1* $ $+ , 2 . 1 D K G : -E F :GnRH LH $ >H K G !#$) = = #.$=FSH , -2 ' ( 1* E F ) 5 + G SK + LH L FSH '++ + 1 ([1 . Q $ (l . A - 0 D@5 5 (6 FSH 5 (6 : A 5 NC& <5' .'+ ) SK< @ . J( 1 - 2 %,6 : ' ( N '+ + G GnRH ) '++ ' ( ) .1 ( E:( ). H W % 4A . $ >H -, 2 -E F < LH r6 .1 ' @ 1 T + :* 0 r6 + $K u 5} 6 :* 0 ' @ ' @ ) .T(, ( a0 .' (6 r6 c 5 LH ) SK< @ H ) .T(, ( " !#$ J( . ( v - Menstrual cycle vi - World Health Organization (WHO) ( !# 0 i - Mono-(2-ethylhexyl) Phthalate ii - A4-androstenedione iii - Adrenocorticotropic hormone iv - Hypothalamic–Pituitary–Ovarian axis (HPO axis) , TPAix '+ A . * N: 35 . (6 " (c A Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 ) '. - $ A x 1 5 D $ " CQ 7 xii TNF-. 5J @ ). (1* ' 5 95 ' ( 1* ' QX N TGF=1 AMH 1 5 rG: +U D. 1 5 D $ 1( . '+ K Y 1* ' 55 .N: )( + + 16-19 ) . T , 0) 0 7 . 57 N 9. 1 D $ ) .'6 5 .1* 1 5 1 $ D# K D $ K : 5 ( 1(+ ' X 9 A 7 5 t +U " ( 5 O 1* ' w U :* 0 ) ' K 7 5 =+ N . (6 GnRH A +W8. 50 51 ( #+ O 0 , W1 5 Y : 3 0 ' 9 K Wnt 1 5D $ 9 'nnn++ O '6 R $K .1 1 5 5 Dickkopf Homolog 3 1 5 D. Wnt 9 Y : '++ 1 (+4 5 Wnt5A .Wnt-1-responsive cdc42 homolog 1 5 D $ 9 ) . G: vi b : A5 ) + 1 5 D. ix - Tissue Plasminogen Activator x - Activin beta xi - Follistatin xii- Tumor necrosis factor alpha xiii - Flutamide: Androgen receptor antagonist xiv - Transforming growth factor-=1 Receptor 1* Z ' l0 9 (5 AMH ' ( = 3'4 s4 5 $ '+ C4 >N: '6 ' PCOS E 6 1 (+4 : ) E2 5 . 9 A W .N: Wnt * 56 5 b( u (l . Y 5 1* ' D# „( 49 iii 16 ( PgrA+B) B ii 6 89: 5 19 ' @ 1* b( u (l . T , 0 ) 0 ) 9. (- PCOS 1* ' ) ' K i '6 LH N: ). t ( ' ( :* 0 ) ' K ) .1* ( 5 % , ) . MH 6 + + 20 5 ' (5 1 5 47 :( 9 5 ) 1- 5 AMH 1 5 CM4 ) '+. .'6 5 :( u (l . ) .1 ( 1 FSHR )mRNA TGF=3 1 5 1 $ ) ." )' K1 5t xiv .'+ N: A, ) :T U ' '6 $ 12 1 - DHT 5 '. ) .R( ) A1 : 5 ) .R( ). :( 9 " ( 0 0 54 > (6 )$ (l . ) .1* =+. 1 5 Q 48 1 '+?:(K c T=R-I ) PCOS T' A ) O 1 T' A . '. - : +6N 5 " ) %H 5 ) .) =+. kisspeptin 95 O 1* ' 5 '6 $ * ' PCOS T' 0 N: _ ' u K kisspeptin ) 9 " Q D 5 + + 90-120 ) . ) BC 4(+ ' GnRH ) .1 ( N U ) '++ 8 ]+ 5 B(5 1* ' $ GATA-4 A Z ( )' K w U ++ .'6 5 6 O DBP K ' K N9 (K 1 '+?:(K )$ ƒ z( 5 1 5 ) .ƒ(H xiii ( ) .T( : $ *( ( 8 . 9 ( 1* )mRNA A ++ FSH r6 GnRH r6 Ki-67 GATA4 E-Cadherin % CO 53 40 xi ) ) '++ ' 1* Kiss 1 1* 1 5 T# 9 ) .1* 1 5 : 5 .N: '6 1 - ' '6 c A( 1 Y y [ % 4 LH 6 ' ( 52 5) ++ 1 5 ] 5 (, ( 1 ++ '. - GnRH )mRNA D $ 1* )mRNA 1 5 D. 5 A( N@ ( >'6 5 ( c T' < 1' @ ' ( w U 5E 6 ' @ ). D. 5 A >' (6 ( 1 5D $ (, ( q # : : D. ' c 7<? Eiv DUSP1 %& 5 •: 0 ) v ) .A Z ( 0(0 .1* A 5 B(5 F4 : 3 0 vii > ADAMTS-1 0( W PCOS E 6 5 $ PAIviii (: i - POA: Preoptic area ii - Defeminization iii - Signaling Pathways iv - Dual Specificity Phosphatase1 v - Apoptosis vi - Stress response vii- A Disintegrinand Metalloprotease with Thrombospondin Thrombospondin motifs-1 viii - Plasminogen Activator Inhibitor 7<1 & 7 )(: ! $ % & " caspase-3-positive ) .T( : ' 1* ' Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 ( c T' A .N6 D $ '. 