Methodology for distinguishing between man's influence and climatic effects on the hydrological cycle J.C. Refsgaard, W.M. Alley and V.S. Vuglinsky IHP-III Project 6.3 Unesco, Pans, 1989 s c -89/."3- 22 The designations cmployed and the presentation o f material throq$i;out the publication do not imply the expression o f any opinion whatsoever on the parr o f Unesco concerning the legal-status of any country, territory, city or o f its authorities, or concerning the delimitation of its frontiers or boundaries. PREFACE A l t h o u g h t h e t o t a l amount o f w a t e r on E a r t h i s g e n e r a l l y assumed t o have r e mained v i r t u a l l y c o n s t a n t during r e c o r d e d h i s t o r y , p e r i o d s o f f l o o d and d r o u g h t have c h a l l e n g e d t h e i n t e l l e c t o f man t o have t h e c a p a c i t y t o c o n t r o l t h e w a t e r r e s o u r c e s a v a i l a b l e t o h i m . C u r r e n t l y , t h e r a p i d g r o w t h o f popul a t i o n , t o g e t h e r w i t h t h e e x t e n s i o n o f i r r i g a t e d a g r i c u l t u r e and i n d u s t r i a l development, a r e s t r e s s i n g t h e q u a n t i t y and q u a l i t y a s p e c t s o f t h e n a t u r a l system. Because o f t h e i n c r e a s i n g problems, man has begun t o r e a l i z e t h a t he can no l o n g e r f o l l o w a "use and d i s c a r d " p h i l o s o p h y e i t h e r w i t h water resources o r any o t h e r n a t u r a l r e s o u r c e . As a r e s u l t , t h e need f o r a c o n s i s t e n t p o l i c y o f r a t i o n a l management o f w a t e r r e s o u r c e s has become e v i d e n t . -- R a t i o n a l w a t e r management, however, s h o u l d b e founded upon a t h o r o u g h u n d e r s t a n d i n g o f w a t e r a v a i l a b i l i t y and movement. Thus, as a c o n t r i b u t i o n t o t h e s o l u t i o n o f t h e w o r l d ' s w a t e r problems, Unesco, i n 1985, began t h e f i r s t w o r l d w i d e programme o f s t u d i e s o f t h e h y d r o l o g i c a l c y c l e -- t h e I n t e r n a t i o n a l H y d r o l o g i c a l Decade ( I H D ) . The r e s e a r c h programme was complemented by a m a j o r e f f o r t i n t h e f i e l d o f h y d r o l o g i c a l e d u c a t i o n and t r a i n i n g . The a c t i v i t i e s u n d e r t a k e n during t h e Decade p r o v e d t o b e o f g r e a t i n t e r e s t and v a l u e t o Member S t a t e s . B y t h e end o f t h a t p e r i o d , a m a j o r i t y o f Unesco's Member S t a t e s h a d formed I H D N a t i o n a l Committees t o c a r r y o u t t h e r e l e v a n t n a t i o n a l a c t i v i t i e s and t o p a r t i c i p a t e i n r e g i o n a l and i n t e r n a t i o n a l c o - o p e r a t i o n w i t h i n t h e I H D programme. The knowledge o f t h e w o r l d ' s w a t e r r e s o u r c e s as an i n d e p e n d e n t p r o f e s s i o n a l o p t i o n and f a c i l i t i e s f o r t h e t r a i n i n g o f h y d r o l o g i s t s h a d been developed. Conscious o f t h e need t o expand upon t h e e f f o r t s i n i t i a t e d d u r i n g t h e I n t e r n a t i o n a l H y d r o l o g i c a l Decade, and, f o l l o w i n g t h e recommendations o f Member S t a t e s , Unesco, i n 1975, l a u n c h e d a new l o n g - t e r m i n t e r g o v e r n m e n t a l programme , t h e I n t e r n a t i o n a l H y d r o l o g i c a l Programme (IHP) , t o f o l l o w t h e Decade. A l t h o u g h t h e I H P i s b a s i c a l l y a s c i e n t i f i c and e d u c a t i o n a l programme, Unesco has been aware f r o m t h e b e g i n n i n g o f a need t o d i r e c t i t s a c t i v i t i e s towards t h e p r a c t i c a l s o l u t i o n s o f t h e w o r l d ' s v e r y r e a l w a t e r r e s o u r c e s p r o b lems. A c c o r d i n g l y , and i n l i n e w i t h t h e recommendations o f t h e 1977 U n i t e d N a t i o n s Water Conference, t h e o b j e c t i v e s o f t h e I n t e r n a t i o n a l H y d r o l o g i c a l Programme have been g r a d u a l l y expanded i n o r d e r t o c o v e r n o t o n l y h y d r o l o g i c a l p r o c e s s e s c o n s i d e r e d i n i n t e r r e l a t i o n s h i p w i t h t h e environment and human act i v i t i e s , but a l s o t h e s c i e n t i f i c a s p e c t s o f m u l t i - p u r p o s e u t i l i z a t i o n and c o n s e r v a t i o n of w a t e r r e s o u r c e s t o meet t h e needs o f economic and s o c i a l development. Thus, w h i l e m a i n t a i n i n g I H P ' s s c i e n t i f i c concept, t h e o b j e c t i v e s have s h i f t e d p e r c e p t i b l y towards a m u l t i d i s c i p l i n a r y approach t o t h e assessm e n t , p l a n n i n g and r a t i o n a l management o f w a t e r r e s o u r c e s . As p a r t o f IJnesco's c o n t r i b u t i o n t o t h e o b j e c t i v e s o f t h e I H P , t w o publ i c a t i o n s e r i e s a r e i s s u e d : " S t u d i e s and R e p o r t s i n H y d r o l o g y " and " T e c h n i c a l Papers i n H y d r o l o g y " . I n a d d i t i o n t o t h e s e p u b l i c a t i o n s , and i n o r d e r t o exp e d i t e exchange o f i n f o r m a t i o n , some works a r e i s s u e d i n t h e f o r m o f T e c h n i c a l Documents. ABSTRACT The h y d r o l o g i c a l c y c l e i s i n f l u e n c e d b o t h b y t h e c l i m a t e and by catchment c h a r a c t e r i s t i c s such as topography, geology, soil, vegetation, and w a t e r development. A methodology i s p r e s e n t e d f o r d i s t i n g u i s h i n g between t h e e f f e c t s o f man's a c t i v i t y and c l i m a t e on t h e h y d r o l o g i c a l c y c l e , i n p a r t i c u l a r streamf l o w and groundwater. The methodology i s based on j o i n t a p p l i c a t i o n o f s t a t i s t i c a l t r e n d t e s t i n g methods and h y d r o l o g i c a l ( o r s t a t i s t i c a l r e g r e s s i o n ) models o f s t r e a m f l o w o r groundwater. The methodology i s i l l u s t r a t e d b y two case s t u d i e s . TAIjLE OF CONTENTS Page FOREWORD 1. 2. 3. INTRODUCTION 1-1 1.1 1.2 1.3 1-1 1-2 1-4 SUMMARY AND RECOMMENDATIONS 2-1 2.1 2.2 2.3 2-1 2-3 2-3 3.3 5. Methodology State of the A r t Recommendations HYDROLOGICAL TOOLS 3.1 3.2 4. Background Factors A f f e c t i n g the H y d r o l o g i c a l C y c l e Contents o f the Report Introduction D e t e r m i n i s t i c Models 3.2.1 E m p i r i c a l models 3.2.2 Lumped, c o n c e p t u a l m o d e l s 3.2.3 D i s t r i b u t e d , p h y s i c a l l y based m o d e l s 3.2.4 S e l e c t i o n o f appropriate m o d e l type 3.2.5 V a l i d a t i o n o f hydrological models S t a t i s t i c a l Models 3-1 3-1 3-1 3-2 3-3 3-4 3-5 3-7 3-8 STATISTICAL METHODS 4-1 4.1 4.2 4.3 4.4 4-1 4-3 4-3 4-5 Introduction S t e p Trends Monotonic Trends Complications METHODOLOGY FOR DISTINGUISHING BETWEEN MAN'S INFLUENCE AND CLIMATE V A R I A B I L I T Y 5.1 5.2 5.3 5.4 5.5 5.6 Introduction STEP 1: D e t e r m i n a t i o n o f S t e p o r M o n o t o n i c Trend Analysis STEP 2 : S e l e c t i o n of M o d e l Type STEP 3: Model C a l i b r a t i o n , V a l i d a t i o n and A p p l i c a t i o n 5.4.1 Lumped, c o n c e p t u a l m o d e l s 5.4.2 D i s t r i b u t e d , p h y s i c a l l y based m o d e l s 5.4.3 S t a t i s t i c a l regression m o d e l s Trend T e s t STEP 4: 5.5.1 No m o d e l 5.5.2 Lumped, conceptual m o d e l s 5.5.3 D i s t r i b u t e d , p h y s i c a l l y based m o d e l s 5.5.4 S t a t i s t i c a l regression models STEP 5: Further H y d r o l o g i c a l A n a l y s i s 5.6.1 No m o d e l 5.6.2 Lumped, conceptual m o d e l 5.6.3 D i s t r i b u t e d , p h y s i c a l l y based m o d e l 5.6.4 S t a t i s t i c a l r e g r e s s i o n models 5-1 5-1 5-1 5-3 5-4 5-4 5-5 5-8 5-8 5-8 5-8 5-9 5-9 5-11 5-11 5-11 5-11 5-12 Page G. REFERENCES 6- 1 7. CASE STUDIES 7-1 7.1 7.2 7- 1 7- 2 7.3 Introduction Groundwater Development i n t h e Kqge A and Suss Catchments, Denmark 7.2.1 D e s c r i p t i o n o f catchments and h y d r o l o g i c a l models 7.2.2 Example 1 : Kqge A 7.2.3 Example 2 : Sus; a t V e t t e r s l e v 7.2.4 References The B l u e R i v e r B a s i n , Nebraska, USA APPENDIX A : I n f l u e n c e o f G l o b a l C l i m a t e Changes on Water Resources. (M.1. Budyko and K.Y. V i n n i k o v ) 7- 2 7-5 7-8 7-11 7-12 FOREWORD T h i s r e p o r t o n "Methodology f o r D i s t i n g u i s h i n g between Man's I n f l u e n c e and C l i m a t i c E f f e c t s on t h e H y d r o l o g i c a l C y c l e " emanates f r o m t h e I n t e r n a t i o n a l H y d r o l o g i c a l Programme (IHP) Intergovernmental C o u n c i l which, i n 1984, appointed t h e f o l l o w i n g f o u r r a p p o r t e u r s f o r t h e I H P - I 1 1 P r o j e c t 6.3 Mr. , Mr. J.C. Refsgaard ( D a n i s h H y d r a u l i c I n s t i t u t e , Denmark) Rapporteur Mr. W.M. Alley (U.S. Mr. D.A. Kraijenhoff ( A g r i c u l t u r a l U n i v e r s i t y Wageningen, N e t h e r l a n d s ) CO-rapporteur Mr. V.S. Vuglinsky ( S t a t e H y d r o l o g i c a l I n s t i t u t e Leningrad, CO-rapporteur D.A. G e o l o g i c a l Survey, U S A ) , Principal CO-rapporteur USSR) , , K r a i j e n h o f f w i t h d r e w f r o m t h e group i n August 1988. The Terms o f Reference drawn b y t h e IHP C o u n c i l f o r t h e p r o j e c t a r e : o E s t a b l i s h m e n t o f a methodology f o r d i s t i n g u i s h i n g between man's i n f l u e n c e and c l i m a t e v a r i a b i l i t y i n t h e h y d r o l o g i c a l c y c l e , i n p a r t i c u l a r streamf l o w and groundwater. o Preparation o f a state-of-the-art r e p o r t on m e t h o d o l o g i e s f o r d i s t i n g u i s h i n g between man's i n f l u e n c e and c l i m a t e v a r i a b i l i t y i n t h e h y d r o l o g i c a l cycle. The p r i n c i p a l r a p p o r t e u r p a r t i c i p a t e d i n t h e t h i r d p l a n n i n g m e e t i n g o n t h e W o r l d C l i m a t e Programme-Water Geneva 1 8 - 2 2 November, 1985, f o r c o o r d i n a t i o n o f t h i s p r o j e c t w i t h o t h e r r e l a t e d o n g o i n g a c t i v i t i e s . The r a p p o r t e u r s m e t f o r a w o r k i n g s e s s i o n i n P a r i s , 18-22 May, 1987. The f i n a l p r o j e c t coo r d i n a t i o n was c a r r i e d o u t i n c o n n e c t i o n w i t h t h e f o u r t h p l a n n i n g m e e t i n g on t h e World C l i m a t e Programme - Water, i n P a r i s September 12-16, 1988, where t h r e e of t h e rapporteurs p a r t i c i p a t e d . The work h a s b e e n s u p p o r t e d by a s s i s t a n c e f r o m t h e D i v i s i o n o f Water Science o f t h e U n i t e d N a t i o n s E d u c a t i o n a l , S c i e n t i f i c and C u l t u r a l O r g a n i z a t i o n (UNESCO) r e p r e s e n t e d by M r . M . I . Rusinov up t o August 1988 and M r . W.H. G i l b r i c h f o r t h e remaining p e r i o d . 1-1 1. INTRODUCTION 1.1 Backsround Man's development o f w a t e r r e s o u r c e s h a s r e s u l t e d i n g r e a t economic and s o c i a l b e n e f i t s b y p r o v i d i n g f a v o u r a b l e environments f o r a g r i c u l t u r e , i n d u s t r y and l i v i n g c o n d i t i o n s . However, i f n o t c a r e f u l l y planned, a d v e r s e e f f e c t s may a l s o occur. The assessment o f t h e i n f l u e n c e o f man's management a c t i v i t i e s o n t h e h y d r o l o g i c a l c y c l e and o n t h e W o r l d ' s c l i m a t e i s t h e r e f o r e becoming a p r o b l e m o f i n c r e a s i n g concern. The e f f e c t o f human a c t i v i t y on t h e l a n d and w a t e r r e s o u r c e s o f t h e e a r t h has been v i s i b l e s i n c e man s t a r t e d a g r i c u l t u r a l p r o d u c t i o n . However, w i t h t h e r a p i d i n c r e a s e i n p o p u l a t i o n , a g r i c u l t u r a l p r o d u c t i o n and i n d u s t r i a l i z a t i o n man's i n f l u e n c e on t h e h y d r o l o g i c a l c y c l e has i n c r e a s e d g r e a t l y i n r e c e n t decades. The p r e d i c t i o n o f t h e h y d r o l o g i c a l e f f e c t s o f man's a c t i v i t y h a s t h e r e f o r e become i n c r e a s i n g l y i m p o r t a n t . The e f f e c t o f human a c t i v i t y on t h e g l o b a l c l i m a t e h a s been n e g l i g i b l e o r n o t r e c o g n i z e d u n t i l r e c e n t l y . However, t h e r e i s i n c r e a s i n g c o n c e r n a b o u t mani n d u c e d g l o b a l c l i m a t e changes i n t h e n e x t few decades r e s u l t i n g f r o m i n c r e a s i n g c o n c e n t r a t i o n s o f carbon d i o x i d e and o t h e r t r a c e gases. One o f t h e most i m p o r t a n t i m p a c t s t o s o c i e t y o f such f u t u r e c l i m a t e changes w i l l be changes i n t h e water resources a v a i l a b i l i t y . I n t h e p r e s e n t r e p o r t t h e t e r m c l i m a t e v a r i a b i l i t y i s d e f i n e d as t h e var i a t i o n f r o m y e a r t o y e a r , w h i l e t h e t e r m c l i m a t e change i s d e f i n e d as a s i g n i f i c a n t change i n c l i m a t e v a r i a b l e s f r o m one p e r i o d t o a n o t h e r p e r i o d . C l i mate v a r i a b i l i t y i s g e n e r a l l y an e f f e c t o f n a t u r a l c o n d i t i o n s , w h i l e c l i m a t e change can be caused b o t h by n a t u r a l c o n d i t i o n s and by man's a c t i v i t y . Long h y d r o l o g i c a l and m e t e o r o l o g i c a l t i m e s e r i e s may b e a n a l y s e d w i t h t h e o b j e c t i v e o f making i n f e r e n c e s r e g a r d i n g c l i m a t e v a r i a b i l i t y and i t s e f f e c t on t h e h y d r o l o g i c a l regime. Such r e s e a r c h s t u d i e s a r e p r e s e n t l y b e i n g c a r r i e d o u t w i t h i n t h e framework o f t h e W o r l d C l i m a t e Programme. I n t h i s c o n n e c t i o n , i t i s necessary t o be a b l e t o i d e n t i f y and t o e l i m i n a t e t h e e f f e c t s o f man's a c t i v i t y from t h e h y d r o l o g i c a l t i m e s e r i e s . S i m i l a r l y , l o n g h y d r o l o g i c a l and m e t e o r o l o g i c a l t i m e s e r i e s can b e anal y s e d f o r i n v e s t i g a t i n g t h e e f f e c t s o f man's a c t i v i t y . However, o f t e n t h e mani n d u c e d changes a r e s m a l l compared t o t h e e f f e c t s o f c l i m a t e v a r i a b i l i t y . F u r thermore, t h e changes a r e o f t e n masked b y measurement e r r o r s . D e t e c t i o n o f such changes i s t h e r e f o r e d i f f i c u l t , e s p e c i a l l y f o r s h o r t o b s e r v a t i o n p e r i o d s . Thus i t i s i m p o r t a n t t o e s t a b l i s h a methodology f o r d i s t i n g u i s h i n g between t h e e f f e c t s o f man's i n f l u e n c e and c l i m a t e on t h e h y d r o l o g i c a l c y c l e . 