Name: ________________________ Class: ___________________ Date: __________ ID: A sample 9 final 512 Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. In each pair of triangles, parts are congruent as marked. Which pair of triangles is congruent by ASA? a. c. b. d. 1 Name: ________________________ ____ ID: A 2. What is the missing reason in the two-column proof? Given: AC bisects DAB and CA bisects DCB Prove: DAC ABC Statements 1. AC bisects DAB 2. DAC BAC 3. AC AC 4. CA bisects DCB 5. DAC BCA 6. DAC BAC a. b. ASA Postulate SSS Postulate Reasons 1. Given 2. Definition of angle bisector 3. Reflexive property 4. Given 5. Definition of angle bisector 6. ? c. d. 2 SAS Postulate AAS Theorem Name: ________________________ ____ ID: A 3. Supply the missing reasons to complete the proof. Given: Q T and QR TR Prove: PR SR Statement 1. Q T and QR TR 2. Vertical angles are congruent. 4. PR SR 4. a. b. ____ ____ ____ 1. Given 2. PRQ SRT 3. PRQ SRT ____ Reasons ASA; Substitution SAS; CPCTC 3. ? ? c. d. AAS; CPCTC ASA; CPCTC 4. BE is the bisector of ABC and CD is the bisector of ACB. Also, XBA YCA. Which of AAS, SSS, SAS, or ASA would you use to help you prove BL CM ? a. AAS b. SSS c. SAS d. ASA 5. Given a regular hexagon, find the measures of the angles formed by (a) two consecutive radii and (b) a radius and a side of the polygon. a. 40°; 220° b. 60°; 60° c. 36°; 216° d. 45°; 225° 6. The area of a regular hexagon is 35 in.2. Find the length of a side. Round your answer to the nearest tenth. a. 3.7 in. b. 4.8 in. c. 6.4 in. d. 13.5 in. 7. The circumference of a circle is 60 cm. Find the diameter, the radius, and the length of an arc of 140°. a. 60 cm; 30 cm; 23.3 cm c. 120 cm; 30 cm; 160 cm b. 60 cm; 120 cm; 11.7 cm d. 30 cm; 60 cm; 11.7 cm 3 Name: ________________________ ____ ID: A 8. Find the length of arc XPY. Leave your answer in terms of . a. 24 m b. 12 m c. 4 m d. 720 m a. 25.92 m2 b. 1.8 m2 c. 12.96 m2 d. 46.66 m2 a. 75.4 m2 b. 89.8 m2 c. 278.7 m2 d. 22.9 m2 Find the area of the circle. Leave your answer in terms of . ____ 9. ____ 10. The figure represents the overhead view of a deck surrounding a hot tub. What is the area of the deck? Round to the nearest tenth. 4 Name: ________________________ ID: A ____ 11. Find the area of the shaded region. Leave your answer in terms of and in simplest radical form. 120 6 3 m 2 142 36 3 m2 a. b. c. d. 120 36 3 m2 none of these ____ 12. A model is made of a car. The car is 9 feet long and the model is 6 inches long. What is the ratio of the length of the car to the length of the model? a. 18 : 1 b. 1 : 18 c. 9 : 6 d. 6 : 9 ____ 13. If a. a b 3b 5 3 , then 3a = ____. b. 10b c. 5b d. 6b ____ 14. A map of Australia has a scale of 1 cm to 120 km. If the distance between Melbourne and Canberra is 463 km, how far apart are they on the map, to the nearest tenth of a centimeter? a. 0.4 cm b. 3.9 cm c. 38.6 cm d. 55,560 cm ____ 15. You want to produce a scale drawing of your living room, which is 24 ft by 15 ft. If you use a scale of 4 in. = 6 ft, what will be the dimensions of your scale drawing? a. 24 in. by 144 in. c. 24 in. by 10 in. b. 16 in. by 10 in. d. 16 in. by 144 in. State whether the triangles are similar. If so, write a similarity statement and the postulate or theorem you used. ____ 16. a. b. ABC MNO; SSS ABC MNO; SAS c. d. 5 ABC MNO; AA The triangles are not similar. Name: ________________________ ID: A ____ 17. a. b. ADB CDB; SAS ABD CDB; SAS c. d. ADB CDB; SSS The triangles are not similar. Explain why the triangles are similar. Then find the value of x. ____ 18. a. b. 1 2 1 AA Postulate; 10 2 SSS Postulate; 10 c. d. 2 3 2 AA Postulate; 4 3 SAS Postulate; 4 ____ 19. Campsites F and G are on opposite sides of a lake. A survey crew made the measurements shown on the diagram. What is the distance between