6 ) .1* )DNA 1'6 )' PCOS 6( T' < ( TF H D# I (+ = iv . A Y A H (K A + 1'6 (l . W1 +W ( .'6 1 T Y 7 5 " = y [ v %9 . 6 * ' PPARG1 ( NCOR N ( T' < 1* A .1 5 %u , ' 1'6 )(7 (H ) nn - 5 W >'6 5 , * 0 " EC CpG $ 1'6 Y TGF-= Y '6 +- 0 A Y 5 DNA 1'6 A )(7 .'6 5 ' '0 A 1'6 €F H t 2 .'6 R $K A Y 5 : 3 0 = '6 : 5 7 325 % H ) .1* ( .'6 5 ) / '5 ) .1* TGF-= ) : 3 0 , 4 0 '# B A C + AMHii %& )' 5 K 7 1* ' (* ) ' 0 .N: . (6 ( 1* 528 1'6 9 .| Y y [ O 1 5 rG: D. 9K $5 R( l . '+ 6 ) .'+ K N : 5 : 5 N H v - Peroxisome Proliferator-activated Receptor Gamma 1 i - Tumor Growth Factor beta ii - Anti-Mullerian Hormone (c ' ( ' @ PCOS 5 s4 5 ( c ) .T' 1 :( 9 " ( 0 0 '6 R $K :+ ( Scr5a1 1* DNA 1'6 $Y Y 5 =+ .1* A N & .' O '+ 9. '6 R $K $ ) 7 1$ 62 '+ Y 5 N: (6 1 ' @ 3( * 0 1* .1* A 1 iii - Luteinizing hormone/choriogonadotropin receptor receptor iv - Zebrafish )(7 .' (6 )DNA 1( :F ' ( '6 ' 61 ( A 1* ' '. …(: 7+ )(: 5 ++ 5 ++ ) +- 0 .1( ) .1* 1( :F (0 '+W . " Q A T' '+ ++ N: A, '+. -0 3 .'6 5 6 D# PCOS $ *( 0 ) 9. "F ,- 68 2 : 3 0 ) . 9 ) .1* 1'6 60 8 : 66 67 U C[ 9 ( AA( A 5- R( ' @ ) 4 Y )(7 . (5 '6 ' X PCOS 5 B C / )(7 A . 65 vi - Nuclear Receptor Corepressor vii- Micronuclei 5 W N 5 1'6 95 ( H 5 ) C 3( * 0 (l . 5 h( 59 (l . 7 5' 6 -c O TGF-=i 0 ) .CpG 1'6 =+ 5 8. 163 A .' K' ( * ) .) ' 0 vii . 7 A 1 - $ PCOS DNA t : % 6 1- , * 0 3 F : 1( 9 . PCOS 5 PCOS 27578 .1( N K " ( 1'6 '6 ' , ' ( 7 : 5 CpG 7 59 5 2011 T : '6 3 = 5 3( * 0 ( R$ .' (5 '6 : 1 .1( 9 . ( ) .1( ). l . Y Y ' ( Y " ( 1'6 PCOS 5 1 F C 5 9 # .N: ) .CpG 0 ( T 4 #Q ! 5 W N 5 ) Y ) '. - PCOS 5 F C 1 l . ) : 5 1 ([ 5 :' (6 5 ++ 1 C6 I (+ 8. Y ( )(7 NCOR1 -c ; + 2 <W( ) .RNA . '++ ' ( 1* ' ' 9 "U G vi ) .1( :(Z . = N : 5 : 5 5 1( ) ( ( K ) .T( : ' @ 5 + + 3 7+. DNA 1( :F PPARG1 ) .1* 0 PCOS Y A . (6 : 5 = _ :( 9 w U 62 PCOS 1* A , * 0 " U G A )(7 QX NH(: I (+ 1* ' 5 < * 0 D# •F %9 A '+W $ ( K ) PCOS C6 ) : TF H JO( 64 Y : NH(: 9 1- (6 O DHT 75 5 1( c A Q 5 A PCOS 5 1* ' ' @ 3( * 0 h( FSHR LHCGR LHCGR 1'6 1'6 + $ Y DNA 1( :F 58 iii 0$ P$ :y [ : 5 DHEA 5 '6 20 89 , 6" PCOS 5 EC H19 1* .R( A 1 ' @ #'( ) !* ! K 5 NC9 $ NU ) ' K 1* %nnn CO ++ # $ BCL2L1 1* )mRNA .'6 ' 63 + #! ) 7: , BCL2L1 +U D $ , H 5 1 5 TF H 9+ ) .1* 8. .RNA , A '2 % , )' A (9 : 3 0 : NH(: (6 +- 0 * ' , 4 1* ' (H Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 Y )'+?:(K PCOS T' < '. 1 ' @ % , )$ 5 .'. A (9 : 3 0 w U ++ 1 36 . ) %c (6 G - '++ ( (. Y 1 .'+ )$ 5 '': (6 O 65 9K $5 QX ( ) 'U A + 3( * 0 5 ' ( D01 '++ ' X '. (6 ) 7 : 5 "U G .'+. 9 c , * 0 T + ). 9 '6 ) (K 5 c 1 +W I (+ F5 5 55 74 49 G E 6 T 4 .1* , 4 Q c : 5 ) 5 c Y y [ U ( (. E 6 % , $ .1( (. A A >N: % 6 , * 0 , * .T' : : , N: A, N RNA 11 8 2 ) .RNA , , * 0 U G , * 0 5 . RNA , 71 .' (6 5 '+ Y N .1 D# 2 A +W8. O €'. y [ A .T(, ( D# $ PCOS .' 