1-2 Factors A f f e c t i n g t h e Hydrological Cycle 1.2 T h e i n t e r a c t i o n s between man's a c t i v i t y , t h e c l i m a t e , t h e catchment t e r i s t i c s and t h e h y d r o l o g i c a l c y c l e a r e i l l u s t r a t e d i n F i g . 1 . 2 . 1 . charac- Man's a c t i v i t i e s a r e i n f l u e n c e d b y t h e c l i m a t i c and t h e catchment c o n d i t i o n s . T h i s i s o f t e n most obvious f o r man's a g r i c u l t u r a l a c t i v i t i e s , but i s generally valid. I n t h e p r e s e n t t e x t t h e t e r m catchment c h a r a c t e r i s t i c s i n a d d i t i o n t o n a t u r a l c h a r a c t e r i s t i c s such as geology, s o i l s , and topography a l s o i n c l u d e s man-made s t r u c t u r e s such as w a t e r d i v e r s i o n and groundwater pumpage schemes. ACTIVITY MAN'S o forestry o agriculture o urbanization o industrialization o water r e s o u r c e s management CATCHMENT C H A R A C T E R L S T I C S CLIMATE (either natural or i n f l u e n c e d b y man) o topography o precipitation o radiation o temperature o l a k e s a n d swamps o wind o d r a i n a g e system o h u m i d i t y o vegetation, o hydraulic geology, soils, l a n d use structures HYDROLOGICAL CYCLE Fig. 1.2.1 o precipitation o s o i l moisture o evapotranspiration o groundwater o streamflow The p r i n c i p a l i n t e r a c t i o n s among man's a c t i v i t y , t h e c l i m a t e , catchment c h a r a c t e r i s t i c s and t h e h y d r o l o g i c a l c y c l e . the 1-3 Man's a c t i v i t y can have a c o n s i d e r a b l e i m p a c t on t h e catchment c h a r a c t e r i s t i c s and hence on t h e h y d r o l o g i c a l regime. Depending o n t h e n a t u r e o f t h i s i m p a c t , man's a c t i v i t y may b e c l a s s i f i e d i n t o t h e f o l l o w i n g c a t e g o r i e s . o A c t i v i t i e s l e a d i n g t o changes i n t h e v e g e t a t i o n and l a n d u s e ( d e f o r e s t a t i o n and a f f o r e s t a t i o n , a g r i c u l t u r e , d r a i n a g e o f swamps and m a r s h - r i d d e n areas, u r b a n i z a t i o n , e t c . ) o A c t i v i t i e s l e a d i n g t o changes i n t h e topography and d r a i n a g e system (cons t r u c t i o n o f v a r i o u s h y d r a u l i c s t r u c t u r e s such as dams, b a r r a g e s , embankments , p o l d e r s , t e r r a c e s , and c o n t o u r p l o w i n g ) . o A c t i v i t i e s l e a d i n g t o d i r e c t and i n d i r e c t w a t e r d i v e r s i o n s f r o m o r t o t h e r i v e r o r t h e groundwater system ( s u r f a c e and groundwater a b s t r a c t i o n f o r use o u t s i d e t h e a r e a , e f f l u e n t d i s c h a r g e , a r t i f i c i a l groundwater r e charge, d r a i n a g e , i r r i g a t i o n , e t c . ) The e x t e n t of man's i n f l u e n c e on t h e catchment c h a r a c t e r i s t i c s c a n v a r y , r a n g i n g from n e a r zero i n f l u e n c e i n t h e cases o f n a t u r a l f o r e s t s and o t h e r n o n - c u l t i v a t e d areas w i t h o u t any w a t e r development t o c l o s e t o 1 0 0 % i n f l u e n c e i n t h e case of a p o l d e r area, where t h e topography, d r a i n a g e system and v e g e t a t i o n a r e man-made and where t h e h y d r o l o g i c a l system i s more o r l e s s comp l e t e l y regulated. Man's a c t i v i t i e s can have some i n f l u e n c e on t h e l o c a l c l i m a t e (hundreds t o thousands of square k i l o m e t r e s ) . F o r example, i t h a s been documented t h a t u r b a n i z a t i o n i n some cases can cause a s i g n i f i c a n t i n c r e a s e i n t h e h i g h i n t e n s i t y r a i n f a l l . W i t h r e s p e c t t o t h e r e g i o n a l and g l o b a l c l i m a t e , man's a c t i v i t i e s have i n t h e p a s t a p p a r e n t l y o n l y h a d n e g l i g i b l e e f f e c t s on t h e h y d r o l o g i c a l c y c l e . The r e s e a r c h r e s u l t s o b t a i n e d b y S o v i e t s c i e n t i s t s show, f o r example, t h a t i n case o f l y g e - s c a l e i r r i g a t i o n p r o j e c t s , c o v e r i n g an a r e a i n t h e o r d e r o f 400-500,000 k m , t h e change i n t h e a n n u a l p r e c i p i t a t i o n does n o t exceed 1 - 2 % ( G r i g o r i e v a e t a l . 1 9 8 3 ) . However, man's a c t i v i t y may cause a s i g n i f i c a n t change i n t h e g l o b a l c l i mate i n t h e f u t u r e . Thus, many s c i e n t i s t s s u p p o r t t h e h y p o t h e s i s t h a t t h e i n c r e a s e o f c a r b o n d i o x i d e c o n c e n t r a t i o n i n t h e atmosphere due t o t h e burning o f f o s s i l f u e l s w i l l cause a g l o b a l t e m p e r a t u r e i n c r e a s e i n t h e coming decades, (see Appendix A o f t h i s r e p o r t ) . T h i s i n c r e a s e o f t h e mean g l o b a l a i r temperat u r e may have s i g n i f i c a n t e f f e c t s on t h e h y d r o l o g i c a l regime i n v a r i o u s r e gions o f t h e Earth. The h y d r o l o g i c a l c y c l e i s a f f e c t e d by b o t h t h e c l i m a t e and t h e catchment c h a r a c t e r i s t i c s . B o t h catchment c h a r a c t e r i s t i c s and c l i m a t e a r e i n turn a f f e c t e d b y t h e h y d r o l o g i c a l c y c l e . F o r example, t h e w a t e r a v a i l a b i l i t y i n t h e h y d r o l o g i c a l c y c l e may a f f e c t catchment c h a r a c t e r i s t i c s such as t h e t y p e and t h e e x t e n t of vegetation. S i m i l a r l y , t h e h y d r o l o g i c a l c y c l e , i n c l u d i n g t h e exchange o f w a t e r and energy a c r o s s t h e s o i l s u r f a c e t h r o u g h e v a p o r a t i o n , has l a r g e e f f e c t s on t h e c l i m a t e . Man's i n f l u e n c e on t h e c l i m a t e i s b e i n g s t u d i e d under t h e W o r l d C l i m a t e Programme. The i m p a c t o f c l i m a t e v a r i a b i l i t y on t h e h y d r o l o g i c a l c y c l e i s a l s o b e i n g s t u d i e d u n d e r t h e w o r l d C l i m a t e Programme, e.g. Klemes ( 1 9 8 5 ) . Man's i n f l u e n c e on t h e h y d r o l o g i c a l c y c l e by a f f e c t i n g t h e catchment c h a r a c t e r i s t i c s has been documented by v a r i o u s s c i e n t i s t s , e.g. UNESCO (1980). 1-4 The c o m p l e x i t y o f t h e s e i n t e r r e l a t i o n s may be i l l u s t r a t e d b y an example. I f t h e c l i m a t e , e i t h e r a s a consequence o f a change o r as t h e r e s u l t o f l o n g t e r m v a r i a b i l i t y , becomes d r y e r ( l e s s p r e c i p i t a t i o n ) € o r a p e r i o d o f some decades man may change t h e a g r i c u l t u r a l p r a c t i c e s from i r r i g a t e d f a r m i n g t o d r y l a n d f a r m i n g . T h i s change i n l a n d use w i l l reduce t h e e v a p o t r a n s p i r a t i o n l o s s es and t h u s t o some e x t e n t compensate f o r t h e r e d u c t i o n i n p r e c i p i t a t i o n . I f s t r e a m f l o w r e c o r d s f r o m two p e r i o d s , b e f o r e and a f t e r t h e c l i m a t e change, r e s p e c t i v e l y , w e r e a n a l y s e d assuming no change i n e v a p o t r a n s p i r a t i o n l o s s e s , t h e c o n c l u s i o n s would u n d e r e s t i m a t e t h e s t r e a m f l o w r e d u c t i o n caused b y t h e c l i m a t e change. I n o t h e r cases, man's a c t i o n s a f t e r a c l i m a t e change may a c c e l e r a t e t h e c l i m a t e e f f e c t s and c r e a t e a d d i t i o n a l adverse e f f e c t s . T h e r e f o r e , i t i s v e r y i m p o r t a n t t o account f o r c l i m a t e v a r i a b i l i t y and man-induced catchment changes i n s e p a r a t e ways. Man's i m p a c t o n t h e h y d r o l o g i c a l c y c l e can b e a r e s u l t o f b o t h mani n d u c e d c l i m a t e changes o r man-induced changes i n catchment c h a r a c t e r i s t i c s . I n t h e p r e s e n t r e p o r t , however, t h e t e r m man's i n f l u e n c e on t h e h y d r o l o g i c a l c y c l e , w i l l o n l y r e f e r t o t h e e f f e c t s i n d u c e d b y catchment changes. F u r t h e r more , when c o n s i d e r i n g t h e c l i m a t e ' s i n f l u e n c e on t h e h y d r o l o g i c a l c y c l e t.he p r e s e n t r e p o r t does n o t d i s t i n g u i s h between t h e e f f e c t s o f c l i m a t e v a r i a b i l i t y and c l i m a t e changes. Thus, t h i s r e p o r t i s r e s t r i c t e d i n scope t o d i s t i n g u i s h i R g t h e i n f l u e n c e o f a r r o w A i n F i g . 1.2.1 f r o m arrow B. 1.3 Contents o f t h e Report I n a d d i t i o n t o t h i s i n t r o d u c t o r y , chapter, t e r s and one appendix. t h e r e p o r t c o n t a i n s f o u r main chap- C h a p t e r 2 c o n t a i n s a b r i e f summary o f t h e proposed methodology, a b r i e f summary o f t h e s t a t e o f t h e a r t , and some recommendations r e g a r d i n g t h e need for future activities w i t h i n t h i s field. C h a p t e r 3 g i v e s an i n t r o d u c t i o n t o t h e v a r i o u s h y d r o l o g i c a l t o o l s which can be used f o r a s s e s s i n g t h e h y d r o l o g i c a l i m p a c t o f c l i m a t e and man's a c t i v i t y . I n Chapter 4 a p r e s e n t a t i o n i s g i v e n o f t h e a p p r o p r i a t e s t a t i s t i c a l t e s t p r o c e d u r e s f o r t r e n d t e s t s . These c h a p t e r s do n o t p r e s e n t any new methods, and t h e y can b e seen as a necessary background f o r Chapter 5, I n Chapter 5 t h e e s t a b l i s h e d methodology f o r d i s t i n g u i s h i n g between man's i n f l u e n c e and c l i m a t e i s d e s c r i b e d and d i s c u s s e d . Subsequently, t h e a p p l i c a t i o n cjf t h i s methodology i s i l l u s t r a t e d i n t h e case s t u d i e s g i v e n i n Chapter 7. Thus, i n accordance w i t h t h e t e r m s o f r e f e r e n c e f o r t h e p r o j e c t t h e main r e p o r t i s p r i m a r i l y c o n f i n e d t o t h e e s t a b l i s h m e n t o f t h e methodology f o r d i s t i n g u i s h i n g between t h e e f f e c t s G € man's i n f l u e n c e and c l i m a t e on t h e hydrol o g i c a l cycle. The methodology d e a l s w i t h t h e a n a l y s i s o f h i s t o r i c a l e f f e c t s as opposed t o t h e p r e d i c t i o n o f f u t u r e e f f e c t s . However, as t h e g l o b a l c l i m a t e changes become v e r y l i k e l y , t h e p r a c t i c a l i m p o r t a n c e o f b e i n g a b l e t o p r e d i c t t h e 1-5 changes i n w a t e r r e s o u r c e s a v a i l a b i l i t y as a consequence o f t h e c l i m a t e changes becomes c r u c i a l . T h e r e f o r e , an i n t r o d u c t i o n t o t h i s t o p i c i s g i v e n i n Appendix A, w h i c h c o n t a i n s a b r i e f i n t r o d u c t i o n t o knowledge r e g a r d i n g t h e i n f l u e n c e o f g l o b a l c l i m a t e changes on w a t e r r e s o u r c e s . The r a p p o r t e u r s exp r e s s t h e i r a p p r e c i a t i o n t o D r . ' s Budyko and V i n n i k o v € o r p r e p a r i n g t h i s appendix. 2-1 2. SUMMARY AND RECOMMENDATIONS B o t h man's a c t i v i t y and c l i m a t e can have a v e r y s i g n i f i c a n t e f f e c t on t h e hyd r o i o g i c a l c y c l e . These e f f e c t s a r e i n c r e a s i n g g r e a t l y as a consequence o f t h e r a p i d i n c r e a s e i n p o p u l a t i o n , a g r i c u l t u r a l p r o d u c t i o n , and i n d u s t r i a l i z a t i o n . I n connection w i t h t h e ongoing research a c t i v i t i e s on t h e i n f l u e n c e o f g l o b a l c l i m a t e changes on w a t e r r e s o u r c e s , l o n g h i s t o r i c a l t i m e s e r i e s can b e a n a l y s e d and i n f e r e n c e s can be made r e g a r d i n g c l i m a t e and i t s e f f e c t s on t h e h y d r o l o g i c a l regime. F o r t h i s purpose i t i s n e c e s s a r y t o be a b l e t o d i s t i n g u i s h between t h e e f f e c t s o f man's a c t i v i t y and o f c l i m a t e and hence t o i d e n t i f y and e l i m i n a t e t h e e f f e c t s o f man's a c t i v i t y . 2.1 Methodology A methodology has been e s t a b l i s h e d f o r d i s t i n g u i s h i n g between t h e e f f e c t s o f man's a c t i v i t y and c l i m a t e on t h e h y d r o l o g i c a l c y c l e , i n p a r t i c u l a r s t r e a m f l o w and groundwater. The methodology i s based o n j o i n t a p p l i c a t i o n o f s t a t i s t i c a l t e s t methods and r e g r e s s i o n o r d e t e r m i n i s t i c h y d r o l o g i c a l models. The methodol o g y i s i l l u s t r a t e d s c h e m a t i c a l l y i n F i g . 2 . 1 . 