ExamView - Untitled.tst

Name: ________________________ Class: ___________________ Date: __________
ID: A
sample 9 final 512
Multiple Choice
Identify the choice that best completes the statement or answers the question.
____
1. In each pair of triangles, parts are congruent as marked. Which pair of triangles is congruent by ASA?
a.
c.
b.
d.
1
Name: ________________________
____
ID: A
2. What is the missing reason in the two-column proof?





Given: AC bisects DAB and CA bisects DCB
Prove: DAC  ABC
Statements



1. AC bisects DAB
2. DAC  BAC
3. AC  AC


4. CA bisects DCB
5. DAC  BCA
6. DAC  BAC
a.
b.
ASA Postulate
SSS Postulate
Reasons
1. Given
2. Definition of angle bisector
3. Reflexive property
4. Given
5. Definition of angle bisector
6. ?
c.
d.
2
SAS Postulate
AAS Theorem
Name: ________________________
____
ID: A
3. Supply the missing reasons to complete the proof.
Given: Q  T and QR  TR
Prove: PR  SR
Statement
1. Q  T and
QR  TR
2. Vertical angles are congruent.
4. PR  SR
4.
a.
b.
____
____
____
1. Given
2. PRQ  SRT
3. PRQ  SRT
____
Reasons
ASA; Substitution
SAS; CPCTC
3.
?
?



c.
d.
AAS; CPCTC
ASA; CPCTC
4. BE is the bisector of ABC and CD is the bisector of ACB. Also, XBA  YCA. Which of AAS, SSS,
SAS, or ASA would you use to help you prove BL  CM ?
a.
AAS
b.
SSS
c.
SAS
d.
ASA
5. Given a regular hexagon, find the measures of the angles formed by (a) two consecutive radii and (b) a radius
and a side of the polygon.
a. 40°; 220°
b. 60°; 60°
c. 36°; 216°
d. 45°; 225°
6. The area of a regular hexagon is 35 in.2. Find the length of a side. Round your answer to the nearest tenth.
a. 3.7 in.
b. 4.8 in.
c. 6.4 in.
d. 13.5 in.
7. The circumference of a circle is 60 cm. Find the diameter, the radius, and the length of an arc of 140°.
a. 60 cm; 30 cm; 23.3 cm
c. 120 cm; 30 cm; 160 cm
b. 60 cm; 120 cm; 11.7 cm
d. 30 cm; 60 cm; 11.7 cm
3
Name: ________________________
____
ID: A
8. Find the length of arc XPY. Leave your answer in terms of  .
a.
24 m
b.
12 m
c.
4 m
d.
720 m
a.
25.92 m2
b.
1.8 m2
c.
12.96 m2
d.
46.66 m2
a.
75.4 m2
b.
89.8 m2
c.
278.7 m2
d.
22.9 m2
Find the area of the circle. Leave your answer in terms of  .
____
9.
____ 10. The figure represents the overhead view of a deck surrounding a hot tub. What is the area of the deck? Round
to the nearest tenth.
4
Name: ________________________
ID: A
____ 11. Find the area of the shaded region. Leave your answer in terms of  and in simplest radical form.
 120  6 3  m 2




 142  36 3  m2


a.
b.
c.
d.
 120  36 3  m2


none of these
____ 12. A model is made of a car. The car is 9 feet long and the model is 6 inches long. What is the ratio of the length
of the car to the length of the model?
a. 18 : 1
b. 1 : 18
c. 9 : 6
d. 6 : 9
____ 13. If
a.
a
b