the two campsites? The diagram is not to scale. a. 42.3 m b. 47.4 m c. 6 73.8 m d. 82.8 m Name: ________________________ ID: A The figures are similar. The area of one figure is given. Find the area of the other figure to the nearest whole number. ____ 20. The area of the larger triangle is 1589 ft 2 . a. 1217 ft 2 b. 1225 ft 2 c. 1600 ft 2 d. 2075 ft 2 ____ 21. Two trapezoids have areas 432 cm 2 and 48 cm 2 . Find their ratio of similarity. a. 3 : 1 b. 9 : 1 c. 1 : 3 d. 1 : 9 ____ 22. Find the slant height of the cone to the nearest whole number. a. 21 m b. 19 m c. 22 m d. 24 m a. 3267 m 2 b. 1319 m 2 c. 2325 m 2 d. 1005 m 2 ____ 23. Find the surface area of a conical grain storage tank that has a height of 30 meters, a diameter of 20 meters, and a slant height of 32 meters. Round the answer to the nearest square meter. 7 Name: ________________________ ID: A Find the volume of the given prism. Round to the nearest tenth if necessary. ____ 24. a. 17 m 3 b. 34 m 3 c. 8.5 m 3 d. 1 m3 a. 170 cm 3 b. 180 cm 3 c. 120 cm 3 d. 60 cm 3 a. 546 mm 3 b. 174 mm 3 c. 364 mm 3 d. 438 mm 3 ____ 25. Find the volume of the composite space figure to the nearest whole number. ____ 26. Find the volume of the composite space figure to the nearest whole number. ____ 27. Cylinder A has radius 1 m and height 4 m. Cylinder B has radius 2 m and height 4 m. Find the ratio of the volume of cylinder A to the volume of cylinder B. a. 5 : 6 b. 1 : 4 c. 1 : 2 d. 1 : 1 8 Name: ________________________ ID: A ____ 28. Pentagon RSTUV is circumscribed about a circle. Solve for x for RS = 10, ST = 13, TU = 11, UV = 12, and VR = 12. The figure is not drawn to scale. a. 4 b. 8 c. 11 d. 6 Find the value of x. If necessary, round your answer to the nearest tenth. The figure is not drawn to scale. ____ 29. a. 18.8 b. 120 c. 9 5.3 d. 12 Name: ________________________ ID: A ____ 30. AB = 20, BC = 6, and CD = 8 ____ 31. a. 18.5 b. 11.5 c. 19.5 d. 15 a. 19.34 b. 10.49 c. 110 d. 9.22 a. 114 b. 57 c. 132 d. 33 ____ 32. Find mBAC. (The figure is not drawn to scale.) 10 Name: ________________________ ID: A ____ 33. Find the value of x for m(arc AB) = 46 and m(arc CD) = 25. (The figure is not drawn to scale.) a. 35.5 b. 58.5 c. 71 d. 21 a. 80 b. 130 c. 65 d. 160 ____ 34. Find mD for mB = 50. (The figure is not drawn to scale.) Short Answer 35. In NML, NL = NM, and the perimeter is 46 cm. A, B, and C are points of tangency to the circle. MC = 4 cm. Find NL. Explain your reasoning. (The figure is not drawn to scale.) 11 Name: ________________________ ID: A 36. Given: mX = 150, WZ YZ , mY = 92. Find each measurement. (The figure is not drawn to scale.) a. b. c. d. mZ m(arc WZ) mW m(arc WX) 37. Given: arc CF = arc DE Prove: CED DFC 12 Name: ________________________ ID: A Essay 38. Write a two-column proof: Given: BAC DAC, DCA BCA Prove: BC CD 39. A log cabin is shaped like a rectangular prism. A model of the cabin has a scale of 1 centimeter to 0.5 meters. If the model is 14 cm by 20 cm by 7 cm, what are the dimensions of the actual log a. cabin? Explain how you find the dimensions. What is the volume of the actual log cabin? Explain how you find the volume. b. What is the ratio of the volume of the model of the cabin to the volume of the actual c. cabin? Explain your method for finding the ratio. Other 40. A parent group wants to double the area of a playground. The proposed diagram shows both the width and the length of the existing playground doubled. They ask you to comment on their proposal. What would you say? 41. Show that it is not possible for the lengths of the segments of two intersecting chords to be four consecutive integers. 