1 and e x p l a i n e d s t e p b y s t e p i n C h a p t e r 5. A k e y element i n t h e methodology i s t h e performance o f a s t a t i s t i c a l t r e n d t e s t u s i n g c l a s s i c a l h y p o t h e s i s - t e s t i n g procedures. T y p i c a l l y , t h e n u l l hypothesis, H i s t h a t t h e r e i s no t r e n d i n t h e p o p u l a t i o n f r o m w h i c h t h e 0' d a t a were d r a w n . A s t e p t r e n d t e s t c a n be used i n case o f a sudden change. F o r t h i s case, t h e n o n - p a r a m e t r i c W i l c o x o n Rank-Sum t e s t i s recommended. A l t e r n a t i v e l y , i n t h e case o f a g r a d u a l change, a m o n o t o n i c t r e n d t e s t can be c a r r i e d o u t by use o f t h e n o n - p a r a m e t r i c Mann-Kendall t e s t . The t e s t s can be c a r r i e d o u t d i r e c t l y on t h e h y d r o l o g i c a l t i m e s e r i e s . However, t h i s approach does n o t d e a l w i t h t h e c o m p l i c a t i o n s a r i s i n g f r o m c l i mate e f f e c t s on t h e h y d r o l o g i c a l t i m e s e r i e s . T h i s n a t u r a l v a r i a b i l i t y w i l l decrease t h e power o f t h e s t a t i s t i c a l method t o d e t e c t t r e n d s , when t h e y do e x i s t , and when t r e n d s do n o t e x i s t , may r e s u l t i n f a l s e d e t e c t i o n o f t r e n d s t h a t are a r t i f a c t s o f the h i s t o r y o f climatic conditions during the period. T h e r e f o r e , t h e recommended approach i n v o l v e s j o i n t use o f models and a s t a t i s t i c a l t r e n d t e s t i n g p r o c e d u r e . The model i s used t o e x p l a i n t h e n a t u r a l f l u c t u a t i o n s i n t h e h y d r o l o g i c a l v a r i a b l e caused by t h e c l i m a t i c c o n d i t i o n s , and t h e s t a t i s t i c a l t r e n d t e s t i s a p p l i e d t o t h e r e m a i n i n g u n e x p l a i n e d v a r i a b i l i t y . Three d i f f e r e n t model t y p e s may be used f o r t h i s purpose, namely a s t a t i s t i c a l r e g r e s s i o n model, a lumped c o n c e p t u a l h y d r o l o g i c a l model, o r a d i s t r i b u t e d p h y s i c a l l y based h y d r o l o g i c a l model. I f a h y d r o l o g i c a l model i s a p p l i e d i t m u s t be a d e q u a t e l y v a l i d a t e d . The t r a d i t i o n a l l y a p p l i e d s p l i t - s a m p l e t e s t i s n o t s u f f i c i e n t f o r t h i s purpose. A ' h i e r a r c h i c a l scheme € o r s y s t e m a t i c t e s t i n g o f h y d r o l o g i c a l s i m u l a t i o n m o d e l s ' proposed b y Klemes (1985) i s recommended. Determination o f s t e p o r monotonic trend analysis STEP1 I Data a v a i l a b l e b o t h b e f o r e and a f t e r disturbance data? STEP 2 1 'r' STEP3 i : STEP4 STEP5 Fig. 2.1.1 S e l e c t i o n of model t y p e N o model Distributed Distributed physically based model c S t a t i s t i c a l trend t e s t step trend - monotonic t r e n d - - step trend monotonic t r e n d - effects o f climate e f f e c t s o f man's a c t i v i t y q u a l i t a t i v e consistency q u a n t i t a t i v e consistency S c h e m a t i z a t i o n o f t h e methodology. I n t h e case o f a s t e p t r e n d t e s t two p e r i o d s a r e s e l e c t e d f o r t h e a n a l y ses, namely a p e r i o d b e f o r e t h e e v e n t c a u s i n g t h e p o s s i b l e t r e n d o c c u r r e d ( r e f e r e n c e p e r i o d ) and a p e r i o d a f t e r t h i s e v e n t ( t e s t p e r i o d ) . The two samples a r e t h e n t e s t e d as t o whether o r n o t t h e y can be assumed t o b e l o n g t o t h e same p o p u l a t i o n , i . e . t h a t no s i g n i f i c a n t change h a s o c c u r r e d . When a model i s used, i t i s c a l i b r a t e d and v a l i d a t e d on d a t a f r o m t h e t e s t p e r i o d and t h e s t a t i s t i c a l t e s t i s t h e n c a r r i e d o u t on t h e r e s i d u a l s ( o b s e r v e d v a l u e s minus simul.ated v a l u e s ) f r o m t h e model a p p l i e d t o b o t h t h e t e s t and r e f e r e n c e periods. I n t h e case o f a m o n o t o n i c t r e n d t e s t , o n l y one p e r i o d i s s e l e c t e d f o r t h e a n a l y s e s , and i t i s t h e n t e s t e d as t o w h e t h e r o r n o t a s t a t i s t i c a l l y s i g n i f i c a n t t r e n d h a s o c c u r r e d . When a model i s used, t h e c a l i b r a t i o n and v a l i d a t i o n m u s t n o t b e c a r r i e d o u t on t h e p e r i o d s e l e c t e d f o r t h e s t a t i s t i c a l t e s t . Hence c a l i b r a t i - o n an?. v a l i d a t i o n have t o be c a r r i e d o u t o n a n o t h e r p e r i o d o r a l t e r n a t i v e l y u s i n g d a t a f r o m o t h e r b a s i n s and o b s e r v i n g t h e recommended v a l i clation procedures. 2-3 A f t e r t h e s t a t i s t i c a l t r e n d t e s t f u r t h e r h y d r o l o g i c a l a n a l y s i s may i n some cases be c a r r i e d o u t . The e x t e n t o f p o s s i b l e h y d r o l o g i c a l a n a l y s i s depends upon t h e s e l e c t e d m o d e l l i n g approach. I n t h e cases o f no model and r e g r e s s i o n model no f u r t h e r a n a l y s i s i s p o s s i b l e . I n t h e case o f a lumped conc e p t u a l model i t may be p o s s i b l e t o e x p l a i n t h e d e t e c t e d changes q u a l i t a t i v e l y w i t h i n t h e framework o f t h e known human a c t i v i t i e s . I n t h e case o f a d i s t r i b u t e d p h y s i c a l l y based model t h e e f f e c t s o f c l i m a t e and man's a c t i v i t y c a n be e s t i m a t e d s e p a r a t e l y and t h e q u a n t i t a t i v e c o n s i s t e n c y o f t h e t e s t r e s u l t s may be checked i n some cases, b y u t i l i z i n g t h e model t o p r e d i c t t h e e f f e c t s o f human a c t i v i t y and comparing t h i s w i t h t h e r e c o r d e d d a t a . As an i n t e g r a t e d p a r t o f such f u r t h e r a n a l y s i s , s t a t i s t i c a l t r e n d t e s t s may i n some cases b e c a r r i e d o u t . A s p e c i a l case a r i s e s when a s t e p t r e n d t e s t h a s been s e l e c t e d but d a t a a r e o n l y a v a i l a b l e f o r t h e t e s t p e r i o d . I n t h i s case, a s t e p t r e n d t e s t i s s t r i c t l y n o t v a l i d . However, i n some cases, i t i s p o s s i b l e t o e s t i m a t e t h e e f f e c t s o f c l i m a t e and man's a c t i v i t y and t o a n a l y z e whether a s i g n i f i c a n t t r e n d (caused by man's a c t i v i t y ) between t h e r e f e r e n c e and t h e t e s t p e r i o d s would have been d e t e c t e d , i f d a t a h a d e x i s t e d a l s o f o r t h e r e f e r e n c e p e r i o d . The methodology i s i l l u s t r a t e d by t w o case s t u d i e s . 2.2 State o f the A r t O n l y v e r y few s t u d i e s f o c u s s i n g e x p l i c i t l y o n t h e d i s t i n g u i s h i n g between man's i n f l u e n c e and c l i m a t e e f f e c t s have been r e p o r t e d . However, i n a g r e a t number o f a n a l y s e s man-induced changes as w e l l as c l i m a t e v a r i a b i l i t y have been i n c l u d e d , Hence, a c o n s i d e r a b l e e x p e r i e n c e e x i s t s o n t h e s u b j e c t . As t h e methodology i s new and appears as an i n t e g r a t i o n o f s t a t i s t i c a l methods and h y d r o l o g i c a l m o d e l l i n g , w h i c h t r a d i t i o n a l l y a r e a p p l i e d s e p a r a t e l y , n o s t u d i e s , t o t h e a u t h o r s ' knowledge, e x i s t , w h i c h f o l l o w s t r i c t l y t h e e s t a b l i s h e d methodology. However, t h e d i f f e r e n t elements i n t h e methodology a r e g e n e r a l l y s c i e n t i f i c a l l y w e l l p r o v e n and w i d e s p r e a d f o r p r a c t i c a l a p p l i c a t i o n s . The o n l y except i o n i s t h a t v a l i d a t i o n o f h y d r o l o g i c a l models a r e n o t always c a r r i e d o u t o n a s c i e n t i f i c a l l y sound b a s i s . T h i s i s becoming i n c r e a s i n g l y i m p o r t a n t e s p e c i a l l y w i t h r e g a r d t o t h e advanced d i s t r i b u t e d p h y s i c a l l y based models, w h i c h a r e o f t e n claimed t o be able t o p r e d i c t almost anything. I n t e r n a t i o n a l l y accepted p r o c e d u r e s f o r model v a l i d a t i o n a r e r e q u i r e d . 2.3 Recommendations (a) The methodology e s t a b l i s h e d i n t h i s r e p o r t h a s been t e s t e d o n t w o case s t u d i e s by u s i n g e x i s t i n g r e s u l t s from o t h e r p r e v i o u s s t u d i e s a v a i l a b l e t o t h e a u t h o r s . However, t h e s e p r e v i o u s s t u d i e s d i d n o t c o m p l e t e l y a l l o w f o r a s t r i c t a p p l i c a t i o n o f t h e methodology, and an e x t e n s i o n o f t h e s e s t u d i e s was o u t s i d e t h e scope o f t h e p r e s e n t p r o j e c t . T h e r e f o r e , i t i s recommended t h a t t h e methodology be f u r t h e r a p p l i e d and d e v e l o p e d i n t e r n a t i o n a l l y d u r i n g t h e coming y e a r s . Research p r o j e c t s s h o u l d b e e s t a b l i s h e d w i t h t h i s purpose i n c o n n e c t i o n w i t h comprehensive case s t u d i e s where t h e e f f e c t s o f man's a c t i v i t y and c l i m a t e a r e n o t g e n e r a l l y a g r e e d upon beforehand. 2-4 (b) The p r e s e n t methodology i s l i m i t e d i n scope t o d i s t i n g u i s h between t h e e f f e c t s o f c l i m a t e and t h o s e o f changes i n catchment c h a r a c t e r i s t i c s . Thus no d i s t i n g u i s h m e n t i s made between man-induced c1imat.e changes and n a t u r a l l y caused c l i m a t e changes. I t i s recommended t h a t t h e methodology be extended s o t h a t t h e d i s t i n g u i s h i n g , c a l l e d f o r i n t h e terms o f r e f e r e n c e , between t h e e f f e c t s o f man's a c t i v i t y and " c l i m a t e v a r i a b i l i t y " a l s o i n c l u d e t h e e f f e c t o f man's a c t i v i t y t h r o u g h c l i m a t e changes and i n t e r p r e t t h e t e r m " c l i m a t e v a r i a b i l i t y " as t h e n a t u r a l c l i m a t e . (c) The d i s t r i b u t e d , p h y s i c a l l y based models s h o u l d be t e s t e d i n t e r n a t i o n a l l y on t h e b a s i s o f comprehensive v a l i d a t i o n procedures. Thus, an intercompar i s o n o f s e v e r a l o f t h e s e models on t h e i r a b i l i t y t o p r e d i c t r u n o f f f r o m unqauged catchments, t o p r e d i c t t h e e f f e c t s o f changed c l i m a t i c c o n d i t i o n s and t o p r e d i c t t h e e f f e c t s o f v a r i o u s k i n d s o f man's a c t i v i t y ( e . g . l a n d u s e change and groundwater development) s h o u l d be c a r r i e d o u t under t h e management o f an i n t e r n a t i o n a l o r g a n i z a t i o n . (d) F u r t h e r i n s i g h t on t h e e f f e c t s o f catchment changes on t h e h y d r o l o g i c a l c y c l e v e r s u s t h e e f f e c t s o f c l i m a t e may be g a i n e d by a n a l y z i n g t h e r e s u l t s o f t r e n d a n a l y s e s a p p l i e d t o s e v e r a l catchments w i t h i n a p a r t i c u l a r r e g i o n . I t i s recommended t h a t t h i s b e done f o r s e l e c t e d r e g i o n s . F o r example, i n many cases, one may e x p e c t t h a t t r e n d s due t o c l i m a t e e f f e c t s would b e d i s p l a y e d more c o n s i s t e n t l y o v e r a r e g i o n t h a n t h o s e due t o catchment changes. 3-1 3. HYDROLOGICAL TOOLS 3.1 Introduction I n t h i s c h a p t e r an i n t r o d u c t i o n i s g i v e n t o t h e h y d r o l o g i c a l t o o l s w h i c h can be a p p l i e d t o assess t h e i m p a c t o f c l i m a t e and t h e i m p a c t o f man's a c t i v i t y o n t h e h y d r o l o g i c a l c y c l e , i n p a r t i c u l a r s t r e a m f l o w and groundwater. I t i s n o t i n t e n d e d t o g i v e v e r y d e t a i l e d d e s c r i p t i o n s of t h e v a r i o u s t o o l s o r methods but t o g i v e more fundamental d e s c r i p t i o n s t o g e t h e r w i t h a d i s c u s s i o n o f t h e a p p l i c a b i l i t y and l i m i t a t i o n s o f t h e d i f f e r e n t methods p r e s e n t l y a v a i l a b l e . F o r more d e t a i l e d d e s c r i p t i o n , r e f e r e n c e s a r e g i v e n t o t h e l i t e r a t u r e . The a v a i l a b l e h y d r o l o g i c a l methods a p p l i c a b l e f o r t h e p r e s e n t purpose c a n b a s i c a l l y b e c l a s s i f i e d i n t w o groups, namely t h e d e t e r m i n i s t i c methods and t h e s t a t i s t i c a l methods. 3.2 D e t e r m i n i s t i c Models D e t e r m i n i s t i c methods i n h y d r o l o g y i n p r a c t i c e r e f e r t o m a t h e m a t i c a l d e t e r m i n i s t i c models, o f t e n s i m p l y denoted as h y d r o l o g i c a l models. I n p r i n c i p l e , a h y d r o l o g i c a l model i s a s i m p l i f i e d q u a n t i t a t i v e d e s c r i p t i o n o f ( p a r t s o f ) t h e h y d r o l o g i c a l c y c l e . A h y d r o l o g i c a l model may b e a v e r y s i m p l e f o r m u l a , o r i t may be a v e r y comprehensive and c o m p l i c a t e d computerbased m a t h e m a t i c a l model. The fundamental b a s i s f o r t h e d e t e r m i n i s t i c d e s c r i p t i o n o f t h e h y d r o l o g i c a l p r o c e s s e s i s a c o n t i n u i t y e q u a t i o n ( c o n s e r v a t i o n o f mass) and a f l o w equat i o n ( c o n s e r v a t i o n of momentum). These e q u a t i o n s t a k e d i f f e r e n t forms € o r t h e d i f f e r e n t processes. The c o n t i n u i t y e q u a t i o n i s o f t e n f o r m u l a t e d as a w a t e r balance equation: P = E + Q + A + AS where = precipitation = evaporation = runoff = w a t e r a b s t r a c t i o n f r o m t h e catchment minus a d d i t i o n a l w a t e r i n f l o w t o t h e catchment due t o man's a c t i v i t y AS = w a t e r s t o r a g e a t t h e end minus s t o r a g e a t t h e b e g i n n i n g o f t h e time step P E Q A The w a t e r balance e q u a t i o n i s v a l i d f o r catchments u n d e r t h e assumption t h a t t h e t o p o g r a p h i c a l and groundwater d i v i d e s c o i n c i d e . 3-2 The input P-E t o t h e catchment e q u a l s t h e o u t p u t Q+A p l u s t h e i n c r e a s e o f s t o r a g e AS. T h i s A S , w h i c h expresses t h e non-steady c h a r a c t e r o f t h e f l o w p r o cess, can sometimes be n e g l e c t e d w h e n t h e w a t e r balance e q u a t i o n i s a p p l i e d t o long time i n t e r v a l s . T h e w a t e r b a l a n c e method has been used e x t e n s i v e l y d u r i n g t h e p a s t decades f o r v a r i o u s purposes i n c l u d i n g some a p p l i c a t i o n s f o r s t u d y i n g t h e i m p a c t o f man's a c t i v i t y on t h e h y d r o l o g i c a l c y c l e . As t h e method i s v e r y easy t o use and o n l y r e q u i r e s few d a t a , i t can be used f o r an i n i t i a l s c r e e n i n g o f t h e data. I n a d d i t i o n t o t h e w a t e r b a l a n c e methods, t h e d e t e r m i n i s t i c models o f p a r t i c u l a r i n t e r e s t a r e those which are a b l e t o simulate ( p a r t o f ) t h e l a n d phase o f t h e h y d r o l o g i c a l c y c l e o v e r a l o n g p e r i o d o f t i m e ( s e v e r a l y e a r s ) . I n t h e s e models, t h e catchment c h a r a c t e r i s t i c s i n c l u d i n g t h e man-induced changes o f l a n d use and w a t e r development a r e r e p r e s e n t e d somehow i n t h e model p a r a m e t e r s , w h i l e t h e c l i m a t i c v a r i a b l e s a r e t h e main input d a t a (e.g. meteor o l o g i c a l t i m e s e r i e s ) . I n t h i s way, a change i n t h e catchment c h a r a c t e r i s t i c s and a change o r v a r i a b i l i t y i n t h e c l i m a t e a r e r e p r e s e n t e d i n s e p a r a t e ways i n t h e s i m u l a t i o n o f t h e h y d r o l o g i c a l c y c l e . As d i s c u s s e d b e l o w , t h i s f a c t i s v e r y i m p o r t a n t f o r a p p l i c a t i o n o f t h e h y d r o l o g i c a l models f o r t h e p r e s e n t purpose. D e t e r m i n i s t i c models can be c l a s s i f i e d a c c o r d i n g t o whether t h e model g i v e s a lumped o r a d i s t r i b u t e d d e s c r i p t i o n o f t h e c o n s i d e r e d area, and whether t h e d e s c r i p t i o n o f t h e h y d r o l o g i c a l processes i s e m p i r i c a l , concept u a l , o r more p h y s i c a l l y based. A s most c o n c e p t u a l models a r e a l s o lumped and as most p h y s i c a l l y based models a r e a l s o d i s t r i b u t e d , t h e f o l l o w i n g t h r e e main groups o f d e t e r m i n i s t i c models emerge: o o 0 E m p i r i c a l models ( b l a c k b o x ) Lumped, c o n c e p t u a l models ( g r e y b o x ) D i s t r i b u t e d , p h y s i c a l l y based models ( w h i t e box) B l a c k b o x models a r e e m p i r i c a l , i n v o l v i n g a m a t h e m a t i c a l e q u a t i o n t h a t has been assessed, n o t f r o m t h e p h y s i c a l p r o c e s s e s i n t h e catchment, but from anal y s e s of c o n c u r r e n t input and o u t p u t t i m e s e r i e s . P r o b a b l y , t h e h e s t known b l a c k box models i n h y d r o l o g y a r e t h e u n i t hyd r o g r a p h model and models a p p l y i n g t h e u n i t h y d r o g r a p h p r i n c i p l e s , c f . Sherman ( 1 9 3 2 ) and Nash ( 1 9 5 9 ) . The b l a c k box models have been d e v e l o p e d and e x t e n s i v e l y a p p l i e d b e f o r e t h e computer t e c h n o l o g y made i t p o s s i b l e t o use more p h y s i c a l l y c o r r e c t (and t h u s more complex) models. Today, b l a c k box p r i n c i p l e s a r e o f t e n u s e d i n some components o f a l a r g e r model, e.g. t h e u n i t h y d r o g r a p h i s o f t e n used f o r strearnf 1.0w r o u t i r ~ qi n c o n c e p t u a l r a i n f a l l - r u n o f f models. The s t a t i s t i c a l r e g r e s s i o n models w h i c h may b e u t i l i z e d as d e t e r m i n i s t i c t r a n s f e r f u n c t i o n models can a l s o h e c a t e g o r i z e d as e m p i r i c a l models, c f . Sect i o n 3.3. 