3b
5
3
, then 3a = ____.
b.
10b
c.
5b
d.
6b
____ 14. A map of Australia has a scale of 1 cm to 120 km. If the distance between Melbourne and Canberra is 463
km, how far apart are they on the map, to the nearest tenth of a centimeter?
a. 0.4 cm
b. 3.9 cm
c. 38.6 cm
d. 55,560 cm
____ 15. You want to produce a scale drawing of your living room, which is 24 ft by 15 ft. If you use a scale of 4 in. =
6 ft, what will be the dimensions of your scale drawing?
a. 24 in. by 144 in.
c. 24 in. by 10 in.
b. 16 in. by 10 in.
d. 16 in. by 144 in.
State whether the triangles are similar. If so, write a similarity statement and the postulate or theorem
you used.
____ 16.
a.
b.
ABC  MNO; SSS
ABC  MNO; SAS
c.
d.
5
ABC  MNO; AA
The triangles are not similar.
Name: ________________________
ID: A
____ 17.
a.
b.
ADB  CDB; SAS
ABD  CDB; SAS
c.
d.
ADB  CDB; SSS
The triangles are not similar.
Explain why the triangles are similar. Then find the value of x.
____ 18.
a.
b.
1
2
1
AA Postulate; 10
2
SSS Postulate; 10
c.
d.
2
3
2
AA Postulate; 4
3
SAS Postulate; 4
____ 19. Campsites F and G are on opposite sides of a lake. A survey crew made the measurements shown on the
diagram. What is the distance between the two campsites? The diagram is not to scale.
a.
42.3 m
b.
47.4 m
c.
6
73.8 m
d.
82.8 m
Name: ________________________
ID: A
The figures are similar. The area of one figure is given. Find the area of the other figure to the nearest
whole number.
____ 20. The area of the larger triangle is 1589 ft 2 .
a.
1217 ft 2
b.
1225 ft 2
c.
1600 ft 2
d.
2075 ft 2
____ 21. Two trapezoids have areas 432 cm 2 and 48 cm 2 . Find their ratio of similarity.
a. 3 : 1
b. 9 : 1
c. 1 : 3
d. 1 : 9
____ 22. Find the slant height of the cone to the nearest whole number.
a.
21 m
b.
19 m
c.
22 m
d.
24 m
a.
3267 m 2
b.
1319 m 2
c.
2325 m 2
d.
1005 m 2
____ 23. Find the surface area of a conical grain storage tank that has a height of 30 meters, a diameter of 20 meters,
and a slant height of 32 meters. Round the answer to the nearest square meter.
7
Name: ________________________
ID: A
Find the volume of the given prism. Round to the nearest tenth if necessary.
____ 24.
a.
17 m 3
b.
34 m 3
c.
8.5 m 3
d.
1 m3
a.
170 cm 3
b.
180 cm 3
c.
120 cm 3
d.
60 cm 3
a.
546 mm 3
b.
174 mm 3
c.
364 mm 3
d.
438 mm 3
____ 25. Find the volume of the composite space figure to the nearest whole number.
____ 26. Find the volume of the composite space figure to the nearest whole number.
____ 27. Cylinder A has radius 1 m and height 4 m. Cylinder B has radius 2 m and height 4 m. Find the ratio of the
volume of cylinder A to the volume of cylinder B.
a. 5 : 6
b. 1 : 4
c. 1 : 2
d. 1 : 1
8
Name: ________________________
ID: A
____ 28. Pentagon RSTUV is circumscribed about a circle. Solve for x for RS = 10, ST = 13,
TU = 11, UV = 12, and VR = 12. The figure is not drawn to scale.
a.
4
b.
8
c.
11
d.
6
Find the value of x. If necessary, round your answer to the nearest tenth. The figure is not drawn to
scale.
____ 29.
a.
18.8
b.
120
c.
9
5.3
d.
12
Name: ________________________
ID: A
____ 30. AB = 20, BC = 6, and CD = 8
____ 31.
a.
18.5
b.
11.5
c.
19.5
d.
15
a.
19.34
b.
10.49
c.
110
d.
9.22
a.
114
b.
57
c.
132
d.
33
____ 32. Find mBAC. (The figure is not drawn to scale.)
10
Name: ________________________
ID: A
____ 33. Find the value of x for m(arc AB) = 46 and m(arc CD) = 25. (The figure is not drawn to scale.)
a.
35.5
b.
58.5
c.
71
d.
21
a.
80
b.
130
c.
65
d.
160
____ 34. Find mD for mB = 50. (The figure is not drawn to scale.)
Short Answer
35. In NML, NL = NM, and the perimeter is 46 cm. A, B, and C are points of tangency to the circle. MC = 4 cm.
Find NL. Explain your reasoning. (The figure is not drawn to scale.)
11
Name: ________________________
ID: A
36. Given: mX = 150, WZ  YZ , mY = 92. Find each measurement. (The figure is not drawn to scale.)
a.
b.
c.
d.
mZ
m(arc WZ)
mW
m(arc WX)
37. Given: arc CF = arc DE
Prove: CED  DFC
12
Name: ________________________
ID: A
Essay
38. Write a two-column proof:
Given: BAC  DAC, DCA  BCA
Prove: BC  CD
39. A log cabin is shaped like a rectangular prism. A model of the cabin has a scale of 1 centimeter to 0.5 meters.
If the model is 14 cm by 20 cm by 7 cm, what are the dimensions of the actual log
a.
cabin? Explain how you find the dimensions.
What is the volume of the actual log cabin? Explain how you find the volume.
b.
What is the ratio of the volume of the model of the cabin to the volume of the actual
c.
cabin? Explain your method for finding the ratio.
Other