13 ID: A sample 9 final 512 Answer Section MULTIPLE CHOICE 1. ANS: B PTS: 1 DIF: L1 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem NAT: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 TOP: 4-3 Example 1 KEY: ASA MSC: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 2. ANS: A PTS: 1 DIF: L1 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem NAT: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 TOP: 4-3 Example 2 KEY: ASA | proof MSC: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 3. ANS: D PTS: 1 DIF: L1 REF: 4-4 Using Congruent Triangles: CPCTC OBJ: 4-4.1 Proving Parts of Triangles Congruent NAT: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 TOP: 4-4 Example 1 KEY: ASA | CPCTC | proof MSC: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 4. ANS: D PTS: 1 DIF: L3 REF: 4-7 Using Corresponding Parts of Congruent Triangles OBJ: 4-7.1 Using Overlapping Triangles in Proofs NAT: NAEP G3f | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 TOP: 4-7 Example 2 KEY: corresponding parts | congruent figures | ASA | SAS | AAS | SSS | reasoning MSC: NAEP G3f | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 5. ANS: B PTS: 1 DIF: L2 REF: 7-5 Areas of Regular Polygons OBJ: 7-5.1 Areas of Regular Polygons NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 TOP: 7-5 Example 1 KEY: regular polygon | multi-part question MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 6. ANS: A PTS: 1 DIF: L3 REF: 7-5 Areas of Regular Polygons OBJ: 7-5.1 Areas of Regular Polygons NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 TOP: 7-5 Example 2 KEY: regular polygon | hexagon | area | apothem | radius MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 1 ID: A 7. ANS: A PTS: 1 DIF: L2 REF: 7-6 Circles and Arcs OBJ: 7-6.2 Circumference and Arc Length NAT: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 TOP: 7-6 Example 4 KEY: circumference | radius MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 8. ANS: B PTS: 1 DIF: L1 REF: 7-6 Circles and Arcs OBJ: 7-6.2 Circumference and Arc Length NAT: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 TOP: 7-6 Example 5 KEY: arc | circumference MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 9. ANS: C PTS: 1 DIF: L1 REF: 7-7 Areas of Circles and Sectors OBJ: 7-7.1 Finding Areas of Circles and Parts of Circles NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 TOP: 7-7 Example 1 KEY: area of a circle | radius MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 10. ANS: B PTS: 1 DIF: L2 REF: 7-7 Areas of Circles and Sectors OBJ: 7-7.1 Finding Areas of Circles and Parts of Circles NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 TOP: 7-7 Example 1 KEY: area of a circle | radius MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 11. ANS: C PTS: 1 DIF: L2 REF: 7-7 Areas of Circles and Sectors OBJ: 7-7.1 Finding Areas of Circles and Parts of Circles NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 TOP: 7-7 Example 3 KEY: sector | circle | area | central angle MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 12. ANS: A PTS: 1 DIF: L1 REF: 8-1 Ratios and Proportions OBJ: 8-1.1 Using Ratios and Proportions NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 TOP: 8-1 Example 1 KEY: ratio | word problem MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 13. ANS: C PTS: 1 DIF: L1 REF: 8-1 Ratios and Proportions OBJ: 8-1.1 Using Ratios and Proportions NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 TOP: 8-1 Example 2 KEY: proportion | Cross-Product Property MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 2 ID: A 14. ANS: B PTS: 1 DIF: L1 REF: 8-1 Ratios and Proportions OBJ: 8-1.1 Using Ratios and Proportions NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 TOP: 8-1 Example 4 KEY: proportion | Cross-Product Property | word problem MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 15. ANS: B PTS: 1 DIF: L1 REF: 8-1 Ratios and Proportions OBJ: 8-1.1 Using Ratios and