3-3 Lumped, c o n c e p t u a l models o p e r a t e w i t h d i f f e r e n t and m u t u a l l y i n t e r r e l a t e d s t o r a g e s r e p r e s e n t i n g p h y s i c a l elements i n t h e catchment. The mode o f operat i o n may b e c h a r a c t e r i z e d as a bookkeeping system c o n t i n u o u s l y a c c o u n t i n g € o r the moisture contents i n t h e storages. w: cl 1-1 Meteoroloqical Input Input-Output Storage /7P r o c e s s Evapotrans piration 7"" - - - - --- - I n t e r c e p t i o n Storage Overland F l o w Infiltration I I I upper Zone Storage - 1 I Channel Simulated Streamf l o w Fig. 3.2.1 S t r u c t u r e o f t h e S t a n f o r d Watershed Model, C r a w f o r d and L i n s l e y ( 1 9 6 6 ) . simplified after Due t o t h e lumped d e s c r i p t i o n , where a l l p a r a m e t e r s and v a r i a b l e s r e p r e s e n t average v a l u e s o v e r t h e e n t i r e catchment, t h e d e s c r i p t i o n o f t h e h y d r o l o g i c a l processes cannot be based d i r e c t l y on t h e e q u a t i o n s v a l i d f o r i n d i v i d u a l s o i l columns. Hence, t h e e q u a t i o n s a r e s e m i - e m p i r i c a l , but w i t h a p h y s i c a l b a s i s . T h e r e f o r e , t h e model p a r a m e t e r s cannot u s u a l l y b e assessed f r o m f i e l d data, but have t o b e o b t a i n e d t h r o u g h c a l i b r a t i o n . The S t a n f o r d Model ( C r a w f o r d and L i n s l e y (1966) , t h e s t r u c t u r e o f w h i c h i s s c h e m a t i c a l l y shown i n F i g . 3 . 2 . 1 , i s c e r t a i n l y t h e b e s t known w a t e r s h e d model o f t h e lumped, c o n c e p t u a l t y p e . 3-4 D u r i n g t h e decade f o l . l o w i n g t h e development o f t h e S t a n f o r d Model s e v e r a l o t h e r models o f t h e same t y p e w e r e developed, c f . F l e m i n g ( 1 9 7 5 ) a n d Kuchment (1980) f o r r e v i e w s . B e i n g g e n e r a l purpose r a i n f a l l - r u n o f f models, many o f t h e s e models a r e t o d a y a p p l i e d on an o p e r a t i o n a l b a s i s f o r a v a r i e t y o f purposes. I t s h o u l d b e emphasized t h a t n o t a l l models s t r i c t l y f i t i n t o t h e above t h r e e groups o f models. Many models f a l l i n between a c o n c e p t u a l and a phys i c a l l y based approach. Some o f t h e c o n c e p t u a l models a r e s e m i - d i s t r i b u t e d i n t h e sense t h a t subareas w i t h t h e same h y d r o l o g i c a l c h a r a c t e r i s t i c s (e.g. p r e c i p i t a t i o n , t e m p e r a t u r e , s o i l , v e g e t a t i o n , and s l o p e ) a r e grouped t o g e t h e r t o form h y d r o l o g i c a l response u n i t s . The G G I - 8 5 model (Vinogradov, 1 9 8 5 ; and V u g l i n s k y , 1987) i s an example o f such a model t y p e . The p r i n c i p a l mode o f o p e r a t i o n o f i l l u s t r a t e d i n F i g . 3.2.2. a distributed, p h y s i c a l l y based model i s Contrary t o t h e lumped, c o n c e p t u a l models, a d i s t r i b u t e d , p h y s i c a l l y based model does n o t c o n s i d e r t h e w a t e r f l o w s i n a catchment t o t a k e p l a c e between a f e w s t o r a g e s . I n s t e a d , t h e f l o w s o f water and energy a r e d i r e c t l y c a l c u l a t e d from t h e governing d i f f e r e n t i a l equations , f o r i n s t a n c e t h e S a i n t Venant e q u a t i o n s f o r o v e r l a n d f l o w , R i c h a r d s ’ e q u a t i o n f o r u n s a t u r a t e d zone f l o w , and B o u s s i n e s q ’ s e q u a t i o n f o r groundwater f l o w . The d i s t r i b u t e d , p h y s i c a l l y based models g i v e a d e t a i l e d and p o t e n t i a l l y more c o r r e c t d e s c r i p t i o n o f t h e h y d r o l o g i c a l processes i n t h e catchment t h a n do t h e o t h e r model t y p e s . T h e r e f o r e , t h e y have p o t e n t i a l l y more f i e l d s o f a p p l i c a t i o n as d i s c u s s e d below. O f course, due t o t h e c o m p l e x i t y o f t h e c a t c h ment i t w i l l never i n p r a c t i c e b e p o s s i b l e t o o b t a i n s u f f i c i e n t d a t a t o g i v e a ful-ly correct simulation i n a l l d e t a i l s . A f i r s t a t t e m p t t o o u t l i n e t h e p o t e n t i a l s and some o f t h e elements i n a d i s t r i b u t e d , p h y s i c a l l y based model was made b y Freeze and H a r l a n ( 1 9 6 9 ) . Today, s e v e r a l p h y s i c a l l y based models t r e a t i n g o n l y s i n g l e h y d r o l o g i c a l p r o cesses have been d e v e l o p e d and e x t e n s i v e l y a p p l i e d . Almost a l l groundwater models € o r i n s t a n c e a r e o f t h e d i s t r i b u t e d , p h y s i c a l l y based t y p e . Examples o f models c o v e r i n g t h e e n t i r e l a n d phase o f t h e h y d r o l o g i c a l c y c l e a r e r e p o r t e d b y Weeks e t a l . ( 1 9 7 4 ) , Wardlaw ( 1 9 7 8 ) , R e f s g a a r d and Hansen ( 1 9 8 2 ) . These mod e l s a r e g e n e r a l l y s p e c i f i c purpose models w i t h a lumped, c o n c e p t u a l d e s c r i p t i o n o f those processes t h a t a r e l e s s i m p o r t a n t f o r t h e i r p a r t i c u l a r applicat i o n . The SHE model ( A b b o t t e t a l . 1986; Storm, 1 9 8 6 ) , t h e IHDM model ( M o r r i s , 1980, Rogers e t a l . 1985) and t h e model d e s c r i b e d by Kuchment e t a l . (1983) a r e some o f t h e few more g e n e r a l purpose m o d e l l i n g systems w h i c h a r e a p p l i c a b l e under a wide v a r i e t y o f h y d r o l o g i c a l and h y d r o g e o l o g i c a l c o n d i t i o n s . 3- 5 EVAPOTRANSPIRATION MODEL I 1 1 I Evaporation from Transpiration Evaporation Irom Soil Surlaces Sublimation I r o m Snow P a c k Rain and Snow Intercepted f I lrom ground t I( Rain. Snow, Vapour n KEY. Fig. 3.2.2 Schematic diagram o f a w a t e r s h e d and a q u a s i t h r e e d i m e n s i o n a l d i s t r i b u t e d p h y s i c a l l y based model o f t h e watershed ( t h e SHE model, c f . S t o r m ( 1 9 8 6 ) ) . 3.2.4 S e l e c t i o n o f a p p r o p r i a t e model t y p e ........................................... l a r g e number o f h y d r o l o g i c a l models e x i s t s o f w h i c h many a r e f u n c t i o n i n g f u n d a m e n t a l l y i n t h e same way. F o r i n s t a n c e , a t l e a s t 2 0 d i f f e r e n t r a i n f a l l r u n o f f models o f t h e lumped, c o n c e p t u a l t y p e e x i s t . A l t h o u g h t h e s e models a t a f i r s t g l a n c e may l o o k v e r y d i f f e r e n t , f u n d a m e n t a l l y t h e y have t h e same s t r u c t u r e and a r e b a s i c a l l y f u n c t i o n i n g a l o n g t h e same p r i n c i p l e s . A Thus, t h e q u e s t i o n " w h i c h model i s most a p p r o p r i a t e f o r a p a r t i c u l a r h y d r o l o g i c a l problem?" c a n n o t be answered s t r i c t l y b y g i v i n g t h e name o f one model. I n s t e a d , a g e n e r a l d i s c u s s i o n w i l l b e g i v e n on t h e a p p r o p r i a t e n e s s o f t h e above m e n t i o n e d model t y p e s f o r t h e d i f f e r e n t k i n d s o f h y d r o l o g i c a l p r o blems. The e m p i r i c a l models a r e g e n e r a l l y o f i n t e r e s t as s i n g l e e v e n t models o r as subcomponents o f more c o m p l i c a t e d models. The e m p i r i c a l models d i r e c t l y a p p l i c a b l e f o r t h e p r e s e n t purpose a r e t h e s t a t i s t i c a l r e g r e s s i o n models, (see Section 3.3). The lumped, c o n c e p t u a l models a r e e s p e c i a l l y w e l l s u i t e d f o r s i m u l a t i o n o f t h e r a i n f a l l - r u n o f f p r o c e s s when h y d r o l o g i c a l t i m e s e r i e s e x i s t t h a t a r e s u f f i c i e n t l y l o n g f o r a model c a l i b r a t i o n o r d a t a e x i s t f o r r e g i o n a l i z a t i o n o f model p a r a m e t e r s . Thus, t y p i c a l f i e l d s o f a p p l i c a t i o n a r e : 3-6 o E x t e n s i o n o f s h o r t s t r e a m f l o w r e c o r d s based o n l o n g r a i n f a l l r e c o r d s . o Real-time r a i n f a l l - r u n o f f s i m u l a t i o n e.g. f o r flood forecasting. The lumped, c o n c e p t u a l models a r e o f i n t e r e s t i n t h e p r e s e n t c o n t e x t f o r t h e i r a b i l i t y t o s i m u l a t e t h e e f f e c t s o f c l i m a t e on s t r e a m f l o w . The d i s t r i b u t e d , p h y s i c a l l y based models can i n p r i n c i p l e b e a p p l i e d t o a l m o s t any k i n d o f h y d r o l o g i c a l p r o b l e m . Some examples o f t y p i c a l a p p l i c a t i o n s are : o P r e d i c t i o n o f t h e e f f e c t s o f catchment changes due t o human i n t e r f e r e n c e i n t h e h y d r o l o g i c a l c y c l e , such as changes i n l a n d use, u r b a n i z a t i o n , groundwater development, o r i r r i g a t i o n . S i n c e parameters o f t h e model t e n d t o b e more p h y s i c a l l y based, t h e change i n parameter v a l u e s c o r r e s p o n d i n g t o t h e catchment changes can sometimes b e e s t i m a t e d d i r e c t l y . 0 P r e d i c t i o n of r u n o f f f r o m ungauged catchments and f r o m catchments w i t h r e l a t i v e l y s h o r t r e c o r d s . A s opposed t o t h e lumped, c o n c e p t u a l models, w h i c h r e q u i r e l o n g h i s t o r i c a l t i m e s e r i e s o f r a i n f a l l , r u n o f f , and evap o r a t i o n d a t a f o r t h e p a r a m e t e r assessment, t h e p a r a m e t e r s o f t h e d i s t r i b u t e d , p h y s i c a l l y based models may be assessed d i r e c t l y f r o m i n t e n s i v e , short-term f i e l d i n v e s t i g a t i o n s . 0 K a t e r q u a l i t y and s o i l e r o s i o n m o d e l l i n g f o r w h i c h a more d e t a i l e d and p h y s i c a i l y c o r r e c t s i m u l a t i o n o f water flows i s important. The main problems u s u a l l y m e n t i o n e d i n c o n n e c t i o n w i t h t h e a p p l i c a t i o n o f d i s t r i b u t e d , p h y s i c a l l y based models a r e : a) L a r g e reyui.rements o f d a t a , I.ogy, s o i l , and v e g e t a t i o n . e s p e c i a l l y t h o s e d e s c r i b i n g m e t e o r o l o g y , geo- b) I n s u f f i c i e n t knowledge o f t h e p h y s i c s o f t h e h y d r o l o g i c a l p r o c e s s e s w h i c h a r e modelled i n q r e a t d e t a i l . c) S c a l e problems when e x t e n d i n g t h e p r o c e s s d e s c r i p t i o n f r o m a s i n g l e p o i n t t o an e n t i r e catchment. d) L a r g e computer r e q u i r e m e n t s . The d i s t r i b u t e d , p h y s i c a l l y based models a r e a b l e d i r e c t l y t o u t i l i z e t h e d i s t r i b u t e d i n f o r m a t i o n u s u a l l y a v a i l a b l e i n t o p o g r a p h i c a l , g e o l o g i c a l , and s o i l maps and o t h e r r e m o t e l y sensed i n f o r m a t i o n , i n c l u d i n g c o n t i n u o u s u p d a t i n g o f catchment. c o n d i t i o n s (e.g. snow c o v e r ) . Thus, t h e d a t a r e q u i r e m e n t s U - s u a l l y l i s t e d f o r t h e s e models a r e huge, b u t t h i s m e r e l y r e f l e c t s t h a t t h e models can u t i l i z e a l l . o f t h e s e d a t a , i f t h e y a r e made a v a i l - a b l e . O n t h e o t h e r hand, t h e models can b e o p e r a t e d with l e s s d a t a a v a i l a b l - e , i n w h i c h case t h e p r e d i c t e d r e s u l t s w i . 1 1 I3e more u n c e r t a i n u n l e s s a c a l i b r a t i o n i s p o s s i b l e . S i m i l a r l y , w i t h r e s p e c t t o t h e argument t h a t t h e r e s t i l l i s an i n s u f f i c i e n t knowledge o f t h e h y d r o l o g i c a l p r o c e s s , proponents o f p h y s i c a l l y based models m t e t h a t a c o m p a r a t i v e l y l a r g e r p a r t o f t h e e x i s t i n g knowledge can h e b u i l t i n t o t h e s e m o d e l s , t h a n i n t o t-he lumped, c o n c e p t u a l models. 