40. A parent group wants to double the area of a playground. The proposed diagram shows both the width and
the length of the existing playground doubled. They ask you to comment on their proposal. What would you
say?
41. Show that it is not possible for the lengths of the segments of two intersecting chords to be four consecutive
integers.
13
ID: A
sample 9 final 512
Answer Section
MULTIPLE CHOICE
1. ANS: B
PTS: 1
DIF: L1
REF: 4-3 Triangle Congruence by ASA and AAS
OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem
NAT: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
TOP: 4-3 Example 1
KEY: ASA
MSC: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
2. ANS: A
PTS: 1
DIF: L1
REF: 4-3 Triangle Congruence by ASA and AAS
OBJ: 4-3.1 Using the ASA Postulate and the AAS Theorem
NAT: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
TOP: 4-3 Example 2
KEY: ASA | proof
MSC: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
3. ANS: D
PTS: 1
DIF: L1
REF: 4-4 Using Congruent Triangles: CPCTC
OBJ: 4-4.1 Proving Parts of Triangles Congruent
NAT: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
TOP: 4-4 Example 1
KEY: ASA | CPCTC | proof
MSC: NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
4. ANS: D
PTS: 1
DIF: L3
REF: 4-7 Using Corresponding Parts of Congruent Triangles
OBJ: 4-7.1 Using Overlapping Triangles in Proofs
NAT: NAEP G3f | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
TOP: 4-7 Example 2
KEY: corresponding parts | congruent figures | ASA | SAS | AAS | SSS | reasoning
MSC: NAEP G3f | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
5. ANS: B
PTS: 1
DIF: L2
REF: 7-5 Areas of Regular Polygons
OBJ: 7-5.1 Areas of Regular Polygons
NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
TOP: 7-5 Example 1
KEY: regular polygon | multi-part question
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
6. ANS: A
PTS: 1
DIF: L3
REF: 7-5 Areas of Regular Polygons
OBJ: 7-5.1 Areas of Regular Polygons
NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
TOP: 7-5 Example 2
KEY: regular polygon | hexagon | area | apothem | radius
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
1
ID: A
7. ANS: A
PTS: 1
DIF: L2
REF: 7-6 Circles and Arcs
OBJ: 7-6.2 Circumference and Arc Length
NAT: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
TOP: 7-6 Example 4
KEY: circumference | radius
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
8. ANS: B
PTS: 1
DIF: L1
REF: 7-6 Circles and Arcs
OBJ: 7-6.2 Circumference and Arc Length
NAT: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
TOP: 7-6 Example 5
KEY: arc | circumference
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
9. ANS: C
PTS: 1
DIF: L1
REF: 7-7 Areas of Circles and Sectors
OBJ: 7-7.1 Finding Areas of Circles and Parts of Circles
NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
TOP: 7-7 Example 1
KEY: area of a circle | radius
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
10. ANS: B
PTS: 1
DIF: L2
REF: 7-7 Areas of Circles and Sectors
OBJ: 7-7.1 Finding Areas of Circles and Parts of Circles
NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
TOP: 7-7 Example 1
KEY: area of a circle | radius
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
11. ANS: C
PTS: 1
DIF: L2
REF: 7-7 Areas of Circles and Sectors
OBJ: 7-7.1 Finding Areas of Circles and Parts of Circles
NAT: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
TOP: 7-7 Example 3
KEY: sector | circle | area | central angle
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
12. ANS: A
PTS: 1
DIF: L1
REF: 8-1 Ratios and Proportions
OBJ: 8-1.1 Using Ratios and Proportions
NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
TOP: 8-1 Example 1
KEY: ratio | word problem
MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
13. ANS: C
PTS: 1
DIF: L1
REF: 8-1 Ratios and Proportions
OBJ: 8-1.1 Using Ratios and Proportions
NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
TOP: 8-1 Example 2
KEY: proportion | Cross-Product Property
MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
2
ID: A
14. ANS: B
PTS: 1
DIF: L1
REF: 8-1 Ratios and Proportions
OBJ: 8-1.1 Using Ratios and Proportions
NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
TOP: 8-1 Example 4
KEY: proportion | Cross-Product Property | word problem
MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
15. ANS: B
PTS: 1
DIF: L1
REF: 8-1 Ratios and Proportions
OBJ: 8-1.1 Using Ratios and Proportions
NAT: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
TOP: 8-1 Example 4
KEY: proportion | Cross-Product Property | word problem
