Xiaoming Mao Department of Physics and Astronomy, University of Pennsylvania Collaborators: Tom Lubensky, Ning Xu, Anton Souslov, Andrea Liu Feb. 22, 2009 What is isostaticity ? • Isostatic systems are at the onset of mechanical rigidity • Central force system of N particles in d dimensions total d.o.f. dN # of constraints N C # of soft modes dN NC d (d 1) / 2 • Large lattice, mean coordination z # of constraints NC zN / 2 Isostaticity: z 2d at bulk # of soft modes per particle O( N 1 ) Soft modes are associated with boundary N 6, d 2, N C 7, dN N C 5 2 translations 1 rotation 2 soft modes 11 soft modes • • • • J. C. Maxwell, Philosophical Magazine 27, 598 (1864). S. Alexander, Physics reports 296, 65 (1998). C. S. O’Hern, et al., Phys. Rev. E 68, 011306 (2003). M. Wyart, et al., Phys. Rev. E 72, 051306 (2005). What is interesting about isostaticity ? • Zero-modes are present because of insufficient coordination, rather than broken symmetry • Jamming – Granular packings – Glasses and the Boson peak – Emulsions, foams, colloids … Courtesy of S. R. Nagel • Rigidity percolation Courtesy of D. J. Durian Courtesy of D. A. Weitz • Networks of semi-flexible polymers • Applications in engineering Courtesy of D. A. Weitz General question: How rigidity emerges in isostatic systems? • Add more bonds • Negative pressure: stretch • Add angle-dependent force • Thermal fluctuations (+ excluded volume repulsion) • • rubber chemical gels Current work: randomness and isostaticity • Interplay of randomness and extra coordination – Each NNN bond is present with a given probability P – For large system, threshold for rigidity P ~ N 1 0 – How does rigidity scale with P ? – What is new from randomness • Nonaffine deformations • Scattering of phonons: dissipation Motivation: jamming • Granular materials and point J • Frictionless soft spheres • One-sided repulsion • At T=0, conjugate-gradient energy-minimization T unjammed jammed G=0 G>0 C J shear stress 1/ Packing fraction • A. J. Liu and S. R. Nagel, Nature 396 N6706, 21 (1998). • C. S. O’Hern, et al., Phys. Rev. E 68, 011306 (2003). Point J is isostatic • Jammed solids at point J are isostatic G>0 J C Packing fraction Z C 2d • A. J. Liu and S. R. Nagel, Nature 396 N6706, 21 (1998). • C. S. O’Hern, et al., Phys. Rev. E 68, 011306 (2003). Jamming: scalings G=0 G>0 • • • • • Coordination number: Shear modulus: Bulk modulus: Pressure: Characteristic frequency: z ~ ( C )1/ 2 Harmonic α=2 G ~ ( C ) 3 / 2 (z)1 B ~ ( C ) 2 (z )0 p ~ ( C ) 1 (z ) 2 ~ ( C )( 1) / 2 (z)1 cL ~ B l L ~ (z ) 1 cT ~ G l T ~ (z ) 1/ 2 • C. S. O’Hern, et al., Phys. Rev. E 68, 011306 (2003). • L. E. Silbert, et al., Phys. Rev. Lett. 95, 098301 (2005). • M. Wyart, et al., Phys. Rev. E 72, 051306 (2005). The characteristic frequency scale • DOS for jammed solids • Heuristic arguments by M. Wyart l • • • • • • Cut a region of size l # of bonds severed: ~ l d 1 d # of extra bonds in the region: ~ l z The region has soft modes if l l ~ (z ) 1 Isostaticity length scale l Isostaticity frequency scale ~ 1 / l ~ (z )1 • M. Wyart, et al., Phys. Rev. E 72, 051306 (2005). Dimensional crossover at • DOS for jammed solids • DOS for continuous elastic media • 1D or right at isostaticity D( ) ~ 1 c • 2D D( ) ~ c2 2D 1D/isostaticity • Below the system behaves 2D, and above, like 1D/isostaticity. • Mao, Xu and Lubensky, manuscript in preparation (2009). • Souslov, Liu and Lubensky, manuscript in preparation (2009). Our goal • Can we systematically understand isostaticity using the tools in condensed matter physics? – Lattice models – Naturally small parameter for perturbation P ~ z • What is the role of disorder? – Nonaffine deformations – Damping of phonons – Transport properties --- thermal conductivity of glasses Our model • Square lattice and kagome lattice • • • • Spring constant of NN bonds k Spring constant of NNN bonds Probability for each NNN bond to be present P Map to effective medium periodic lattice with NNN bonds all present with m • Mao, Xu and Lubensky, manuscript in preparation (2009). Elastic expansion for lattice models • Displacement field and potential energy – Reference state r – Displacement r R r u – Potential energy of a bond force r R ' Rb u V ' (r ) 2 1 || 2 Vb ( R R ' ) Vb " (rb ) ub b b ub O u 3 2 2rb spring constant R u ' rb ub u u ' r ' Elasticity of the effective medium • elastic free energy for square lattice 1 F uq Dq u q 2 q u qx 2 modes u qy – Dynamical