3-7 The s c a l e problems a r e o f a m e t h o d o l o g i c a l n a t u r e r e s u l t i n g f r o m t h e spat i a l v a r i a b i l i t y o f t h e p h y s i c a l p a r a m e t e r s , as w e l l as t h e h y d r o m e t e o r o l o g i c a l input. D e t a i l e d f i e l d measurements i n d i c a t e t h a t f o r i n s t a n c e t h e h y d r a u l i c c o n d u c t i v i t y may v a r y s e v e r a l o r d e r s o f magnitude w i t h i n a s m a l l f i e l d p l o t w h i c h i s t r a d i t i o n a l l y c h a r a c t e r i z e d as "homogeneous" and b e l o n g i n g t o t h e same s o i l t y p e ( N i e l s e n e t a 1 1 9 7 3 ) . I t c a n t h e r e f o r e b e e x p e c t e d t h a t t h e f i e l d d a t a depend on t h e measurement s c a l e . I n p a r t i c u l a r , t h e v a r i a n c e o f l a r g e - s c a l e measurements w i l l b e l e s s t h a n t h a t o f s m a l l c o r e samples. Thus, t h e r e i s some i n t e r d e p e n d e n c e between t h e measurement s c a l e , t h e model s t r u c t u r e and t h e a p p r o p r i a t e p a r a m e t e r v a l u e a t t h e model g r i d s c a l e . The s c a l e problems a r e known t o be i m p o r t a n t i n s o l u t e t r a n s p o r t and w a t e r q u a l i t y m o d e l l i n g , b u t a r e a l s o i m p o r t a n t i n some cases o f w a t e r f l o w m o d e l l i n g . Many research a c t i v i t i e s are c u r r e n t l y b e i n g c a r r i e d out i n t e r n a t i o n a l l y on t h i s s u b j e c t (e.g. Freeze, 1980; Jensen and R e f s g a a r d , 1 9 8 8 ) . F i n a l l y , w i t h r e s p e c t t o p o i n t d) above, t h e computer r e q u i r e m e n t s no l o n g e r p r o h i b i t p r a c t i c a l a p p l i c a t i o n o f l a r g e complex models l i k e t h e d i s t r i b u t e d , p h y s i c a l l y based models. A n i n c r e a s i n g number o f t h e s e models c a n now be o p e r a t e d even on m i c r o - o r p e r s o n a l computers. The d i s t r i b u t e d , p h y s i c a l l y based models a r e o f i n t e r e s t i n t h e p r e s e n t c o n t e x t f o r t h e i r a b i l i t y t o s i m u l a t e t h e e f f e c t s o f c l i m a t e as w e l l as man's a c t i v i t y on b o t h groundwater and s t r e a m f l o w . H y d r o l o g i c a l s i m u l a t i o n models o f t h e t y p e s d e s c r i b e d above a r e o n l y u s e f u l , as l o n g as t h e y a r e a b l e t o p r o v i d e r e s u l t s o f s u f f i c i e n t l y good a c c u r a c y . T h e r e f o r e , t h o r o u g h and p r o p e r t e s t i n g s o f such models a r e r e q u i r e d , b e f o r e they are applied i n practice. The t e s t i n g p r o c e d u r e t r a d i t i o n a l l y used, t h e s o - c a l l e d s p l i t - s a m p l e t e s t , i s n o t always s u f f i c i e n t . T h e r e f o r e , a more comprehensive p r o c e d u r e i s r e q u i r e d . I n g e n e r a l , t h e ' h i e r a r c h i c a l scheme f o r s y s t e m a t i c t e s t i n g o f h y d r o l o g i c a l s i m u l a t i o n models' p r o p o s e d b y Klemes (1985) i s recommended. The scheme i s c a l l e d h i e r a r c h i c a l , because t h e m o d e l l i n g t a s k s a r e o r d e r e d a c c o r d i n g t o t h e i r i n c r e a s i n g c o m p l e x i t y , and t h e demands o f t h e t e s t i n c r e a s e i n t h e same d i r e c t i o n . The scheme i s b r i e f l y summarized as f o l l o w s . The scheme comprises f o u r c a t e g o r i e s o f t e s t s : (1) A s p l i t - s a m p l e t e s t i s used, when t h e r e a r e s u f f i c i e n t d a t a f o r a model c a l i b r a t i o n i n t h e a c t u a l b a s i n , and when t h e model i s n o t u s e d f o r e x t r a p o l a t i o n s t o d r y e r o r w e t t e r c l i m a t e segments. The a v a i l a b l e r e c o r d i s s p l i t i n t o two segments one o f w h i c h i s used € o r c a l i b r a t i o n and t h e other f o r validation. (2) A proxy-basin t e s t i s used, when a model i s t o b e a p p l i e d o n an ungauged b a s i n i n a r e g i o n , where gaugings a r e a v a i l a b l e f r o m o t h e r b a s i n s . Two such gauged b a s i n s a r e s e l e c t e d and t h e model i s c a l i b r a t e d on one o f t h e b a s i n s and v a l i d a t e d on t h e o t h e r and v i c e v e r s a . 3-8 (3) A d i f f e r e n t i a l s p l i t - s a m p l e t e s t i s used, when a model i s t o b e used t o s i m u l a t e v a r i . a b l e s i n a p a r t i c u l a r b a s i n under c o n d i t i o n s w h i c h a r e d i f f e r e n t f r o m t h o s e e x i s t i n g i n t h e c a l i b r a t i o n p e r i o d . T h i s case i s r e l e v a n t b o t h f o r changes i n catchment c h a r a c t e r i s t i c s due t o man's a c t i v i t i e s and f o r changes i n c l i m a t e c o n d i t i o n s . The t e s t p r o c e d u r e may i n t h i s case have s e v e r a l v a r i a n t s depending on t h e s p e c i f i c n a t u r e o f t h e changes. I f t e s t d a t a a r e n o t a v a i l a b l e f o r t h e b a s i n , t e s t s have t o be c a r r i e d o u t o n s u b s t i t u t e b a s i n s , where s i m i l a r changes have t a k e n p l a c e . (4) A p r o x y - b a s i n d i f f e r e n t i a l s p l i t - s a m p l e t e s t i s used when a model i s supposed t o be a p p l i c a b l e t o ungauged catchments under c o n d i t i o n s d i f f e r e n t f r o m t h o s e u n d e r w h i c h i t was p r e v i o u s l y t e s t e d . T h i s t e s t , w h i c h can b e seen as a c o m b i n a t i o n o f ( 2 ) and ( 3 ) i s v e r y comprehensive i n v o l v i n g t e s t s o n s e v e r a l s u b s t i t u t e catchments. F o r a more d e t a i l e d d e s c r i p t i o n o f Klemes ( 1 9 8 5 ) o r Klemes ( 1 9 8 6 ) . 3.3 these tests reference i s made to S t a t i s t i c a l Models The s t a t i s t i c a l methods o f p a r t i c u l a r i n t e r e s t f o r t h e p r e s e n t p u r p o s e a r e t h e s t a t i s t i c a l r e g r e s s i o n models. These models may be u t i l i z e d t o p r e d i c t t h e e f f e c t o f c l i m a t e v a r i a b i l i t y on h y d r o l o g i c a l v a r i a b l e s , e.g., by r e g r e s s i n g streamflow o r groundwater l e v e l t i m e s e r i e s on m e t e o r o l o g i c a l t i m e s e r i e s . 4-1 4 STATISTICAL METHODS 4.1 Introduction T e s t i n g f o r t r e n d s i n a h y d r o l o g i c t i m e s e r i e s may b e t r e a t e d as a c l a s s i c a l h y p o t h e s i s - t e s t i n g problem. T y p i c a l l y , t h e n u l l h y p o t h e s i s , H i s t h a t there 0' i s no t r e n d i n t h e p o p u l a t i o n f r o m w h i c h t h e d a t a were drawn. Consequently, t h e a l t e r n a t i v e h y p o t h e s i s , H , may b e e i t h e r t h a t a t r e n d e x i s t s i n t h e d a t a i n e i t h e r d i r e c t i o n (two-sided t e s t ) o r t h a t a p o s i t i v e ( o r a n e g a t i v e ) t r e n d e x i s t s i n t h e d a t a (one-sided t e s t ) . A o n e - s i d e d t e s t s h o u l d be used o n l y i f i t i s known i n advance t h a t t h e change i n t h e u n d e r l y i n g p r o c e s s w o u l d b e pos i t i v e o r n e g a t i v e . T h i s d e c i s i o n s h o u l d b e made b e f o r e l o o k i n g a t t h e d a t a . The f a c t t h a t t h e d a t a appear t o d i s p l a y e i t h e r a p o s i t i v e o r n e g a t i v e t r e n d s h o u l d e x e r t n o i n f l u e n c e on t h i s d e c i s i o n . Within t h i s framework, t h e n u l l h y p o t h e s i s w i l l have some p r e c i s e mathem a t i c a l d e f i n i t i o n and w i l l i n c o r p o r a t e c e r t a i n c r i t i c a l assumptions a b o u t t h e u n d e r l y i n g process b e i n g t e s t e d f o r trends. Therefore, i t i s i m p o r t a n t t h a t t h e d e f i n i t i o n o f H and i t s u n d e r l y i n g assumptions b e u n d e r s t o o d and r e s u l t s 0 c a r e f u l l y reported. The f o u r p o s s i b l e outcomes o f a t r e n d t e s t a r e shown i n T a b l e 4.1.1. True S i t u a t i o n No t r e n d ( HO t r u e ) Trend (Ho f a l s e ) Deci s i on Decide no t r e n d (do not r e j e c t Ho) Decide t r e n d ( r e j e c t Ho) Table 4.1.1 1-a 6 (type I 1 error) a (type I e r r o r ) 1-6 (power) P o s s i b l e outcomes o f a t r e n d t e s t . There a r e two p o s s i b i l i t i e s f o r d r a w i n g e r r o n e o u s c o n c l u s i o n s . F i r s t , i t i s p o s s i b l e t o d e c i d e t h e r e i s a t r e n d when no t r e n d e x i s t s ( t y p e I e r r o r ) . The p r o b a b i l i t y of t h i s o c c u r r i n g i s a , g i v e n t h a t t h e assumptions b e h i n d t h e t r e n d t e s t a r e c o r r e c t . Second, i t i s ' p o s s i b l e t o d e c i d e t h e r e i s n o t r e n d when i n f a c t a t r e n d e x i s t s ( t y p e I 1 e r r o r ) . The p r o b a b i l i t y o f t h i s o c c u r r i n g i s B , g i v e n t h a t t h e assumptions b e h i n d t h e t r e n d t e s t a r e c o r r e c t . The p r o b a b i l i t y of d e t e c t i n g a t r e n d when i n f a c t a t r e n d e x i s t s i s e q u a l t o 1 - 6 and i s r e f e r r e d t o as t h e power o f a t r e n d t e s t . 4-2 T y p i c a l l y , one o f two approaches a r e used i n r e p o r t i n g t h e r e s u l t s o f a t r e n d t e s t . One approach i s t o p r e - s e l e c t ( e . g . , Q = 0 . 0 5 ) based o n t h e r i s k o f t y p e Ie r r o r t h a t one i s w i l l i n g t o b e a r . T h i s d e f i n e s a c r i t i c a l r e g i o n ( a r a n g e o f v a l u e s of t h e t e s t s t a t i s t i c Z f o r w h i c h one w i l l r e j e c t H ) such t h a t t h e p r o b a b i l i t y o f f a l l i n g w i t h i n the c r i t i c a l r e g i o n i s a i f H ?s t r u e 0 (see F i g u r e 4 . 1 . 1 ) . The r e s u l t s o f t h e t r e n d t e s t a r e t h e n r e p o r t e d as e i t h e r a r e j e c t i o n o r acceptance o f t h e n u l l h y p o t h e s i s a t t h e s p e c i f i e d a l p h a l e v e l o f s i g n i f i c a n c e . A n a l t e r n a t i v e method i s t o r e p o r t t h e r e s u l t s i n terms o f t h e s i z e o f t h e c r i t i c a l r e g i o n (p l e v e l ) . I n t h a t case, t h e r e a d e r can i n t e r p r e t whether t h e s i z e o f t h e c r i t i c a l r e g i o n exceeds t h a t v a l u e f o r w h i c h h e j s h e would r e j e c t H A n example o f t h e l a t t e r approach i s g i v e n i n t h e case 0' study i n S e c t i o n 7.3. PROBABILITY DENSITY A R E A U N D E R CURVE AREA F i g . 4.1.1 SHADED = 1.0 = a D i s t r i b u t i o n o f t e s t s t a t i s t i c Z and c r i t i c a l r e g i o n f o r two-sided t r e n d t e s t . There a r e a number o f d i f f e r e n t s t a t i s t i c a l t e s t s f o r t r e n d s i n a v a r i a b l e o v e r t i m e . G e n e r a l l y , t h e s e t e s t s a r e f o r e i t h e r s t e p t r e n d s o r f o r monot o n i c t r e n d s . A s t e p t r e n d ( a l s o c a l l e d a s t e p change) i s a d i s t i n c t change i n t h e " l o c a t i o n " (mean, median, e t c . ) o f t h e v a r i a b l e a t a p o i n t i n t i m e . WhereES, a s e r i e s e x h i b i t s monotonic t r e n d i f t h e r e i s a c o n t i n u i n g i n c r e a s e o r decrease i n t h e mean o r median w i t h t i m e . The two g e n e r a l t y p e s o f t e s t s a r e d e s c r i b e d below. F i r s t , t h e S t u d e n t ' s t - t e s t and i t s n o n p a r a m e t r i c e q u i v a l e n t , t h e Wilcoxon Rank-Sum t e s t , a r e des c r i b e d f o r t e s t i n g f o r s t e p t r e n d s . Second, t h e use o f r e g r e s s i o n and t h e Mann-Kendall t e s t a r e d e s c r i b e d f o r t e s t i n g f o r monotonic t r e n d s . I n each case, one can t e s t f o r a s i g n i f i c a n t t r e n d and t h e magnitude o f t h a t t r e n d can be e s t i m a t e d . F i n a l l y , some c o m p l i c a t i o n s i n t e s t i n g f o r t r e n d s a r e d i s c u s s e d . The s t a t i s t i c a l t e s t s d e s c r i b e d i n t h e r e m a i n i n g p a r t o f t h i s Chapter a r e o n l y a s u b s e t o f t h o s e avai1ahl.e. O t h e r a p p r o p r i a t e t e s t s c o u l d be used, but i t 1:; beyond t h e scope o f t h i s document t o t r e a t more t h a n a few o f t h e poss i b l e t e s t s . Some o t h e r t e c h n i q u e s a r e i n c l u d e d 111 r e p o r t s by t h e S t a t e tIydrol o g i c a l I n s t i t u t e o f t h e USSR ( 1 9 8 4 , 1 9 8 6 ) . 4- 3 4.2 S t e p Trends T e s t i n g f o r a s t e p t r e n d may be a c c o m p l i s h e d b y a two-sample comparison o f means. A s i m p l e p r o c e d u r e f o r comparing two means i s t h e S t u d e n t ' s t - t e s t . The computed s t a t i s t i c i s compared t o t a b u l a t e d ( o r computer g e n e r a t e d ) v a l u e s o f t h e t - d i s t r i b u t i o n . Tables and background t h e o r y f o r t h i s t e s t a r e i n c l u d e d i n most s t a t i s t i c s t e x t s and v i r t u a l l y a l l s t a t i s t i c a l s o f t w a r e packages a r e capable o f performing the t e s t . I f s i g n i f i c a n t differences are detected b y t h e t-test, t h e n a n e s t i m a t e o f t h e change i n means i s s i m p l y t h e mean f o r t h e f i r s t p e r i o d s u b t r a c t e d f r o m t h e mean f o r t h e second p e r i o d . The t - t e s t assumes t h e d a t a a r e i n d e p e n d e n t and come f r o m n o r m a l l y d i s t r i b u t e d p o p u l a t i o n s w i t h e q u a l v a r i a n c e s . The assumption o f e q u a l v a r i a n c e s s h o u l d be checked u s i n g an F - t e s t . I f t h e v a r i a n c e s p r o v e t o b e s i g n i f i c a n t l y d i f f e r e n t , one c a n use t h e W i l c o x o n Rank-Sum t e s t d e s c r i b e d below. A s i g n i f i c a n t l i m i t a t i o n o f t h e t - t e s t i s t h e assumption o f n o r m a l i t y . Most h y d r o l o g i c v a r i a b l e s do n o t appear t o be n o r m a l l y d i s t r i b u t e d ; i n f a c t t h e b e s t d i s t r i b u t i o n t o f i t t o t h e d a t a may be q u i t e u n c l e a r . F o r t h i s r e a son, a d i s t r i b u t i o n - f r e e t e s t such as t h e Wilcoxon Rank-Sum t e s t may be used i n s t e a d o f t h e t - t e s t . The t e s t s t a t i s t i c f o r t h i s t e s t i s based on t h e sums o f r a n k s o f t h e two samples; t h e a c t u a l d a t a v a l u e s a r e n o t used. The t h e o r y and p r o c e d u r e o f t h e t e s t a r e d e s c r i b e d i n B r a d l e y (1968). S i m p l i f i e d d i s c u s s i o n s o f t h e Wilcoxon Rank-Sum t e s t a r e p r o v i d e d i n b a s i c s t a t i s t i c s t e x t s , and t h e t e s t i s i n c l u d e d i n most s t a t i s t i c a l s o f t w a r e packages. I t i s a l s o c a l l e d t h e Mann-Whitney t e s t . The m i n i m u m r e l a t i v e e f f i c i e n c y o f t h e W i l c o x o n Rank-Sum t e s t i s 86.4% r e l a t i v e t o t h e t - t e s t when t h e assumptions o f t h e t - t e s t a r e met ( B r a d l e y , 1 9 6 8 ) . When t h e assumptions a r e n o t met, t h e n t h e power o f t h e t - t e s t can be s t r o n g l y d i m i n i s h e d i n comparison t o o t h e r t e s t s such as t h e W i l c o x o n Rank-Sum t e s t ( K e n d a l l and S t u a r t , 1 9 7 9 , p. 5 2 3 - 5 2 5 ) . I f t h e Wilcoxon Rank-Sum t e s t i n d i c a t e s t h a t a s i g n i f i c a n t d i f f e r e n c e e x i s t s between t h e two t i m e p e r i o d s , t h e n a r e a s o n a b l e e s t i m a t e o f t h e magn i t u d e o f t h i s d i f f e r e n c e can b e o b t a i n e d u s i n g t h e Hodges-Lehmann e s t i m a t o r (Hodges and Lehmann, 1963; H o l l a n d e r and Wolfe, 1973, p. 7 5 - 7 7 ) . This e s t i m a t o r i s computed as t h e median o f a l l p o s s i b l e p a i r w i s e d i f f e r e n c e s between t h e v a l u e s o f t h e v a r i a b l e a f t e r t h e presumed s t e p change and b e f o r e t h e p r e sumed s t e p change. The Hodges-Lehmann e s t i m a t o r A i s r e l a t e d t o t h e Rank-Sum t e s t i n t h a t a s h i f t o f s i z e A w o u l d make t h e d a t a appear d e v o i d o f any e v i dence o f d i f f e r e n c e between t h e b e f o r e and a f t e r t i m e s e r i e s when t e s t e d by t h e Rank-Sum t e s t . 