Proportions NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 TOP: 8-1 Example 4 KEY: proportion | Cross-Product Property | word problem MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR | S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13 16. ANS: A PTS: 1 DIF: L1 REF: 8-3 Proving Triangles Similar OBJ: 8-3.1 The AA Postulate and the SAS and SSS Theorems NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 TOP: 8-3 Example 2 KEY: Side-Side-Side Similarity Theorem MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 17. ANS: A PTS: 1 DIF: L1 REF: 8-3 Proving Triangles Similar OBJ: 8-3.1 The AA Postulate and the SAS and SSS Theorems NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 TOP: 8-3 Example 2 KEY: Side-Angle-Side Similarity Theorem | corresponding sides MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 18. ANS: D PTS: 1 DIF: L1 REF: 8-3 Proving Triangles Similar OBJ: 8-3.2 Applying AA, SAS, and SSS Similarity NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 TOP: 8-3 Example 3 KEY: Angle-Angle Similarity Postulate MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 19. ANS: A PTS: 1 DIF: L1 REF: 8-3 Proving Triangles Similar OBJ: 8-3.2 Applying AA, SAS, and SSS Similarity NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 TOP: 8-3 Example 4 KEY: Side-Angle-Side Similarity Theorem | word problem MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14 3 ID: A 20. ANS: A PTS: 1 DIF: L1 REF: 8-6 Perimeters and Areas of Similar Figures OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures NAT: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 TOP: 8-6 Example 2 KEY: similar figures | area MSC: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 21. ANS: A PTS: 1 DIF: L1 REF: 8-6 Perimeters and Areas of Similar Figures OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures NAT: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 TOP: 8-6 Example 4 KEY: similar figures | area MSC: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 22. ANS: A PTS: 1 DIF: L1 REF: 10-4 Surface Areas of Pyramids and Cones OBJ: 10-4.2 Finding Surface Area of a Cone NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 10-4 Example 4 KEY: cone | slant height of a cone | Pythagorean Theorem MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 23. ANS: B PTS: 1 DIF: L2 REF: 10-4 Surface Areas of Pyramids and Cones OBJ: 10-4.2 Finding Surface Area of a Cone NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 10-4 Example 4 KEY: cone | surface area of a cone | problem solving | word problem | surface area formulas | surface area MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 24. ANS: A PTS: 1 DIF: L2 REF: 10-5 Volumes of Prisms and Cylinders OBJ: 10-5.1 Finding Volume of a Prism NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 TOP: 10-5 Example 2 KEY: volume of a triangular prism | volume formulas | volume | prism MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 4 ID: A 25. ANS: B PTS: 1 DIF: L2 REF: 10-5 Volumes of Prisms and Cylinders OBJ: 10-5.1 Finding Volume of a Prism NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 TOP: 10-5 Example 1 KEY: volume of a rectangular prism | problem solving | volume formulas | volume MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 26. ANS: D PTS: 1 DIF: L1 REF: 10-5 Volumes of Prisms and Cylinders OBJ: 10-5.2 Finding Volume of a Cylinder NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 TOP: 10-5 Example 4 KEY: volume of a composite figure | cylinder | volume of a cylinder | volume of a rectangular prism | volume formulas | volume | prism MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 27. ANS: B PTS: 1 DIF: L2 REF: 10-5 Volumes of Prisms and Cylinders OBJ: 10-5.2 Finding Volume of a Cylinder NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 