matrix Dqxx Dq xy Dq Dqxy yy Dq • NN bonds k • NNN bonds m – Eigenvalues: • Landau theory: continuous elasticity strain tensor C11 ~ k m uij C12 ~ m soft modes u xy C44 ~ m 1 iu j jui iul jul 2 The characteristic frequency scale • Dispersion relation F 1 u q Dq u q 2 q x 1D/isostatic D( x ) 2D qx 2 l 2 m k k m 2 m qy qx • Phonon density of states Van Hove singularity 2D 1D/isostaticity • NN bonds k • NNN bonds m Longitudinal wave & characteristic length scale l Isostaticity (longitudinal waves) Ising model Free energy Correlation function F q m 2 q 2 q q qq Fx 1 ~ 2 m q2 k 2 u x q qx 4 m sin 2 q y / 2u x q 2 q k uqx uxq ~ 4 1/ m Characteristic length l above massive 2D below massless/critical isostatic/1D m k 1 sin 2 q y / 2 q x 1 k 2 m 2 How to relate to the extra coordination z ? • Scalings square lattice ~ m1/ 2 l ~ 1/ ~ m 1/ 2 • Scalings in jamming ~ z l L ~ 1 / ~ (z ) 1 • How to relate them? Simple guess m ~ z ~ (z)1/ 2 inconsistent • NN bonds k • NNN bonds m Nearly isostatic random lattices • Square lattice with random additional NNN bonds k • Spring constant of NN bonds k • Spring constant of NNN bonds • Probability for each NNN bond to be present P Nearly isostatic random lattices • Square lattice with random additional NNN bonds • Spring constant of NN bonds k • Spring constant of NNN bonds • Probability for each NNN bond to be present P k • Length scales in the nearly isostatic square lattice • Compare with the case of jamming: l2 ~ P 1/ 2 l1 ~ P 1 ~ (z )1 cL ~ B l L ~ (z ) 1 cT ~ G l T ~ (z ) 1/ 2 Method: Coherent Potential Approximation (CPA) • Mapping to effective medium map m m ' i m " P • Self-consistency equation 1 P P 0 m m ' i m " • P. Soven, Phys. Rev. 178, 1136 (1969). • S. Feng, et al., PRB, 31, 276 (1985). CPA: Green’s function and perturbation • The effective medium • Elastic free energy F • The perturbation • Phonon Green’s function 1 uq Dq u q 2 q D, ' D, ' V, ' G Gm Gm T Gm 2 T V V G m V V G m V G m V V 1 Tr (G m V ) 1 m ' • The self-consistency equation • Mao, Xu and Lubensky, manuscript in preparation (2009). Static solution 0 • The self-consistency equation At 0 , for P 1 asymptotic equation: nonaffine affine /k nonaffine affine P Comparison with simulation • The self-consistency equation At 0 , for P 1 asymptotic equation: /k nonaffine affine P / k 102 / k 1 Simulation with 100*100 lattice C44 m Numerical solution from the CPA / k 102 Asymptotic form (nonaffine) Asymptotic form (affine) Comparison with jamming • The self-consistency equation: /k nonaffine affine P • Comparison with scaling at point J It is nonaffine near point J / k ~1 m ~ P2 P ~ z 1 ~ m1/ 2 ~ P l ~ 1/ ~ m 1/ 2 ~P 1 P ~ z • CPA agrees with the scalings of jamming ! ~ z l L ~ 1 / ~ (z ) 1 Discussion of 0 solution • How do we understand the scaling m ~ P 2 ? Length scale in the effective medium Fx k 2 u x q q x 4 m sin 2 q y / 2u x q 2 q k qx 2 m k Length scale in the random lattice Length scale for 2 l ~P 1/ 2 l1 ~ P 1 ux l 1 1 k 2 m qx waves propagating in l1 ~ P 1 m ~ P2 x direction CPA at finite frequency 0 • The self-consistency equation At 0 , the solution gives a complex effective medium spring constant m m ' i m " • Results Rescaled m"~ viscous elastic media Density of states D( ) • Phonon DOS derived from Green’s function DOS of jamming DOS for various P P 103 P 102 P 101 Density of states: simulation Comparison with simulation: P=0.1 simulation with 100*100 lattice DOS from CPA (infinite vol) DOS from CPA (10000 particles) Response functions (q, ) • Phonon response function ab (t , t ' ) , ' ua (t ) f b' (t ' ) xxm (q, ) 1 2 k qx2 4 m sin 2 (q y / 2) 1) q y 0 no damping 2) q y strong damping Im xxm qx The kagome lattice… m 0.01 m 0 k1 0; p0 m K m" k1 0.01 ; p0 M K K K 0.01 m 0 m ' M m k10.01; p0 0.6 0.4 2 0.2 0 0 -2 0 -2 2 Summary and future work • Conclusions We did a systematic study on random nearly isostatic lattices, in particular, square lattices with random additional NNN bonds. Crossover between affine and nonaffine regime m ~ P m ~ P2 jamming Scaling of characteristic length and frequency scale in jamming can be recovered by CPA calculation of random nearly isostatic lattices. Strong damping in phonon propagation smooth out Van Hove singularity, similar DOS with jamming. Random nearly isostatic lattice models are able to capture some essential physics in jammed solids • Future work Transport properties Isostaticity in other systems
© Copyright 2026 Paperzz