4.3 Monotonic Trends T e s t i n g f o r monotonic t r e n d s may be done b y p e r f o r m i n g a s i m p l e l i n e a r r e g r e s sion o f the hydrological variable against time (Y. = a + b * T . + e . i = l , , n) A t - t e s t on t h e c o e f f i c i e n t b t h e n can b e use% t o t e s t wheth2r t h e t r u e slope i s s i g n i f i c a n t l y d i f f e r e n t from zero. I f a s i g n i f i c a n t l i n e a r t r e n d i s i n d i c a t e d , t h e n t h e t r u e s l o p e (change p e r u n i t t i m e ) may b e e s t i m a t e d b y t h e c o e f f i c i e n t b. . .. The a p p l i c a b i l i t y o f t h e r e g r e s s i o n model must be checked f o r adequacy; t h a t i s t h e r e s i d u a l s s h o u l d appear homoscedastic and n o r m a l . I n o r d e r t o meet these assumptions i t i s o f t e n d e s i r a b l e t o l o g t r a n s f o r m t h e Y v a r i a b l e . I n 4- 4 t h i s case, i f b i s t h e t r e n d s l o p e computed f r o m t h e l o g d a t a (assume n a t u r a l l o g s a r e used) t h e n t h e p e r c e n t a g e change i n t h e v a r i a b l e p e r t i m e s t e p i s 'b e s t i m a t e d as ( e - 1 ) * 1 0 0 . N o t e t h a t t h i s i m p l i e s t h a t t h e t r e n d i s exponent i a l r a t h e r than l i n e a r w i t h r e s p e c t t o time. N o t e t h a t a r e g r e s s i o n model c o u l d be used t o t e s t f o r s u b s t i t u t i n g f o r T a n " i n d i c a t o r v a r i a b l e " denoted I where i step trends by i I . = 0 i f i i s b e f o r e t h e p o s s i b l e s t e p change 1 = 1 i f i i s a f t e r t h e p o s s i b l e s t e p change A n a l t e r n a t i v e t e s t f o r monotonic t r e n d i s t h e Mann-Kendall t e s t (Mann, 1945; K e n d a l l , 1 9 7 5 ) . L i k e t h e Wilcoxon Rank-Sum t e s t , t h i s p r o c e d u r e does n o t r e q u i r e t h e assumption t h a t t h e d a t a a r i s e f r o m any p a r t i c u l a r d i s t r i b u t i o n . The Mann-Kendall t e s t i s d e s c r i b e d by G i l b e r t (1987) and t h e World Meteorolog i c a l O r g a n i z a t i o n p r o v i d e s a computer program f o r t h e t e s t (WMO, 1 9 8 8 ) . The WMO r e f e r s t o t h e t e s t as t h e Mann t e s t o f t r e n d . I n p e r f o r m i n g t h e Mann-Kendall t e s t t h e f i r s t s t e p i s t o l i s t t h e d a t a i n t h e o r d e r i n w h i c h t h e y were c o l l e c t e d o v e r t i m e : Y Y , Y Then d e t e r n where j>k. The t e s t mine t h e s i g n o f a l l n ( n - 1 ) / 2 p o s s i b l e d i f f e r e n c e s s t a t i s t i c , S I i s computed as t h e number o f p o s i t i v e d i f k k n c e s minus t h e numb e r o f negative differences. This i s , ly'.-+ . n n-1 s = ..., c c k=l j=k+l s g n ( Y -Yk) j where s g n ( Y -Yk) j 1 i f Y . - Y >O 3 k = 0 i f Y . - Y =O l k = -1 i f Y .-Yk<O I = I f S i s a l a r g e p o s i t i v e number, measurements t a k e n l a t e r i n t i m e t e n d t o be l a r g e r t h a n t h o s e t a k e n e a r l i e r . S i m i l a r l y , i f S i s a l a r g e n e g a t i v e numb e r , measurements t a k e n l a t e r i n t i m e t e n d t o b e s m a l l e r . P r o b a b i l i t y v a l u e s f o r t h e Mann-Kendall t e s t f o r nS10 a r e g i v e n i n K e n d a l l ( 1 9 7 5 ) . A n e x t e n s i o n o f t h i s t a b l e up t o n=40 i s g i v e n i n T a b l e A.21 i n H o l l a n d e r and Wolfe ( 1 9 7 3 ) . However, K e n d a l l ( 1 9 7 5 , p. 55) i n d i c a t e s t h a t a n o r m a l a p p r o x i m a t i o n may b e u s e d f o r n as small. as 1 0 u n l e s s t h e r e a r e many t i e d d a t a v a l u e s . The t e s t p r o c e d u r e i s t o compute S as d e s c r i b e d b e f o r e . Then compute t h e v a r i a n c e o f S by t h e f o l l o w i n g e q u a t i o n , w h i c h t a k e s i n t o account t h a t t i e s may b e p r e s e n t : - VAR(S) = 1/18 [ n(n-1) (2n+5) - q c t ( t -1) ( 2 t p=l P P P + 1 5) where q i s number o f t i e d groups and t i s number of Y ' s i n t h e p t h t i e group. F o r example, g i v e n t h e sequence c11, '12, 3, 1 2 , 1 2 , 11) , t h e n t =2 f o r t h e 1 t i e d v a l u e 11, t =3 f o r t h e t i e d v a l u e 1 2 , and q=2. 2 Finally, lows: S and V A R ( S ) a r e used t o compute t h e t e s t s t a t i s t i c Z as fol- 4 -5 Then Z i s checked a g a i n s t t h e s t a n d a r d n o r m a l d i s t r i b u t i o n t o d e t e r m i n e i f i t i s i n t h e c r i t i c a l r e g i o n . N o t e t h a t f o r l a r g e sample s i z e s , n, t h e t e r m ( S - 1 ) o r ( S + 1 ) can b e a p p r o x i m a t e d as s i m p l y S . T h i s s i m p l i f i c a t i o n i s done i n t h e WMO program (WMO, 1 9 8 8 ) . N o t e a l s o t h a t t h e WMO program assumes s u f f i c i e n t d a t a f o r t h e above normal a p p r o x i m a t i o n t o be v a l i d . I n a s s o c i a t i o n w i t h t h e Mann-Kendall t e s t , one can e s t i m a t e t h e magnitude o f a t r e n d s l o p e u s i n g an e s t i m a t o r proposed by T h i e l (1950) and Sen ( 1 9 6 8 ) . Here, t h e e s t i m a t o r B f o r t h e t r e n d s l o p e i s t h e median v a l u e o f among a l l ( Y . , Y ) p a i r s where l S k < j S n . By u s i n g t h e median o f t h e i n d i v i d u a l k d v a l u e s , &he e s t i m a t o r i s q u i t e r e s i s t a n t t o t h e e f f e c t o f extreme v a l u e s i i k t h e data. 4.4 Complications A number o f c h a r a c t e r i s t i c s o f h y d r o l o g i c a l t i m e s e r i e s can c o m p l i c a t e t h e use o f t h e above-mentioned s i m p l e t r e n d t e s t s . These c o m p l i c a t i o n s i n c l u d e season a l i t y , s e r i a l dependence , and t h e presence o f " l e s s - t h a n " o r " g r e a t e r - t h a n " v a l u e s ( c e n s o r e d samples). - Seasonality The v a r i a t i o n added b y seasonal o r o t h e r c y c l e s can g r e a t l y c o m p l i c a t e d e t e c t i o n o f l o n g - t e r m t r e n d s . F o r example, suppose t h e MannK e n d a l l t e s t i s a p p l i e d t o m o n t h l y s t r e a m f l o w d a t a i n w h i c h t h e r e i s an o v e r a l l upward t r e n d . I n t h i s case, many downtrends c o u l d be c o u n t e d i n making t h e month-to-month comparisons s i m p l y because f l o w s i n some months a r e n a t u r a l l y l e s s than those i n others. Techniques f o r d e a l i n g w i t h s e a s o n a l i t y i n t r e n d t e s t s a r e d i s c u s s e d by H i r s c h and o t h e r s (1982), van B e l l e and Hughes ( 1 9 8 4 ) , and G i l b e r t ( 1 9 8 7 ) . G r a p h i c a l t e c h n i q u e s such as t h o s e d e v e l o p e d b y C l e v e l a n d e t a l . (1979) a l s o may b e u s e f u l i n examining s e a s o n a l i t y (e.g., see L i n s , 1987). There a r e two g e n e r a l p r o c e d u r e s t h a t can be used t o i n c o r p o r a t e a cons i d e r a t i o n o f s e a s o n a l i t y i n t o a t r e n d t e s t . The f i r s t p r o c e d u r e i s t h e u s e o f p e r i o d i c f u n c t i o n s t o d e s c r i b e t h e s e a s o n a l v a r i a t i o n s . T h i s approach i s easy t o a p p l y i n c o n j u n c t i o n w i t h a r e g r e s s i o n a n a l y s i s f o r e i t h e r monotonic o r s t e p t r e n d s . The s i m p l e s t case i s : Y = B 0 + B 1 + sin(2nt) B 2 cos (21'rt) + t r e n d term + e where t i s t i m e i n years. I f t h e r e s i d u a l s s t i l l show s e a s o n a l i t y ( f o r example as seen by b o x p l o t s o f t h e r e s i d u a l s ) , a d d i t i o n a l p e r i o d i c f u n c t i o n s can be added w i t h p e r i o d s o f 1 / 2 o r 1 / 3 o r o t h e r f r a c t i o n s o f a y e a r . F o r example Y = B + 0 + + B sin(2nt) 1 B5 s i n (61'rt) + B 6 B 2 cos(21'rt) cos(61'rt) + '+ B 3 sin(4I'rt) t r e n d term + e + B cos(41'rt) 4 4-6 One a p p r o p r i a t e way t o d e t e r m i n e how many terms t o u s e i s t o add t h e m , two a t a t i m e , t o t h e r e g r e s s i o n and a t each s t e p do an F t e s t f o r t h e s i g n i f i c a n c e o f t h e p a i r o f t e r m s . A s a r e s u l t one may s e t t l e o n a model i n w h i c h t h e t - s t a t i - s t i c s f o r one o r two o f t h e c o e f f i c i e n t s a r e n o t s i g n i f i c a n t , b u t as a p a i r t h e y a r e s i g n i f i c a n t . L e a v i n g o u t j u s t t h e s i n e o r just. t h e cosine s h o u l d n o t be done, because i t f o r c e s t h e p e r i o d i c t e r m t o have a c o m p l e t e l y a r b i t r a r y phase s h i f t . S c h e r t z and H i r s c h (1985) p r o v i d e a n example o f t h i s approach. A d i f f e r e n t approach f o r d e a l i n g w i t h s e a s o n a l i t y can be used w i t h nonp a r a m e t r i c t r e n d t e s t s ( s u c h as t h e Mann-Kendall o r Wilcoxon Rank-Sum t e s t ) . F o r t h e s e t e s t s , f i r s t compute t h e t e s t s t a t i s t i c and compute i t s e x p e c t a t i o n and v a r i a n c e under t h e n u l l hypotheses f o r each season. Then, sum t h e t e s t s t a t i s t i c s t o f o r m t h e new o v e r a l l t e s t s t a t i s t i c . A l s o , sum t h e e x p e c t a t i o n s a n d sum t h e v a r i a n c e s . G e n e r a l l y , when t h e p r o d u c t o f number o f seasons and number o f y e a r s i s more t h a n a b o u t 25, t h e d i s t r i b u t i o n o f t h e o v e r a l l t e s t s t a t i s t i c can b e approximated q u i t e w e l l by a n o r m a l d i s t r i b u t i o n w i t h exp e c t a t i o n e q u a l t o t h e sum o f t h e e x p e c t a t i o n s and v a r i a n c e e q u a l t o t h e sum o f t h e v a r i a n c e s . The o v e r a l l t e s t s t a t i s t i c can be s t a n d a r d i z e d and compared t o t h e s t a n d a r d n o r m a l . Parameters l i k e s l o p e s o r s t e p s i z e s can b e computed i?s medians o f a l l e s t i m a t e s based o n a l l p o s s i b l e p a i r s f r o m each o f t h e seasons. See H i r s c h , e t a l . (1982) and WMO (1988) f o r an example u s i n g t h e MannK e n d a l l t e s t and B r a d l e y (1966) € o r an example o f a p p l y i n g t h e W i l c o x o n RankSum t e s t t o grouped d a t a . I n t h e l a t t e r case, t h e groups r e f e r r e d t o by B r a d l e y c o u l d be seasons. The approaches d e s c r i b e d above a r e a l l ways o f o b t a i n i n g a s i . n g l e r e s u l t f o r a g i v e n d a t a s e t i n t e r m s o f an o v e r a l l upward o r downward t r e n d . These f a i l t o r e v e a l d i f f e r e n c e s i n b e h a v i o r i n d i f f e r e n t seasons. F o r example, i t i s p o s s i b l e t h a t t h e v a r i a b l e e x h i b i t s a s t r o n g t r e n d i n i t s summer v a l u e s and n o t r e n d i n t h e o t h e r seasons. Van B e l l e and Hughes (1984) p r o v i d e a s i n g l e s t a t i s t i c w h i c h c a n b e u s e d t o i n d i c a t e whether seasons a r e b e h a v i n g i n a s i m i l a r f a s h i o n (homogeneous) o r b e h a v i n g d i f f e r e n t l y f r o m each o t h e r ( h e t e r o geneous) . S e r i a l Dependence - A l l o f t h e above t e s t s assume independence o f observ a t i o n s . T h i s may b e a s a t i s f a c t o r y assumption f o r some a n n u a l t i m e s e r i e s b u t becomes l e s s s o as d a t a o f g r e a t e r f r e q u e n c y a r e used. h%en s e r i a l dependence e x i s t s , t r e n d s w i l l be i n d i c a t e d when none e x i s t s ( t y p e I e r r o r ) more o f t e n t h a n s p e c i f i e d by t h e n o m i n a l s i g n i f i c a n c e l e v e l , a . There a r e s e v e r a l methods f o r d e a l i n g w i t h s e r i a l dependence. H i r s c h and S l a c k (1984) d e s c r i b e m o d i f i c a t i o n s t o t h e Mann-Kendall t e s t t o a c c o u n t f o r s e r i a l dependence, and t h e s e a r e i n c l u d e d i n t K e WMO (1982) computer program f o r a n a l y s i n g h y d r o l o g i c a l d a t a . L e t t e n m a i e r (1976) uses t h e concept o f e f f e c t i v e independent sample s i z e t o c h t a i n a d j u s t e d c r i t i c a l . v a l u e s f o r t h e W i l c o x o n Rank-Sum t e s t and Spearman's r h o c o r r e i a t i o n t e s t ( a t e s t s i m i l a r t o t h e Mann-Kendall t e s t ) . Montgomery and Reckhow (1984) i l l u s t r a t e L e t t e n m a i e r ' s p r o c e d u r e and p r o v i d e t a b l e s o f c o r rection factors. I f a l o n g t i m e sequence o f e q u a l l y spaced d a t a i s a v a i l a b l e , i n t e r v e n t i o n a n a l y s i s (Box and T i a o , 1 9 7 5 ) may h e u s e d t o d e t e c t s t e p t r e n d s i n s e r i a l l y dependent d a t a . T h i s approach i s a g e n e r a l i z a t i o n o f t h e a u t o - r e g r e s s i v e i n t e c j r a t e d m o v i n g average ( A R I M A ) t i m e s e r i e s models d e s c r i b e d by Box and J e n k i n s (1976) . A p p l i c a t i o n o f t h e s e models, however, i s n o n t r i v i a l . A l i m i t a t i o n o f t r a d i t i o n a l i n t e r v e n t i o ~a n a l y s i s i s t h e r e q u i r e m e n t f o r e q u a l l y spaced d a t a ; m i s s i r i q d a t a o r d a t a r e p o r t e d ds l e s s - t h a n v a l u e s can p r e v e n t i t s use. I 4- 7 Censored samples - Censored samples a r e r e c o r d s i n w h i c h some o f t h e d a t a a r e known o n l y t o b e ' ' l e s s t h a n " o r " g r e a t e r t h a n " some t h r e s h o l d . Two common examples i n h y d r o l o g y a r e c o n s t i t u e n t c o n c e n t r a t i o n s l e s s t h a n t h e d e t e c t i o n l i m i t and f l o o d s which a r e known t o b e l e s s t h a n some t h r e s h o l d o f p e r c e p t i o n (e.g. , t h e a n n u a l f l o o d o f 1887 was n o t s u f f i c i e n t l y l a r g e t h a t l o c a l r e c o r d k e e p e r s b o t h e r e d t o r e c o r d t h e maximum s t a g e ) . There i s no s i m p l e way t o i n c o r p o r a t e censored samples i n a r e g r e s s i o n a n a l y s i s , a l t h o u g h censored maximum l i k e l i h o o d p r o c e d u r e s can b e used. The Mann-Kendall t e s t can be u s e d w i t h o u t d i f f i c u l t y , p r o v i d e d t h a t o n l y one c e n s o r i n g t h r e s h o l d e x i s t s . I n t h a t case, t h e comparisons between a l l p a i r s o f observations a r e p o s s i b l e . A l l t h e " l e s s thans" a r e considered t o be t i e d w i t h each o t h e r . When more t h a n one t h r e s h o l d l i m i t e x i s t s , t h e n t h e Mann-Kendall t e s t c a n n o t b e done i n a s t r a i g h t f o r w a r d f a s h i o n . C o n s i d e r t h e d a t a s e t : (1, (1, 3, <5, 7 . How does one compare <1 t o ( 5 o r 3 t o < 5 ? One way t o run t h i s t e s t i s t o r e c o d e t h e d a t a t o t h e h i g h e r t h r e s h o l d . Thus, t h e d a t a w o u l d become: (5, ( 5 , (5, <5, 7. There i s , however, a l o s s of i n f o r m a t i o n i n making t h i s change. N o t e t h a t when any censored v a l u e s e x i s t , t h e s l o p e e s t i m a t o r o f T h e i l and Sen i s n o t a p p r o p r i a t e u n l e s s i t c a n b e d e m o n s t r a t e d t h a t knowledge o f t h e e x a c t v a l u e s o f t h e censored d a t a w o u l d have n o i m p a c t o n t h e median v a l u e o f d . k . The s l o p e e s t i m a t o r r e q u i r e s c a l c u l a t i n g d i f f e r e n c e s between v a l u e s and t i e r e i s no way t o compute a d i f f e r e n c e between say a " l e s s t h a n " and a n o t h e r number. 