MSC: NAEP N4c | CAT5.LV20.46 | CAT5.LV20.54 | CAT5.LV20.55 | IT.LV16.CP | IT.LV16.FR |
S9.TSK2.GM | S9.TSK2.NS | S10.TSK2.GM | S10.TSK2.NS | TV.LV20.10 | TV.LV20.13
16. ANS: A
PTS: 1
DIF: L1
REF: 8-3 Proving Triangles Similar
OBJ: 8-3.1 The AA Postulate and the SAS and SSS Theorems
NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
TOP: 8-3 Example 2
KEY: Side-Side-Side Similarity Theorem
MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
17. ANS: A
PTS: 1
DIF: L1
REF: 8-3 Proving Triangles Similar
OBJ: 8-3.1 The AA Postulate and the SAS and SSS Theorems
NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
TOP: 8-3 Example 2
KEY: Side-Angle-Side Similarity Theorem | corresponding sides
MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
18. ANS: D
PTS: 1
DIF: L1
REF: 8-3 Proving Triangles Similar
OBJ: 8-3.2 Applying AA, SAS, and SSS Similarity
NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
TOP: 8-3 Example 3
KEY: Angle-Angle Similarity Postulate
MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
19. ANS: A
PTS: 1
DIF: L1
REF: 8-3 Proving Triangles Similar
OBJ: 8-3.2 Applying AA, SAS, and SSS Similarity
NAT: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
TOP: 8-3 Example 4
KEY: Side-Angle-Side Similarity Theorem | word problem
MSC: NAEP G2e | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
3
ID: A
20. ANS: A
PTS: 1
DIF: L1
REF: 8-6 Perimeters and Areas of Similar Figures
OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures
NAT: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM |
IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
TOP: 8-6 Example 2
KEY: similar figures | area
MSC: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM |
IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
21. ANS: A
PTS: 1
DIF: L1
REF: 8-6 Perimeters and Areas of Similar Figures
OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures
NAT: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM |
IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
TOP: 8-6 Example 4
KEY: similar figures | area
MSC: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM |
IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
22. ANS: A
PTS: 1
DIF: L1
REF: 10-4 Surface Areas of Pyramids and Cones
OBJ: 10-4.2 Finding Surface Area of a Cone
NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 10-4 Example 4
KEY: cone | slant height of a cone | Pythagorean Theorem
MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
23. ANS: B
PTS: 1
DIF: L2
REF: 10-4 Surface Areas of Pyramids and Cones
OBJ: 10-4.2 Finding Surface Area of a Cone
NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 10-4 Example 4
KEY: cone | surface area of a cone | problem solving | word problem | surface area formulas | surface area
MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
24. ANS: A
PTS: 1
DIF: L2
REF: 10-5 Volumes of Prisms and Cylinders
OBJ: 10-5.1 Finding Volume of a Prism
NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
TOP: 10-5 Example 2
KEY: volume of a triangular prism | volume formulas | volume | prism
MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
4
ID: A
25. ANS: B
PTS: 1
DIF: L2
REF: 10-5 Volumes of Prisms and Cylinders
OBJ: 10-5.1 Finding Volume of a Prism
NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
TOP: 10-5 Example 1
KEY: volume of a rectangular prism | problem solving | volume formulas | volume
MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
26. ANS: D
PTS: 1
DIF: L1
REF: 10-5 Volumes of Prisms and Cylinders
OBJ: 10-5.2 Finding Volume of a Cylinder
NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
TOP: 10-5 Example 4
KEY: volume of a composite figure | cylinder | volume of a cylinder | volume of a rectangular prism | volume
formulas | volume | prism
MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
27. ANS: B
PTS: 1
DIF: L2
REF: 10-5 Volumes of Prisms and Cylinders
OBJ: 10-5.2 Finding Volume of a Cylinder
NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
TOP: 10-5 Example 3
KEY: cylinder | volume of a cylinder | volume formulas | volume | word problem | problem solving
MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
28. ANS: A
PTS: 1
DIF: L2
REF: 11-1 Tangent Lines
OBJ: 11-1.2 Using Multiple Tangents
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 |
TV.LV20.52
TOP: 11-1 Example 5
KEY: properties of tangents | tangent to a circle | pentagon
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 |
TV.LV20.52
29. ANS: D
PTS: 1
DIF: L1
REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.2 Finding Segment Lengths
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-4 Example 3
KEY: circle | chord | intersection inside the circle
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
5
ID: A
30. ANS: B
PTS: 1
DIF: L1
REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.2 Finding Segment Lengths
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-4 Example 3
KEY: circle | intersection outside the circle | secant
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
31. ANS: B
PTS: 1
DIF: L1
REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.2 Finding Segment Lengths
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-4 Example 3
KEY: segment length | tangent | secant
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
32. ANS: B
PTS: 1
DIF: L1
REF: 11-3 Inscribed Angles
OBJ: 11-3.1 Finding the Measure of an Inscribed Angle
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-3 Example 2
KEY: circle | inscribed angle | central angle | intercepted arc
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
33. ANS: A
PTS: 1
DIF: L1
REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.1 Finding Angle Measures
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-4 Example 1
KEY: circle | secant | angle measure | arc measure | intersection inside the circle
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
34. ANS: A
PTS: 1
DIF: L2
REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.1 Finding Angle Measures
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-4 Example 1
KEY: circle | chord | angle measure | arc measure | intersection on the circle | intersection outside the circle
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
6
ID: A
SHORT ANSWER
35. ANS:
NM  NL and, by the Tangent Theorem, NC = NA. By subtraction, MC  LA. Also by the Tangent
Theorem, MC  MB and LA  LB , so 4  MC  MB  LB  LA. The perimeter is 46 cm, so
46  NC  MC  MB  LB  LA  NA. By substitution, 46  NA  4  4  4  4  NA, so NA  15.
Since NL  NA  LA, NL  15 cm  4 cm, or 19 cm.
PTS: 1
DIF: L2
REF: 11-1 Tangent Lines
OBJ: 11-1.2 Using Multiple Tangents
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 |
TV.LV20.52
TOP: 11-1 Example 5
KEY: reasoning | tangent to a circle | tangent | properties of tangents | Tangent Theorem
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16 |
TV.LV20.52
36. ANS:
30
a.
150
b.
88
c.
34
d.
PTS: 1
DIF: L2
REF: 11-3 Inscribed Angles
OBJ: 11-3.1 Finding the Measure of an Inscribed Angle
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-3 Example 1
KEY: chord | inscribed angle-arc relationship | circle
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
7
ID: A
37. ANS:
Statements
1. F  E
2. arc CF  arc DE
1
3. mCDF  m(arc CF)
2
1
mDCE  m(arc DE)
2
1
4. mCDF  m(arc CF)
2
1
mDCE  m(arc CF)
2
5. mCDF  mDCE
6. CDF  DCE
7. CD  DC
8. CED  DFC
Reasons
1. Inscribed angles intersecting the same arc are  .
2. Given
3. Inscribed Angle Theorem
4. Substitution
5. Substitution
6. Definition of congruence
7. Reflexive property
8. AAS
PTS: 1
DIF: L3
REF: 11-3 Inscribed Angles
OBJ: 11-3.1 Finding the Measure of an Inscribed Angle
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-3 Example 2
KEY: chord | inscribed angle-arc relationship | circle | proof
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
ESSAY
38. ANS:
[4]
[3]
[2]
[1]
Statement
1. BAC  DAC and
DCA  BCA
2. CA  CA
3. CBA  CDA
4. BC  CD
Reason
1. Given
2. Reflexive Property
3. ASA
4. CPCTC
correct idea, some details inaccurate
correct idea, not well organized
correct idea, one or more significant steps omitted
PTS:
OBJ:
NAT:
KEY:
proof
MSC:
1
DIF: L3
REF: 4-4 Using Congruent Triangles: CPCTC
4-4.1 Proving Parts of Triangles Congruent
NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
ASA | CPCTC | congruent figures | corresponding parts | rubric-based question | extended response |
NAEP G2e | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.14
8
ID: A
39. ANS:
[4] a.
[3]
[2]
[1]
To find the actual dimensions, you must use the scale of 1 cm to 0.5 meters. A
quick way to find the dimensions is to divide each value of a measure by 2 and
then that is the number of meters in the dimension for the cabin.
14 ÷ 2 = 7, so this is 7 meters.
20 ÷ 2 = 10, so this is 10 meters.
7 ÷ 2 = 3.5, so this is 3.5 meters.
The dimensions of the actual cabin are 7 m by 10 m by 3.5 m.
b. To find the volume of the cabin, use the formula for volume of a prism.
V = Bh
Use the formula for volume.
70