0 73 74 N: N . $^ c • 9 . (6 6 SK A + % , ' @ )RNA , " ? DHT 5 '6 ' ( C 1, 8 ]+ .N 5 75 .' 1' @ +U A * ' 5 %c 349 1 5 1 $ .RNA , = .' l . '+ ) ? R( T' A %24 1 5 .1 ' @ 1* ' … [ 5 .1 y [ A '5 . RNA , 1 5 + + i - Ubiquitylation : 5 .T(, ( ) , ) .T( : D# PCOS )*( ( 9 QX A ( PCOS 1- 1- D 7 (7W c [ 1 1* 1 5 " y [ z( 5 R( ) ) .1* 1 (5 '. (H _ , * )$ 9( ) K( .N : 'c ' @ ) .RNA , 1 5 5 SK QX % 4 < 1 (+4 t2 Y s4 5 84 mRNA ) :( 9 D# 1 < .1( (. : 5 '6 q@- 1 ' @ 1 [ : / 51 ' N 9K " U G .N: = Y 0 = 72 A Ka+ 8. < 9 ( A + † H ) .3 ' (c 7 ( ( K ) .T( : 5 (, ( 3 F : 1( 9 . 1 5 ) ([ 5 >'++ ) 5 1 9 † H ) .) =+. , * 0 " ( c ' @ ) .T(, ( % , ' ' 0 (H Q $ 1 E 6 5 < $ '+. = : DHT 5 '6 '+ 9. '++ ' 0 O % , (H 8. .'+ 'U 9 1 ' ( (K K R(@ : . '+ 3 1( 9 . 1 H ) .1* 1 5 N: A, +6 ) U G 9 ' a0 %9 '+W 8. 1 ' @ 3 '+: 89 ' (6 5 .3 ' % , '+ . K " Q A . (6 1( :F : 5 N- E 1 ' 90 ) .1* K" ( '+ 9. N UO A + + ) .T( : % , 5 1* 6( H s4 5 † H ) .'+ .1* ' ) '. - ) .1* ' J @ ) . 9 ) .1* 89 H ˆ[ # : 5 a0 ) . '++ 8 ]+ 1 (+4 5 ' (Z ( N9 5 N: K 5 ' 1( 9 . 1 5 .'6 5 PCOS = % u T([ 5 Y "U G (, ( a0 , N: A NU % @ 3 1( 9 . 1( :F : ) . G: < D! A Y 1* ' K' 3( * 0 N: A+ = '5 ([ 5 ) 5 3 F : 9 ) ( ( K ) .T( : c < s4 5 N: A, , * 0 ). 9 PCOS T' ) ." 1 ' @ Y A +W8. T(Z9 8 $ O 1* ' 1* ' PCOS = 62 '+?:(K K 8 PPARG1 ) .1* 1'6 5- " (9. 5 1( :F ^(, 5( / `(9 % 6 i 8. .1( 9 . 1( :F : ) Y miR-497 '+ > ( P$ 3 1( 9 . 1( :F : rG: D. miR-15 R $K [ ' D# $ ' @ ) .microRNA 1 5 1 $ .' (6 NCOR1 +- 0 A . ! '+ 9. 3 1( 9 . ## ( : 8#9 ). % CO .) , : : 69 70 F4 ) K 5 Y 1( :F ?9 1( :F : 1( :F O €'. 5 9 " % H ) .1* 8. 76 1* N: ) U G p 76< 1 '++ :( 9 766 & 1* ' $ % # 5 ++ (# A ) . 9 T U Š?c ) 3KA E 6 8 A .'6 5 51 .) " + #! 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. #'( ) !* 95 T( : 9 ). 9 y [ t: + R(@ : ) . 9 ( (. 8 : K' 5 A +W 5 F 5 ) . G: R 1* ) 7- 0 Forsdahl A. Observations throwing light on the high mortality in the county of Finnmark. Is the high mortality today a late effect of very poor living conditions in childhood and adolescence? 1973. Int J Epidemiol 2002; 31: 302-8. Fowden AL,Giussani DA, Forhead AJ. Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda) 2006; 21: 29-37. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the roleof the mother, placenta, and fetus. Endocr Rev 2006; 27: 141-69. Day J, Frank A, O'Callaghan J, Jones B and Anderson J. The effect of age and testosterone on the expression of glial fibrillary acidic protein in the rat cerebellum. Experimentalneurology 1998; 151: 343-46. Belle MDC, Lea RW. Androgen receptor immunolocalization in brains of courting and brooding male and female ring doves (Streptopelia risoria). General and comparative endocrinology 2001; 124: 173-87. BiaOek M, Zaremba P, Borowicz KK, Czuczwar S a J. Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol 2004; 56: 509-18. Filova B, Ostatnikova D, Celec P, Hodosy J. The effect of testosterone on the formation ofbrain structures. Cells Tissues Organs 2013; 197: 169-77. Hines M. Prenatal testosterone and gender-related behaviour. Eur J Endocrinol 2006; 155 Suppl 1: S115-21. Meyer-Bahlburg HF, Dolezal C, Baker SW New MI. Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Arch Sex Behav 2008; 37: 85-99. Berenbaum SA, Duck SC, Bryk K. Behavioral effects of prenatal versus postnatalandrogen excess in children with 21-hydroxylase-deficient congenital adrenal hyperplasia. J Clin Endocrinol Metab 2000; 85: 727-33. Crespi EJ, Steckler TL, MohanKumar PS, Padmanabhan V. Prenatal exposure to excess testosterone modifies the developmental trajectory of the insulin-like growth factor system in female sheep. J Physiol 2006; 572: 119-30. Manikkam M, Thompson RC, Herkimer C, Welch K B, Flak J, Karsch FJ, et al. Developmental programming: impact of prenatal testosterone excess on pre- and postnatal gonadotropin regulation in sheep. Biol Reprod 2008; 78: 648-60. Bruns CM, Baum ST, Colman RJ, Eisner JR, Kemnitz JW, Weindruch R, et al. Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J Clin Endocrinol Metab 2004; 89: 6218-23. Eisner J R, Dumesic D A, Kemnitz J W and Abbott D H. Timing of prenatal androgen excess determines differen- ˆ: (, ( .': . References 1. # (+. '+W . '6 5 Q‰ E 6T + Tc . SY A 6 ' ( & ( w (4 5 5 # N: 1 c Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 ! 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. (, ( T + ?: 5 A( ] 5) ,+ b: 5 ,6$0 8 4 5 € KR( H ) .RNA , +- 0 5 '+ ( 5 . : 5 % CO A ' 6 N: (, ( S01 , tial impairment in insulin secretion and action in adult female rhesus monkeys 1. J Clin Endocrinol Metab 2000; 85: 1206-10. Noroozzadeh M, Tehrani FR, Sedaghat K, Godini A, Azizi F. The impact of prenatal exposure to a single dose oftestosterone on insulin resistance, glucose tolerance and lipid profile of female rat’s offspring in adulthood. J Endocrinol Invest 2015; 38: 489-95. Cai Z, Xi H, Pan Y, Jiang X, Chen L, Cai Y, et al. Effect of testosterone deficiency on cholesterol metabolism in pigs fed a high-fat and high-cholesterol diet. Lipids Health Dis 2015; 14: 18. Costello LC, Franklin RB. Testosterone and prolactin regulation of metabolic genes and citrate metabolism of prostate epithelial cells. Horm Metab Res 2002; 34: 41724. Rakha EA, Reis-Filho JS, Ellis IO. Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat 2010; 120: 293-308. Tehrani FR, Noroozzadeh M, Zahediasl S, Piryaei A, Hashemi S , Azizi F. The time of prenatal androgen exposure affects development of polycystic ovary syndrome-like phenotype in adulthood in female rats. Int J Endocrinol Metab 2014; 12: e16502. Xita N and Tsatsoulis A. Review: fetal programming of polycystic ovary syndrome by androgen excess: evidence from experimental, clinical, and genetic association studies. J Clin Endocrinol Metab 2006; 91: 1660-66. Tehrani FR, Noroozzadeh M, Zahediasl S, GhasemiA, Piryaei A, Azizi F. Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood. PloS one 2013; 8: e71705. Sir-Petermann T, Codner E, Pérez V, Echiburú B, Maliqueo M, Ladron de Guevara A, et al. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2009; 94: 1923-30. Rae M, Grace C, Hogg K, Wilson L M, McHaffie S L, Ramaswamy S, et al. The pancreas is altered by in utero androgen exposure: implications for clinical conditions such as polycystic ovary syndrome (PCOS). PLoS One 2013; 8: e56263. Sun M, Maliqueo M, Benrick A, Johansson J, Shao R, Hou L, et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring. Am J Physiol Endocrinol Metab 2012; 303: e1373-85. Van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, Nilsell K, et al. Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J Biol Chem 1999; 274: 18243-51. 26. 27. Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. Lazic M, Aird F, Levine JE, Dunaif A. Prenatal androgen treatment alters body composition and glucose homeostasis in male rats. J Endocrinol 2011; 208: 293300. Brzozowska MM, Ostapowicz G, Weltman MD. An association between non-alcoholic fatty liver disease and polycystic ovarian syndrome. J Gastroenterol Hepatol 2009; 24: 243-47. Vassilatou E, Lafoyianni S, Vryonidou A, Ioannidis D, Kosma L,Katsoulis K, et al. Increased androgen bioavailability is associated with non-alcoholic fatty liver disease in women with polycystic ovary syndrome. Hum Reprod 2010; 25: 212-20. Hogg K, Wood C, McNeilly AS, Duncan WC. The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and me tabolic function in adult sheep. PLoS One 2011; 6: e24877. Yan X, Dai X, Wang J, Zhao N, Cui Y, Liu J. Prenatal androgen excess programs metabolic derangements in pubertal female rats. J Endocrinol 2013; 217: 119-29. Connolly F, Rae M T, Bittner L, Hogg K, McNeilly AS, Duncan WC. Excess androgens in utero alters fetal testis development. Endocrinology 2013; 154: 1921-33. HoggK, McNeilly AS, Duncan WC. Prenatal androgen exposure leads to alterations in gene and protein expression in the ovine fetal ovary. Endocrinology 2011; 152: 2048-59. Christenson LK, Strauss JF 3rd. Steroidogenic acute regulatory protein: an update on its regulation and mechanism of action. Arch Med Res 2001; 32: 576-86. McAllister J M, Modi B, Miller B A, Biegler J, Bru ggeman R, Legro RS, et al. Overexpression of a DEN ND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc Natl Acad Sci U S A 2014; 111: E1519-27. Eriksen MB, Nielsen MF, Brusgaard K, Tan Q, Andersen MS, Glintborg D, et al. Genetic alterations within the DENND1A gene in patients with polycystic ovary syndrome (PCOS). PLoS One 2013; 8: e77186. Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational test osterone treatment alters fetal ovarian gene expression. Endocrinology 2011; 152: 4974-83. Hogg K, Young JM, Oliver EM, Souza CJ, McNeilly AS, Duncan WC. Enhanced thecal androgen production is prenatally programmed in an ovine model of polycystic ovary syndrome. Endocrinology 2012; 153: 45061. Padmanabhan V, Salvetti NR, Matiller V, OrtegaHH. Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep. Endocrinology 2014; 155: 3649-60. Thompson CJ, Ross SM, Hensley J, Liu K, Heinze SC, Young SS, et al. Differentialsteroidogenic gene expression in the fetal adrenal gland versus the testis and rapid and dynamic response of the fetal testis to di(n-butyl) phthalate. Biol Reprod 2005; 73: 908-17. Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, McKinnellC, van den Driesche S, et al. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A 2014; 111: E1924-32. Chauvigne F, Plummer S, Lesne L, Cravedi JP, DejucqRainsford N, Fostier A, et al. Mono-(2-ethylhexyl) phthalate directly alters the expression of Leydig cell genes and CYP17 lyase activity in cultured rat fetal testis. PLoS One 2011; 6: e27172. , 76@ 42. Nimkarn S, Gangishetti PK, Yau M, New MI. 21Hydroxylase-deficient congenital adrenal hyperplasia. 2016. Available from: URL: http://www.ncbi.nlm.nih.gov/books/NBK1171/?report=reader Azziz R, Bradley Jr E, Potter H and Boots L. Adrenal androgen excess in women: lack of a role for 17hydroxylase and 17, 20-lyase dysregulation. J Clin Endocrinol Metab 1995; 80: 400-05. Witchel S and Aston C. The role of heterozygosity for CYP21 in the polycystic ovary syndrome. J Pediatr Endocrinol Metab 2000; 13: 1315-17. Marieb EN and Hoehn K, 2007. Human anatomy & physiology, 7th ed. Pearson Education, Vicksburg, MI, U.S.A. Baird D, Balen A, Escobar-Morreale H, Evers J, Fauser B, Franks S, et al. Health and fertility in World Health Organization group 2 anovulatory women. Human Rep roduction Update 2012: dms019. Vom Saal FS, Bronson FH. Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science 1980; 208: 597-99. Brown R E, WilkinsonD A, Imran S A, Caraty A and Wilkinson M. Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of polycystic ovary syndrome (PCOS). Brain Res 2012; 1467: 1-9. Foecking EM, Szabo M, Schwartz NB, Levine JE. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biology of Reproduction 2005; 72: 1475-83. Jansen E, Laven JS, Dommerholt HB, Polman J, van Rijt C, van den Hurk C, et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol 2004; 18: 3050-63. Moeller C, Swindell E C, Kispert A, Eichele G. Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken. Development 2003; 130: 5103-11. West C, Foster DL, Evans NP, Robinson J,Padmanabhan V. Intra-follicular activin availability is altered in prenatally-androgenized lambs. Mol Cell Endocrinol 2001; 185: 51-9. Knapczyk-Stwora K, Durlej-Grzesiak M, Ciereszko R E, Koziorowski M, Slomczynska M. Antiandrogen flutamide affects folliculogenesis during fetal development in pigs. Reproduction 2013; 145: 265-76. Rojas-Garcia PP, Recabarren MP, Sir-Petermann