TOP: 10-5 Example 3 KEY: cylinder | volume of a cylinder | volume formulas | volume | word problem | problem solving MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 28. ANS: A PTS: 1 DIF: L2 REF: 11-1 Tangent Lines OBJ: 11-1.2 Using Multiple Tangents NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.52 TOP: 11-1 Example 5 KEY: properties of tangents | tangent to a circle | pentagon MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.52 29. ANS: D PTS: 1 DIF: L1 REF: 11-4 Angle Measures and Segment Lengths OBJ: 11-4.2 Finding Segment Lengths NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-4 Example 3 KEY: circle | chord | intersection inside the circle MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 5 ID: A 30. ANS: B PTS: 1 DIF: L1 REF: 11-4 Angle Measures and Segment Lengths OBJ: 11-4.2 Finding Segment Lengths NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-4 Example 3 KEY: circle | intersection outside the circle | secant MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 31. ANS: B PTS: 1 DIF: L1 REF: 11-4 Angle Measures and Segment Lengths OBJ: 11-4.2 Finding Segment Lengths NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-4 Example 3 KEY: segment length | tangent | secant MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 32. ANS: B PTS: 1 DIF: L1 REF: 11-3 Inscribed Angles OBJ: 11-3.1 Finding the Measure of an Inscribed Angle NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-3 Example 2 KEY: circle | inscribed angle | central angle | intercepted arc MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 33. ANS: A PTS: 1 DIF: L1 REF: 11-4 Angle Measures and Segment Lengths OBJ: 11-4.1 Finding Angle Measures NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-4 Example 1 KEY: circle | secant | angle measure | arc measure | intersection inside the circle MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 34. ANS: A PTS: 1 DIF: L2 REF: 11-4 Angle Measures and Segment Lengths OBJ: 11-4.1 Finding Angle Measures NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-4 Example 1 KEY: circle | chord | angle measure | arc measure | intersection on the circle | intersection outside the circle MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 6 ID: A SHORT ANSWER 35. ANS: NM NL and, by the Tangent Theorem, NC = NA. By subtraction, MC LA. Also by the Tangent Theorem, MC MB and LA LB , so 4 MC MB LB LA. The perimeter is 46 cm, so 46 NC MC MB LB LA NA. By substitution, 46 NA 4 4 4 4 NA, so NA 15. Since NL NA LA, NL 15 cm 4 cm, or 19 cm. PTS: 1 DIF: L2 REF: 11-1 Tangent Lines OBJ: 11-1.2 Using Multiple Tangents NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.52 TOP: 11-1 Example 5 KEY: reasoning | tangent to a circle | tangent | properties of tangents | Tangent Theorem MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.52 36. ANS: 30 a. 150 b. 88 c. 34 d. PTS: 1 DIF: L2 REF: 11-3 Inscribed Angles OBJ: 11-3.1 Finding the Measure of an Inscribed Angle NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-3 Example 1 KEY: chord | inscribed angle-arc relationship | circle MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 7 ID: A 37. ANS: Statements 1. F E 2. arc CF arc DE 1 3. mCDF m(arc CF) 2 1 mDCE m(arc DE) 2 1 4. mCDF m(arc CF) 2 1 mDCE m(arc CF) 2 5. mCDF mDCE 6. CDF DCE 7. CD DC 8. CED DFC Reasons 1. Inscribed angles intersecting the same arc are . 