3.5
B  7  10  70
=
= 245
The volume of the cabin is 245 cubic meters.
To find the ratio, you must know the volume of each cabin in the same units. The
c.
volume of the model is 14 cm  20 cm  7 cm  1960 cubic centimeters. The
volume of the actual cabin is
cm
cm
cm
245 cm3  100
 100
 100
= 245,000,000 cubic centimeters, since
m
m
m
each meter is 100 centimeters.
1960
ratio of model to actual 
245, 000, 000
1

125, 000
The ratio of the volumes is 1 to 125,000.
one mathematical error or correct answers with incomplete explanations
two mathematical errors or correct answers with errors in explanation
correct answers with no explanation
PTS: 1
DIF: L2
REF: 10-5 Volumes of Prisms and Cylinders
OBJ: 10-5.1 Finding Volume of a Prism
NAT: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
KEY: extended response | volume of a rectangular prism | prism | problem solving | word problem |
rubric-based question | volume formulas | volume
MSC: NAEP M1j | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
IT.LV16.PS | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16 | TV.LV20.17
9
ID: A
OTHER
40. ANS:
Answers may vary. Sample: Since both the width and the length are doubled, the area will be quadrupled. To
double the area, you only need to double one of the dimensions.
PTS: 1
DIF: L2
REF: 8-6 Perimeters and Areas of Similar Figures
OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures
NAT: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM |
IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
KEY: area | perimeter | writing in math | reasoning | word problem
MSC: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM |
IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
41. ANS:
Let m, m + 1, m + 2, and m + 3 represent the four consecutive numbers. Then the product of the greatest and
least numbers will equal the product of the two consecutive middle numbers. Solving the equation m(m + 3)
= (m + 1)(m + 2) for m results in m2 + 3m = m2 + 3m + 2, or 0 = 2, which is false.
PTS: 1
DIF: L3
REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.1 Finding Angle Measures
NAT: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
TOP: 11-4 Example 3
KEY: circle | intersection inside the circle | segment length | algebra | proof | reasoning
MSC: NAEP G3e | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
10
sample 9 final 512 [Answer Strip]
A
_____
2.
D
_____
3.
ID: A
B
_____
8.
C 11.
_____
B
_____
1.
C
_____
9.
A 12.
_____
C 13.
_____
B 14.
_____
B 10.
_____
B 15.
_____
D
_____
4.
A 16.
_____
B
_____
5.
A
_____
6.
A
_____
7.
sample 9 final 512 [Answer Strip]
A 17.
_____
A 28.
_____
A 20.
_____
D 18.
_____
ID: A
A 21.
_____
B 30.
_____
A 24.
_____
B 25.
_____
B 31.
_____
A 22.
_____
D 29.
_____
D 26.
_____
A 19.
_____
B 32.
_____
B 23.
_____
B 27.
_____
sample 9 final 512 [Answer Strip]
A 33.
_____
A 34.
_____
ID: A