www.sakshieducation.com JEE(Advanced)-2016 Paper – II Mathematics Solutions 37. x 3 y 1 z 7 2 6 = = = =4 1 1 1 3 x = 1, y = 5, z = 3 P ( 1, 5, 3) a(x+1)+b(y 5)+c (z 3)=0 a + 2b + c = 0 ...................(i) a 5b 3c = 0 a b c 1 4 7 (x+1)+4 (y 5) 7 (z 3)=0 x +4y 7z = 0 x 4y+7z = 0 38. [c] Graph given 3 1 Area a = Area of PQRS x 3 Trapezium QABK x 3 4 3 = 3 2 [C] www.sakshieducation.com www.sakshieducation.com 39. Common difference d = 2 = logb2 – logb1 = log b2 b1 b2 = 2b1 b1 b2 b3 …. GP T = b1 + 2b1 + 4b1 … + 250b1 = b1 (251 -1) S= 51 51 51 a1 a51 b1 b51 b1 1 250 2 2 2 S–T>0 b101 = 2100b1 a10 1 = a1 + 100d = 2a1 – a1 + 2(50d) = 2a51 – a1 = 2b51 – b1 b101 > a101 [B] sin 30 k 1 sin 45 k 1 30 sin 45 30k 13 2 40. 13 2 k 1 sin 45 30k 45 (k 1)30 sin 45 k 1 30 sin 45 30k Use sin (A – B) = sinA CosB – CosA sinB 13 2 cot(45 (k 1)30 cot(45 30k ) k 1 2 cot 45 cot(45 30) 2 41. 1 0 0 P 2 8 1 0 and P3 is 48 8 1 [C] 3 1 1 0 0 1 0 0 12 1 0 P n 4n 1 0 96 12 1 8( n 2 n) 4n 1 0 0 1 n 50 P50 200 1 0 20400 200 1 P50 – Q = I 200 – q21 = 0 q21 = 200 q32 = 200, q31 = 400×51 q31 q32 103 q21 www.sakshieducation.com [B] www.sakshieducation.com 42. Replace x with –x and I + I 2I 43. Lt x 2 2 2 x 2 cos x d x 2 x 2 cos x 0 2 2 4 2 f ( x) g ( x) 1 Apply L’ Hospital Rule f '( x) g '( x) f'' (2) = f(2) [D] Range of f(x) (0, α) f ' (x) = f ' (2) > 0 Gives minimum at x = 2 44. [A] C [2, 8], r = 2, Normal equation y = mx – 2m – m2 passes through center [2, 8] 8 = 2m -2m – m2 m = -2 Normal at P [am2, - 2am] = [4, 4] Gives y = -2x + 12 Slope of Tangent = 45. 1 2 [A, C, D] if a = 0, b = 1 f(x) = x sin(x3 + x) is differentiable if a = 0, b = 1 f(x) = cos (x3 - x), differentiable at 1, 0 [C, D] wrong 46. f(x) = [x2] – 3, it is discontinues at x = 1, √2, √3, 2 g(x) = 15x – 21 x<0 = 9x – 21, 0≤x≤1 = 6x – 14 1 ≤ x < √2 = 3x – 7 √2 ≤ x < √3 =0 √3 ≤ x < 2 =3 x=2 Thus at x = 0, 1, √2, √3 www.sakshieducation.com A B www.sakshieducation.com g(x) is not differentiable [B C] 47. f (x) 1 1 1 n n n n 1 x / n x / n x / n .... x 2 3 n 2 2 2n x 1 x 1 n n 2 1 2 2 .... 1 2 n 4 n n 1 2 f f and f '(2) 0 3 3 x/n [B, C] 48. ax + 2y = 3x – 2y = µ a 2 2 a 6 0 3 2 a 3 1 2 2 2 2 3 3 3 [B, C, D] 49. Perpendicular of u, v is u v w is perpendicular to u v w. (u ×v) = 1 infinitely many solutions. [B, C] 50. 1 a ibt a ibt a ibt a ibt x iy 2 a b 2t 2 a bt x 2 y 2 2 2 a b t a b 2t 2 z 2 x 1 1 2 x y x y a 2a 2a 2 [A, C, D] 2 2 www.sakshieducation.com www.sakshieducation.com 1 1 1 1 1 1 5 2 2 2 6 6 2 12 51. P(x > y) implies = 52. P(x = y) = 2 53. a = 3, e 1 1 2 3 1 1 13 6 6 36 [B] [C] 1 F1 = (-1, 0) F2 (1, 0) parabola y2 = 4x 3 3 2 Point of intersection , 6 9 ,0 10 Or the center 54. Equation tangent [A] 3x y 6 1 18 8 For x – axis, y = 0 R [6, 0] Normal at M At y = 0 Area of le 3 3 3 x y2 2 2 2 2 7 Q ,0 2 1 7 5 6 6 6 2 2 4 Quadrilateral area = 2 F1 F2 M 1 2 2 2 6 2 6 5 6 5 4 5 :8 Ratio = 2 6 8 [c] www.sakshieducation.com
© Copyright 2026 Paperzz