T, Rey R, Palma S, Carrasco A, et al. Altered testicular development as a consequence of increase number of sertoli cell in male lambs exposed prenatally to excess testosterone. Endocrine 2013; 43: 705-13. Rojas-Garcia PP, Recabarren MP, Sarabia L, Schon J, Gabler C, Einspanier R, et al. Prenatal testosterone excess alters Sertoli and germ cell number and testicular FSH receptor expression in rams. Am J Physiol Endocrinol Metab 2010; 299: E998-e1005. Daneshian Z, Ramezani Tehrani F, Zarkesh M, Norooz Zadeh M, Mahdian R, Zadeh Vakili A. Antimullerian hormone and its receptor gene expression in prenatally androgenized female rats. Int J Endocrinol Metab 2015; 13: e19511. Wu XY, Li ZL, Wu CY, Liu YM, Lin H, Wang SH, et al. Endocrine traits of polycystic ovary syndrome in 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 767 58. Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 59. 60. 61. 62. 63. 64. 65. 66. & ! $ % & " #! prenatally androgenized female Sprague-Dawley rats. Endocr J 2010; 57: 201-09. Esteller M. Epigenetics in evolution and disease. The Lancet 2008; 372: S90-6. Available from: URL: http://dx.doi.org/10.1016/S0140-6736(08)61887-5 Xu N, Kwon S, Abbott DH, Geller DH, Dumesic DA, Azziz R, et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PloS one 2011; 6: e27286. Jones M R, Xu N, Goodarzi MO. Recent Advances in the Genetics of Polycystic Ovary Syndrome, in: Pal, L. (Ed.), Polycystic Ovary Syndrome: Current and Emerging Concepts. Springer New York, NY, 2014;pp. 2952. Ghahramani NM, Ngun TC, Chen PY, Tian Y, Krishnan S, Muir S, et al. The effects of perinataltestosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biol Sex Differ 2014; 5: 8. Xu N, Chua AK, Jiang H, Liu NA, Goodarzi MO. Early embryonic androgen exposure induces transgenerational epigenetic and metabolicchanges. Mol Endocrinol 2014; 28: 1329-36. Zhang D, Cong J, Shen H, Wu Q, Wu X. Genome-wide identification of aberrantly methylated promoters in ovarian tissue of prenatally androgenized rats. Fertil Steril 2014; 102: 1458-67. Zhu JQ, Zhu L, Liang XW, Xing FQ, Schatten H, Sun QY. Demethylation of LHR in dehydroepiandrosteroneinduced mouse model of polycystic ovary syndrome. Mol Hum Reprod 2010; 16: 260-66. Qu F, Wang FF, Yin R, Ding GL, El-Prince M, Gao Q, et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med (Berl) 2012; 90: 911-23. Moran LJ, Noakes M, Clifton PM, Norman RJ, Fenech MF. Genome instability is increased in lymphocytes of + 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. # #'( ) !* women with polycystic ovary syndrome and is correlated with insulin resistance. Mutat Res 2008; 639: 5563. Nersesyan A, Chobanyan N. Micronuclei and other nuclear anomalies levels in exfoliated buccal cells and DNA damagein leukocytes of patients with polycystic ovary syndrome. J buon 2010; 15: 337-39. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300: 455. Li B, Carey M,Workman JL. The role of chromatin during transcription. Cell 2007; 128: 707-19. Berger S L. The complex language of chromatin regula tion during transcription. Nature 2007; 447: 407-12. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 2009; 284: 17897-901. Toloubeydokhti T, Bukulmez O, Chegini N. Potential regulatory functions of microRNAs in the ovary. Semin Reprod Med 2008; 26: 469-78. Delic D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F. Testosterone-induced upregulation of miRNAs in the female mouse liver. Steroids 2010; 75: 998-04. Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A 2014; 111: 3008-13. Hossain MM, Cao M, Wang Q, Kim JY, Schellander K, TesfayeD, et al. Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res 2013; 6: 36. Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational testosterone treatment altersfetal ovarian gene expression. Endocrinology 2011; 152: 4974- 83. 323/Iranian Journal of Endocrinology and Metabolism Vol 18 No.4 Oct-Nov 2016 Downloaded from ijem.sbmu.ac.ir at 10:23 +0430 on Sunday June 18th 2017 Review Article The Effects of Prenatal Excess Androgens Exposure on the Gene Expression Salehi Jahromi M1, Ramezani Tehrani F1, Zadeh-Vakili A2 1Reroductive Endocrinology Research Center, & 2Cellular and Molecular Endocrine Research Center, Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran e-mail: [email protected] Received: 25/07/2016 Accepted: 06/09/2016 Abstract Introduction: Prenatal exposure to excess androgens, as environmental factors affecting the fetal epigenome, and also a potent agent for developing special phenotypes in adulthood, has been the subject of many studies during recent decades. Results of various molecular studies conducted in this area indicate that exposure to androgens, during certain periods of growth and development of the fetus, affects cellular processes, tissues and organ development leading to phenotype and behavior alterations, one of which is causing susceptibility to polycystic ovary syndrome in adulthood. Testosterone, the most important androgen, has interfering effects in metabolic and endocrine pathways, usually a result of epigenetic changes. In recognition of diverted pathways leading to the development of disease conditions and considering possible interventions at the molecular level in these directions, control of prenatal environment and conditions can be taken to account as the first and most important step in prevention of related diseases. This article reviews the studies on the epigenetic and gene expression changes of various biological pathways as a result of this exposure, using the polycystic ovarian syndrome as an appropriate model to illustrate this exposure. Keywords: Prenatal exposure, Androgen excess, Epigenetics, Gene expression, Fetal development, PCOS
© Copyright 2026 Paperzz