2. Given 3. Inscribed Angle Theorem 4. Substitution 5. Substitution 6. Definition of congruence 7. Reflexive property 8. AAS PTS: 1 DIF: L3 REF: 11-3 Inscribed Angles OBJ: 11-3.1 Finding the Measure of an Inscribed Angle NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-3 Example 2 KEY: chord | inscribed angle-arc relationship | circle | proof MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 ESSAY 38. ANS: [4] [3] [2] [1] Statement 1. BAC DAC and DCA BCA 2. CA CA 3. CBA CDA 4. BC CD Reason 1. Given 2. Reflexive Property 3. ASA 4. CPCTC correct idea, some details inaccurate correct idea, not well organized correct idea, one or more significant steps omitted PTS: OBJ: NAT: KEY: proof MSC: 1 DIF: L3 REF: 4-4 Using Congruent Triangles: CPCTC 4-4.1 Proving Parts of Triangles Congruent NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 ASA | CPCTC | congruent figures | corresponding parts | rubric-based question | extended response | NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14 8 ID: A 39. ANS: [4] a. [3] [2] [1] To find the actual dimensions, you must use the scale of 1 cm to 0.5 meters. A quick way to find the dimensions is to divide each value of a measure by 2 and then that is the number of meters in the dimension for the cabin. 14 ÷ 2 = 7, so this is 7 meters. 20 ÷ 2 = 10, so this is 10 meters. 7 ÷ 2 = 3.5, so this is 3.5 meters. The dimensions of the actual cabin are 7 m by 10 m by 3.5 m. b. To find the volume of the cabin, use the formula for volume of a prism. V = Bh Use the formula for volume. 70 3.5 B 7 10 70 = = 245 The volume of the cabin is 245 cubic meters. To find the ratio, you must know the volume of each cabin in the same units. The c. volume of the model is 14 cm 20 cm 7 cm 1960 cubic centimeters. The volume of the actual cabin is cm cm cm 245 cm3 100 100 100 = 245,000,000 cubic centimeters, since m m m each meter is 100 centimeters. 1960 ratio of model to actual 245, 000, 000 1 125, 000 The ratio of the volumes is 1 to 125,000. one mathematical error or correct answers with incomplete explanations two mathematical errors or correct answers with errors in explanation correct answers with no explanation PTS: 1 DIF: L2 REF: 10-5 Volumes of Prisms and Cylinders OBJ: 10-5.1 Finding Volume of a Prism NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 KEY: extended response | volume of a rectangular prism | prism | problem solving | word problem | rubric-based question | volume formulas | volume MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 | TV.LV20.17 9 ID: A OTHER 40. ANS: Answers may vary. Sample: Since both the width and the length are doubled, the area will be quadrupled. To double the area, you only need to double one of the dimensions. PTS: 1 DIF: L2 REF: 8-6 Perimeters and Areas of Similar Figures OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures NAT: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 KEY: area | perimeter | writing in math | reasoning | word problem MSC: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52 41. ANS: Let m, m + 1, m + 2, and m + 3 represent the four consecutive numbers. Then the product of the greatest and least numbers will equal the product of the two consecutive middle numbers. Solving the equation m(m + 3) = (m + 1)(m + 2) for m results in m2 + 3m = m2 + 3m + 2, or 0 = 2, which is false. PTS: 1 DIF: L3 REF: 11-4 Angle Measures and Segment Lengths OBJ: 11-4.1 Finding Angle Measures NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 TOP: 11-4 Example 3 KEY: circle | intersection inside the circle | segment length | algebra | proof | reasoning MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 10 sample 9 final 512 [Answer Strip] A _____ 2. D _____ 3. ID: A B _____ 8. C 11. _____ B _____ 1. C _____ 9. A 12. _____ C 13. _____ B 14. _____ B 10. _____ B 15. _____ D _____ 4. A 16. _____ B _____ 5. A _____ 6. A _____ 7. sample 9 final 512 [Answer Strip] A 17. _____ A 28. _____ A 20. _____ D 18. _____ ID: A A 21. _____ B 30. _____ A 24. _____ B 25. _____ B 31. _____ A 22. _____ D 29. _____ D 26. _____ A 19. _____ B 32. _____ B 23. _____ B 27. _____ sample 9 final 512 [Answer Strip] A 33. _____ A 34. _____ ID: A
© Copyright 2025 Paperzz