5-1 5. METHODOLOGY FOR DISTINGUISHING BETWEEN MAN'S INFLUENCE AND CLIMATE 5.1 Introduction There a r e s e v e r a l p o s s i b l e approaches t h a t c a n be used i n an a t t e m p t t o d i s t i n g u i s h between t h e e f f e c t s o f man's a c t i v i t i e s and t h e e f f e c t s o f c l i m a t e o n a h y d r o l o g i c a l time series. One p o s s i b l e approach i s t o d i r e c t l y a p p l y t h e s t a t i s t i c a l t r e n d t e s t i n g p r o c e d u r e s d e s c r i b e d i n Chapter 4 t o t h e h y d r o l o g i c a l t i m e s e r i e s . However, t h i s approach does n o t d e a l w i t h t h e c o m p l i c a t i o n s t h a t a r i s e f r o m t h e climate-induced v a r i a b i l i t y i n t h e h y d r o l o g i c a l time series. This n a t u r a l v a r i a b i l i t y w i l l decrease t h e power o f s t a t i s t i c a l methods t o d e t e c t t r e n d s when t h e y do e x i s t , and when t r e n d s do n o t e x i s t , can r e s u l t i n f a l s e d e t e c t i o n o f t r e n d s t h a t a r e a r t i f a c t s of t h e h i s t o r y o f c l i m a t i c c o n d i t i o n s d u r i n g t h e p e r i o d . F o r example, a downtrend f o r a p a r t i c u l a r p e r i o d may b e i n d i c a t e d s i m p l y because t h e b e g i n n i n g o f t h e p e r i o d was r e l a t i v e l y wet w h i l e t h e l a t t e r p a r t was r e l a t i v e l y d r y . A p r e f e r r e d approach i n v o l v e s j o i n t u s e o f models and s t a t i s t i c a l t r e n d t e s t i n g p r o c e d u r e s . The model i s u s e d t o e x p l a i n t h e n a t u r a l f l u c t u a t i o n s i n the hydrological variable o f interest, and t h e s t a t i s t i c a l t r e n d t e s t i s a p p l i e d t o t h e r e m a i n i n g u n e x p l a i n e d v a r i a b i l i t y . The model may b e e i t h e r one o f t h e d e t e r m i n i s t i c model t y p e s d e s c r i b e d i n S e c t i o n 3.2 o r a s t a t i s t i c a l r e g r e s s i o n model t y p e , c f . S e c t i o n 3 . 3 . The methodology i s i l l u s t r a t e d schem a t i c a l l y i n F i g . 5 . 1 . 1 and i s e x p l a i n e d s t e p b y s t e p below. I f human i n f l u e n c e s have r e s u l t e d i n c l i m a t i c changes, t h e n t h e s e changes o f t e n would b e r e f l e c t e d i n t h e v a l u e s o f t h e exogeneous v a r i a b l e f o r r e g r e s s i o n o r i n t h e m e t e o r o l o g i c a l input t o t h e h y d r o l o g i c model. Thus, t h e p r o c e d u r e s o u t l i n e d i n t h i s c h a p t e r a r e i n t e n d e d t o i s o l a t e t h e t r e n d s due t o human i n f l u e n c e s on t h e b a s i n h y d r o l o g y f r o m t h e combined e f f e c t s o f c l i m a t i c v a r i a b i l i t y and c l i m a t i c change. 5.2. S t e p 1: D e t e r m i n a t i o n o f S t e p o r Monotonic T r e n d A n a l y s i s I n a p a r t i c u l a r case i t i s n o t always o b v i o u s whether t o t e s t f o r s t e p t r e n d s o r monotonic t r e n d s . The f o l l o w i n g c o n t a i n s some g e n e r a l r u l e s (1) A s t e p t r e n d t e s t i s a " b e f o r e " and " a f t e r " t y p e o f t e s t , w h i c h t y p i c a l l y i s c a r r i e d o u t i n case o f a d i s t i n c t e v e n t . Examples i n c l u d e b e f o r e and a f t e r development o f a new w e l l f i e l d o r c o n s t r u c t i o n o f a dam. I n t h i s case, t i m e s e r i e s d a t a a r e r e q u i r e d f o r two p e r i o d s , w h i c h w i l l b e d e n o t e d t h e r e f e r e n c e p e r i o d ( b e f o r e e v e n t ) and t h e t e s t . p e r i o d ( a f t e r e v e n t ) , r e s p e c t i v e l y . The two p e r i o d s may b e some t i m e a p a r t . 5-2 ci' Start T STEP 1 I Data a v a i l a b l e b o t h b e f o r e and a f t e r disturbance data? STEP 2 I STEP3 I STEP4 1 Statistical regression mode1 Lumped conceptual mode1 - S t a t i s t i c a l trend t e s t step trend - monotonic t r e n d - - - Distributed physically based model step trend monotonic t r e n d Distributed physically based model T 1 1 Further hydrological analysis - effects o f climate e f f e c t s o f man's a c t i v i t y q u a l i t a t i v e consistency q u a n t i t a t i v e consistency - I (2) 1 f NO model STEP5 Fig. 5.1.1 No Consistency a c c e p t a b l e P 1 NO r L S c h e m a t i z a t i o n o f t h e methodology. I f t h e r e i s a m a j o r gap i n t h e r e c o r d ( f o r example 1 0 y e a r s o f d a t a , f o l l o w e d by a I O - y e a r gap, f o l l o w e d by 5 more y e a r s o f d a t a ) one may want t o l o o k a t t h e d i f f e r e n c e between t h e " e a r l y " and t h e " l a t e " p e r i o d s by u s i n g a s t e p t r e n d t e s t , p a r t i c u l a r l y i f t h e d i f f e r e n c e s w i t h i n t h e two p e r i o d s seem t o b e s m a l l compared t o d i f f e r e n c e s between t h e p e r i o d s . One can al.so t e s t f o r m o n o t o n i c t r e n d s , i f t h e r e a r e r e a s o n s t o think o f t h e t r e n d a s a s i n g l e l o n g - t e r m " r a m p " o f c o n s t a n t slope. 5- 3 (3) I f one l o o k s a t a d a t a s e t g r a p h i c a l l y (by p l o t t i n g t h e v a r i a b l e v e r s u s t i m e o r by double mass a n a l y s i s ) and sees an a p p a r e n t s t e p change a t a s p e c i f i c t i m e , but has no a p r i o r i e x p l a n a t i o n f o r t h a t change, a s t e p t r e n d p r o c e d u r e s h o u l d n o t be u s e d f o r t h a t b r e a k p o i n t . The r e s u l t s w i l l b e b i a s e d b y t h e p r o c e s s of v i s u a l l y s e l e c t i n g t h e b e s t t i m e t o d i v i d e t h e d a t a i n t o b e f o r e and a f t e r s e t s . I f one were t o use t h i s p r o c e d u r e o n t r u l y s t a t i o n a r y d a t a and s e t t h e a l p h a l e v e l t o 0 . 0 5 , significant changes w o u l d be d e t e c t e d i n more t h a n 5 % o f t h e cases. - G e n e r a l l y , t h e p e r i o d s s h o u l d be as l o n g as p o s s i b l e i n o r d e r t o e n s u r e as p o w e r f u l a s t a t i s t i c a l t e s t as p o s s i b l e . I n p r a c t i c e , t h e p e r i o d l e n g t h s w i l l b e l i m i t e d by t h e d a t a a v a i l a b i l i t y and by t h e r e s o u r c e s made a v a i l a b l e f o r a g i v e n s t u d y . I n t h e case o f a d e t e r m i n i s t i c model a p p l i c a t i o n t h e l e n g t h o f t h e p e r i o d s s h o u l d a l l o w a p r o p e r model c a l i b r a t i o n and v a l i d a t i o n , t y p i c a l l y a t l e a s t on t h e o r d e r o f 3-10 y e a r s depending on t h e p a r t i c u l a r model and t h e p a r t i c u l a r catchments. F u r t h e r m o r e , t h e r e f e r e n c e p e r i o d s h o u l d , i f p o s s i b l e , comprise b o t h dry and wet c l i m a t e segments. 5.3 Step 2 : S e l e c t i o n o f Model Type S t e p 2 i n v o l v e s t h e s e l e c t i o n o f an a p p r o p r i a t e model t o b e used t o a c c o u n t f o r and remove t h e h y d r o l o g i c a l e f f e c t s o f c l i m a t e v a r i a b i l i t y . I f s u f f i c i e n t d a t a a r e a v a i l a b l e f o r t h e s e l e c t e d p e r i o d ( s ) , b a s i c a l l y f o u r a l t e r n a t i v e opt i o n s e x i s t w i t h r e s p e c t t o t h e m o d e l l i n g approach: (1) (2) (3) (4) No model D e t e r m i n i s t i c , lumped, c o n c e p t u a l models D e t e r m i n i s t i c , d i s t r i b u t e d , p h y s i c a l l y based models S t a t i s t i c a l r e g r e s s i o n models The "no model" approach i s as m e n t i o n e d p r e v i o u s l y g e n e r a l l y n o t p r e f e r r e d , because i t i s n o t a b l e t o a c c o u n t f o r t h e c l i m a t e i n d u c e d v a r i a b i l i t y i n t h e h y d r o l o g i c a l time series. The t h r e e m o d e l l i n g approaches do n o t i n p r i n c i p l e have t h e above d i s advantages, because a model s h o u l d b e a b l e t o e x p l a i n some o f t h e v a r i a b i l i t y o f t h e concerned h y d r o l o g i c a l v a r i a b l e t h a t r e s u l t s f r o m t h e c l i m a t e v a r i a b i l i t y . I t i s i m p o r t a n t t o n o t e t h a t t h e u t i l i t y o f a model as p a r t o f t h e t r e n d t e s t i s dependent on t h e s t r e n g t h o f t h e c o r r e l a t i o n o f t h e s i m u l a t e d v a l u e s w i t h t h o s e t h a t would have o c c u r r e d n a t u r a l l y a t t h e s i t e o f i n t e r e s t . I n h e r e n t b i a s i n an u n c a l i b r a t e d h y d r o l o g i c a l model t o u n d e r p r e d i c t o r o v e r p r e d i c t on average i s o f l e s s concern, so l o n g as d i f f e r e n t model b i a s does n o t e x i s t under d i f f e r e n t c l i m a t i c c o n d i t i o n s . The q u e s t i o n r e g a r d i n g w h i c h o f t h e t h r e e model t y p e s t o s e l e c t c a n n o t b e u n i v e r s a l l y answered. However, some f a c t o r s t o b e t a k e n i n t o a c c o u n t a r e : (a) Advantages o f r e g r e s s i o n models a r e t h a t t h e y a r e easy t o a p p l y , and i n many s i t u a t i o n s , may be j u s t as e f f e c t i v e as t h e use o f h y d r o l o g i c a l models f o r a p a r t i c u l a r t r e n d a p p x i c a t i o n . The advantage o f t h e u s e o f a h y d r o l o g i c a l model i s t h a t i t may b e t t e r e x p l a i n t h e n a t u r a l h y d r o l o g i c a l v a r i a b i l i t y and hence r e s u l t i n a more p o w e r f u l s t a t i s t i c a l t r e n d t e s t . I n some cases, t h e u s e o f a h y d r o l o g i c a l model may a l l o w f o r f u r t h e r h y d r o l o g i c a l a n a l y s i s as d e s c r i b e d i n S t e p 5 . 5-4 (b) The lumped, c o n c e p t u a l models a r e g e n e r a l l y r a i n f a l l - r u n o f f models and a r e a p p l i c a b l e f o r t r e n d t e s t s r e g a r d i n g s t r e a m f l o w v a r i a h l e s . However, i f t h e h y d r o l o g i c a l v a r i a b l e o f i n t e r e s t f o r the t r e n d t e s t deals w i t h ground w a t e r t h i s model t y p e w i l l o f t e n n o t be a f e a s i b l e c h o i c e . B o t h r e g r e s s i o n models and d i s t r i b u t e d , p h y s i c a l l y based models can be a p p l i e d t o b o t h ground w a t e r and s t r e a m f l o w . (c) There i s t h e p o s s i b i l i t y t h a t by u s i n g a d i s t r i b u t e d , p h y s i c a l l y based model t h e man-induced changes c a n b e accounted f o r i n t h e model p a r a m e t e r s and hence a d i s t i n c t i o n can b e made between t h e e f f e c t s o f c l i m a t e and man's i n f l u e n c e . I n t h i s way a q u a n t i t a t i v e c o n s i s t e n c y may b e t e s t e d i n t h e f i n a l h y d r c l o g i c a l a n a l y s i s i n S t e p 5. (d) I n some cases o n l y t h e d i s t r i b u t e d , p h y s i c a l l y based models a r e a p p l i c a b l e , i n p a r t i c u l a r i f d a t a f o r t h e concerned v a r i a b l e , e.g. s t r e a m f l o w , are e i t h e r n o t a v a i l a b l e o r o n l y a v a i l a b l e f o r t o o s h o r t a sub-period w i t h i n one o f t h e two s e l e c t e d p e r i o d s . (e) The r e g r e s s i o n and h y d r o l o g i c a l m o d e l l i n g approaches can be used i n c o m b i n a t i o n b y u s i n g t h e o u t p u t f r o m a h y d r o l o g i c a l model - c a l i b r a t e d outside the t e s t period as t h e exogenous v a r i a b l e i n a r e g r e s s i o n e q u a t i o n . Furthermore b o t h r e g r e s s i o n models and h y d r o l o g i c a l models may b e u s e d s e p a r a t e l y as somewhat independent t e s t s f o r t r e n d . - 5.4 Step 3 : Model C a l i b r a t i o n , V a l i d a t i o n and A p p l i c a t i o n The p r o c e d u r e s f o r model c a l i b r a t i o n , v a l i d a t i o n and a p p l i c a t i o n depend o n w h i c h model t y p e i s used and t h e t y p e o f t r e n d t e s t . I t i s emphasized t h a t a p r o p e r model v a l i d a t i o n i s a p r e r e q u i s i t e f o r a subsequent model a p p l i c a t i o n f o r t h e p r e s e n t purpose. I n t h e s u b s e c t i o n s below t h e names o f a numbex o f d i f f e r e n t t e s t s a r e g i v e n . These t e s t s a r e d e s c r i b e d b r i e f l y i n Subsection 3.2.5 and i n more d e t a i l i n Klemes ( 1 9 8 5 ) and Klemes (1986). 5 . 4 . 1 Lumped, c o n c e p t u a l models ---------___----___------------ - Step .trend t e s t ........................ Case 1 The f o l l o w i n g d e s c r i p t i o n a p p l i e s t o t h e s t e p t r e n d t e s t case, where two per i o d s ha.ve been s e l e c t e d , namely a t e s t p e r i o d and a r e f e r e n c e p e r i o d . (1) C a l i b r a t e and v a l i d a t e t h e model u s i n g h i s t o r i c a l d a t a f r o m t h e r e f e r e n c e period. Preferably a d i f f e r e n t i a l split-sample t e s t should b e c a r r i e d o u t a s f o l l o w s . I f t h e t e s t p e r i o d i s g e n e r a l l y more wet t h a n t h e r e f e r e n c e p e r i o d , t h e model s h o u l d b e c a l i b r a t e d on a d r y segment and v a l i d a t e d o n a wet segment o f t h e r e f e r e n c e p e r i o d , o r v i c e v e r s a . Ifi t i s n o t poss i b l e t o i d e n t i f y such segments w i t h s u f f i c i e n t l y d i f f e r e n t c l i m a t i c cond i t i o n s w i t h i n t h e r e f e r e n c e p e r i o d t h e model s h o u l d b e t e s t e d i n t h e above manner i n a s u b s t i t u t e catchment, and an o r d i n a r y s p l i t - s a m p l e t e s t s h o u l d b e c a r r i e d o u t i n t h e catchment of i n t e r e s t . O n l y by such a comp r e h e n s i v e model t e s t i n g , can i t be ensured t h a t t h e tal-ibrated model 5-5 i s a b l e t o s i m u l a t e o t h e r p e r i o d s w i t h t h e same degree o f a c c u r a c y as i n t h e c a l i b r a t i o n p e r i o d , p r o v i d e d n o changes i n catchment c h a r a c t e r i s t i c s take place. (2) Make model s i m u l a t i o n s f o r t h e t e s t p e r i o d by u s e of t h e p a r a m e t e r s o b t a i n e d f r o m c a l i b r a t i o n o n t h e r e f e r e n c e p e r i o d and by u s e o f t h e c l i m a t e d a t a from t h e t e s t p e r i o d . The above procedure assumes t h a t any b i a s t h a t i s i n t r o d u c e d i n t o t h e model parameters b y t h e c a l i b r a t i o n would a l s o have been i n t r o d u c e d , i f t h e model c o u l d b e c a l i b r a t e d t o t h e t e s t p e r i o d under n a t u r a l c o n d i t i o n s . - Monotonic t r e n d t e s t __________________----------- Case 2 when t e s t i n g f o r monotonic t r e n d s , t h e h y d r o l o g i c a l model s h o u l d n o t b e c a l i b r a t e d t o t h e b a s i n o f i n t e r e s t u s i n g any d a t a f r o m t h e t e s t p e r i o d d u r i n g w h i c h t r e n d s a r e b e i n g examined. O t h e r w i s e , some o f t h e a d j u s t m e n t s i n model parameters t h a t r e s u l t f r o m t h e c a l i b r a t i o n p r o c e s s may account f o r S O I ~ o f t h e t r e n d s . T h i s can o c c u r i n comp1.e.x and u n p r e d i c t a b l e ways. Thus, t h e model s h o u l d be e i t h e r : ( a ) u n c a l i b r a t e d and use b e s t e s t i m a t e s o f t h e model p a r a m e t e r s under n a t u r a l c o n d i t i . o n s ( t h e s e may b e r e g i o n a l i z e d e s t i m a t e s f r o m o t h e r a p p l i c a t i o n s o f t h e model) , o r (b) c a l i b r a t e d t o a p r e v i o u s p e r i o d n o t i n c l u d e d i n t h e t r e n d t e s t d u r i n g w h i c h t h e r e was m i n i m a l human i n f l u e n c e o n t h e h y d r o l o g i c a l t i m e s e r i e s . I f an u n c a l i b r a t e d model i s a p p l i e d , t h e model s h o u l d have passed a p r o x y - b a s i n d i f f e r e n t i a l split,-sample t e s t t o v e r i f y i t s c a p a b i l i t y t o s i m u l a t e d i f f e r e n t c l i m a t e c o n d i t i o n s i n an ungauged catchment. I f c a l i b r a t i o n i s c a r r i e d o u t on a p r e v i o u s p e r i o d , t h e t e s t r e q u i r e m e n t i s a d i f f e r e n t i a l s p l i t - s a m p l e t e s t f o r changes i n c l i m a t e c o n d i t i o n s . D i s t r i b u t e d , p h y s i c a l l y based models ___-_____--__----------------------------5.4.2 Three d i f f e r e n t cases a r i s e depending on d a t a a v a i l a b i l i t y and t e s t p r o c e d u r e , see F i g . 5 . 4 . 1 . The p r o c e d u r e i s s i m i l a r t o t h e s t e p t r e n d t e s t case f o r lumped, c o n c e p t u a l models, c f . Subsection 5.4.1, Case 1, w i t h t h e e x c e p t i o n t h a t t h e e f f e c t s o f t h e man-induced changes may a l s o b e p r e d i c t e d by u s e o f t h e model.. Hence t h e p r o c e d u r e i s as f o l l o w s : (1) C a l i b r a t e and v a l i d a t e t h e model u s i n g h i s t o r i c a l d a t a f r o m t h e r e f e r e n c e period. The r e q u i r e m e n t s f o r t e s t procedures a r e a s d e s c r i b e d i n S u b s e c t i o n 5.4.1, a d i f f e r e n t i a l s p l i t sample t e s t € o r changes i n c l i m a t e conditions. (2) Make t w o model s i m u l a t i o n s f o r t h e t e s t p e r i o d : o One s i m u l a t i o n where t h e model parameters a r e unchanged as compared t o t h e reference p e r i o d ( t i m e s e r i e s S I M ) . This t i m e s e r i e s w i l l be 1 used i n t h e s t a t i s t i c a l t r e n d t e s t ( S t e p 4 ) . 5-6 o Another s i m u l a t i o n where t h e man-induced changes i n catchment char a c t e r i s t i c s a r e accounted f o r d i r e c t l y i n t h e model parameters (time series SIM ) T h i s model s i m u l a t i o n serves as a t e s t o f t h e 2 m o d e l ' s a b i l i t y t o p r e d i c t t h e e f f e c t s o f changes i n catchment char a c t e r i s t i c s , and w i l l be u s e d i n t h e f u r t h e r h y d r o l o g i c a l a n a l y s i s ( S t e p 5 ) . Note t h a t S I M and S I M are i d e n t i c a l i n t h e reference, 1 2 but n o t i n the t e s t period. . Case 2: S t e p t r e n d t e s t . Data a v a i l a b l e f o r o n l y one p e r i o d _______________---------------------------------------------I n case o f a s t e p t r e n d t e s t , where d a t a a r e o n l y a v a i l a b l e f o r one p e r i o d , denoted t h e t e s t p e r i o d , t h e p r o c e d u r e i s as f o l l o w s : (1) C a l i b r a t e and v a l i d a t e period, (differential conditions). t h e model u s i n g h i s t o r i c a l d a t a from t h e t e s t split-sample test for changes in climate (2) Make p r o x y - b a s i n d i f f e r e n t i a l s p l i t - s a m p l e u s i n g d a t a f r o m o t h e r catchments. (3) Make two model s i m u l a t i o n s : o tests for catchment change One s i m u l a t i o n where t h e model p a r a m e t e r s correspond t o t h e c a t c h ment c h a r a c t e r i s t i c s v a l i d i n t h e r e f e r e n c e p e r i o d ( t i m e s e r i e s SIM 1. 1 o Another s i m u l a t i o n where t h e model parameters a c t u a l catchment c h a r a c t e r i s t i c s v a l i d i n t h e series S I M 1. 2 correspond t o t h e t e s t p e r i o d (time Comparison o f S I M and S I M w i l l be used t o e s t i m a t e t h e e f f e c t s o f t h e 1 changes i n catchment c h a r a c 5 e r i s t i c s ( S t e p 5 ) . F o r t h e same reasons as d i s c u s s e d i n S u b s e c t i o n 5 . 4 . 1 n e i t h e r model c a l i b r a t i o n n o r v a l i d a t i o n s h o u l d b e c a r r i e d o u t t o any o f t h e d a t a t o b e used f o r t h e subsequent s t a t i s t i c a l t e s t p r o c e d u r e . Thus t h e procedure i s : C a l i b r a t e and v a l i d a t e t h e model e i t h e r o n o t h e r catchments ( p r o x y - b a s i n d i f f e r e n t i a l s p l i t - s a m p l e t e s t f o r changes i n c l i m a t e c o n d i t i o n s ) o r on t h e same catchment b u t u s i n g a p r e v i o u s p e r i o d ( d i f f e r e n t i a l s p l i t sample t e s t f o r changes i n c l i m a t e c o n d i t i o n s ) . Make d i f f e r e n t i a l o t h e r catchments. split-sample tests for catchment change on d a t a f r o m Make t w o model s i m u l a t i o n s f o r t h e e n t i r e p e r i o d : 0 One s i m u l a t i o n , where t h e model parameters a r e k e p t c o n s t a n t , c o r r e s p o n d i n g t o t h e catchment c h a r a c t e r i s t i c s a t a p a r t i c u l a r t i m e , e.g. a t t h e b e g i n n i n g o f t h e p e r i o d ( S I M 1 . T h i s t i m e s e r i e s w i l l be 1 used i n t h e s t a t i s t i c a l t r e n d t e s t ( S t e p 4 ) . 5-7 CASE1: - STEP TREND TEST DATA A V A I L A B L E FOR BOTH PERIODS Time Reference Test Series Period Period Explanation 1-1 SIMl SIM2 DEVl DEVZ CASE2: OB S p7777771 I- STEP TREND TEST --- -4 - DATA A V A I L A B L E F O R P a r a m e t e r va l u z s f r o m r e f e r e n c e perj.od Parameter v a l u e s f r o m actual periods OBS-SIM1 OBS-SIM2 O N L Y ONE PERIOD Parameter reference S IMI SIM2 p7777771 values from period parameter values from t e s t p e r i o d OBS-SIM1 DEV2 CASE3: +----I OBS-SIM2 MONOTONIC T R E N D T E S T OBS Fig. 5.4.1 o SIM1 Constant parameter values SIM2 Actual transient parameter values DEVl OBS-SIM1 DEV OBS-SIM, .. Observed r e c o r d s ( O B S ) , s i m u l a t e d r e c o r d s ( S I M and S I M 1 , 2 and d e r i v e d t e s t d a t a s e t (DEV and DEV ) € o r &he t h r e e cases 2 t h a t o c c u r when d i s t r i b u t e d , p k y s i c a l l y based models a r e a p p l i e d . Another s i m u l a t i o n , where t h e model p a r a m e t e r s a r e t r a n s i e n t c o r r e s p o n d i n g t o t h e a c t u a l c h a n g i n g catchment c h a r a c t e r i s t i c s ( S I M 2 ) . T h i s t i m e s e r i e s w i . 1 1 be used i n t h e f u r t h e r h y d r o l o g i c a l a n a l y s i s (Step 5 ) . 5 -8 5.4.3 S t a t i s t i c a l r e g r e s s i o n models ___-_----__-_____-___-------------A s i m p l e m o d e l l i n g approach i s t o p e r f o r m r e g r e s s i o n on an "exogeneous v a r i . - a b l e " t h a t should e x p l a i n a l a r g e p a r t o f t h e n a t u r a l v a r i a b i l i t y o f t h e v a r i a b l e b e i n g t e s t e d f o r t r e n d . The exogenous v a r i a b l e s h o u l d b e f r e e o f t r e n d due t o human m o d i f i c a t i o n s o f t h e b a s i n h y d r o l o g y . Examples o f c a n d i d a t e exogenous v a r i a b l e s i n c l u d e p r e c i p i t a t i o n d e p t h and s t r e a m f l o w a t a n e a r b y r e l a t i v e l y u n a f f e c t e d s t a t i o n . The u s e o f s t a t i s t i c a l r e g r e s s i o n models i n conj u n c t i o n w i t h t r e n d t e s t i n g i s d i s c u s s e d i n S t e p 4. 5.5 S t e r , 4: Trend T e s t The n u l l h y p o t h e s i s , H , i s t h a t t h e r e i s no t r e n d i n t h e d a t a sample. The e x a c t p r o c e d u r e used ?o p e r f o r m a t r e n d t e s t depends o n w h i c h m o d e l l i n g approach i s used. The d a t a w h i c h w i l l be s u b j e c t t o t h e t e s t a r e t h e t i m e s e r i e s OBS as d e f i n e d by : Y1, ".. ,Yi' ... , Yn, .Y n+m where Y i s t h e observed v a l u e , n and m a r e t h e number o f o b s e r v a t i o n s i n t h e i r e f e r e n c e and t e s t p e r i o d , r e s p e c t i v e l y , i n case o f a s t e p t r e n d t e s t and n+m i s t h e number o f o b s e r v a t i o n s f o r t h e s i n g l e t e s t p e r i o d i n t h e case o f a monotonic trend test. The t e s t s € o r s t e p t r e n d and monotonic t r e n d t h e n f o l l o w s t h e p r o c e d u r e s o u t l i n e d i n S e c t i o n s 4.2 and 4.3, r e s p e c t i v e l y . I f t h e n u l l h y p o t h e s i s i s accepted, no s i g n i f i c a n t t r e n d can b e d e t e c t e d i n t h e a n a l y s e d v a r i a b l e . I f , on t h e o t h e r hand, a s i g n i f i c a n t t r e n d e x i s t s , i t has n o t y e t been i d e n t i f i e d , whether t h i s t r e n d i s t h e r e s u l t o f man's i m p a c t o r due t o c l i m a t e e f f e c t s . The recommended procedure € o r t h a t purpose i s o u t l i n e d b elow. 5.5.2 Lumped, c o n c e p t u a l models ............................... The d a t a w h i c h w i l l be s u b j e c t t o t h e t e s t a r e t h e t i m e s e r i e s DEV as d e f i n e d 1 by : el,...,ei,...lenlen+Ir...re where e i n+m i s t h e r e s i d u a l ( t h e observed v a l u e l e s s t h e s i m u l a t e d v a l u e ) . Again, t h e t e s t s f o l l o w t h e p r o c e d u r e s o u t l i n e d i n S e c t i o n s 4.2 I and 4.3. 5- 9 I f t h e n u l l h y p o t h e s i s , i . e . no t r e n d i n t h e r e s i d u a l v a l u e s , i s a c c e p t ed, t h e n t r e n d i n t h e h y d r o l o g i c a l t i m e s e r i e s may be e x p l a i n e d by c l i m a t e e f f e c t s . If, on t h e o t h e r hand, t h e h y p o t h e s i s i s r e j e c t e d , i t c a n be c o n c l u d e d t h a t some s i g n i f i c a n t changes i n t h e catchment c h a r a c t e r i s t i c s h a v e o c c u r r e d . F u r t h e r , t.he e f f e c t o f t h e s e catchment changes can b e e s t i m a t e d f r o m t h e s t a t i s t i c a l analyses. The same p r o c e d u r e f o r s t a t i s t i c a l t r e n d t e s t i n g as d e s c r i b e d f o r t h e lumped c o n c e p t u a l models i n S u b s e c t i o n 5 . 5 . 2 above w i t h t h e e x c e p t i o n o f t h e case where d a t a a r e a v a i l a b l e f o r o n l y one p e r i o d ( t e s t p e r i o d ) as d e s c r i b e d i n Case 2 o f S u b s e c t i o n 5.4.2. Although a s t a t i s t i c a l s t e p t r e n d f u r t h e r h y d r o l o g i c a l a n a l y s i s (Step 5) and man's a c t i v i t y s e p a r a t e l y . As p a r t a s t e p t r e n d t e s t may be c a r r i e d o u t , see S u b s e c t i o n 5.6.3. t e s t i s s t r i c t l y n o t v a l i d i n Case 2, may r e v e a l t h e e f f e c t s o f b o t h c l i m a t e o f such f u r t h e r h y d r o l o g i c a l a n a l y s i s , a l t h o u g h i n a s l i g h t l y d i f f e r e n t way, 5 . 5 . 4 S t a t i s t i c a l r e g r e s s i o n models -_----__----_----____--------------The p r o c e d u r e i s somewhat d i f f e r e n t when a r e g r e s s i o n model i s used t o a c c o u n t € o r t h e n a t u r a l v a r i a b i l i t y . The e x a c t p r o c e d u r e used t o i n c o r p o r a t e c l - i m a t i c v a r i a b i l i t y i n t o t h e a n a l y s i s w i l l depend on whether a p a r a m e t r i c o r nonparam e t r i c t r e n d t e s t i s used i n c o n j u n c t i o n w i t h t h e r e g r e s s i o n model. _____-__________-__ P a r a m e t r i c Approach A method o f a c c o u n t i n g € o r c i m a t i c v a r i a b i l i t y i s most s t r a i g h t f o r w a r d i n t ne case o f o v e r a l l use o f r e g r e s s i o n t o s i m u l t a n e o u s l y t e s t f o r monotonic t r e n d s and t o account f o r c l i m a t i c e f f e c t s . I n t h a t case, a m u l t i p l e r e g r e s s i o n equat i o n i s f o r m u l a t e d as f o l l o w s : ' i = a + bf(X.1 1 + cT i + e i i=l,..., n + m (Eq. 5.4.1) where Y denotes t h e h y d r o l o g i c a l v a r i a b l e o f i n t e r e s t , X denotes an exogenous v a r i a b l e t o account f o r t h e e f f e c t s o f c l i m a t i c v a r i a b i l i t y , T denotes t i m e , e i s t h e r e s i d u a l , and n + m i s t h e number o f t i m e p e r i o d s . The t e r m f ( X ) c o u l d be X, b u t t h e r e may be reasons f o r u s i n g a s i m p l e f u n c t i o n such as R n X o r 1 / X . E q u a t i o n 5 . 4 . 1 i s shown i n t e r m s o f a s i n g l e exogenous v a r i a b l e , however, sev e r a l c o u l d b e used s i m u l t a n e o u s l y . Terms c o u l d a l s o b e added t o a c c o u n t f o r s e a s o n a l i t y as d i s c u s s e d i n S e c t i o n 4.3. The p r o c e d u r e f o r t e s t i n g € o r monotonic t r e n d s u s i n g r e g r e s s i o n i s as f o l l o w s : (a) S e l e c t exogenous v a r i a b l e s t h a t s h o u l d b e c o r r e l a t e d with t h e h y d r o l o g i c a l v a r i a b l e o f i n t e r e s t under n a t u r a l conditions. (b) Determine t h e b e s t r e g r e s s i o n e q u a t i o n Y . = a -t b f ( X . ) + e . ( S e a s o n a l i t y 1 1 terms a l s o s h o u l d be added t o t h e r e g r e s s i o n model a t t h i s p o i n t , as 5-10 a p p r o p r i a t e ) . Examine t h e e r r o r s o f t h i s model t h r o u g h r e s i d u a l p l o t s and o t h e r d i a g n o s t i c checks t o a s s u r e t h a t t h e assumptions o f t h e model a r e met. (c) used. I f a s t a t i s t i c a l l y s i g n i f i c a n t model was n o t found d u r i n g s t e p b, t h e n s i m p l y a p p l y t h e r e g r e s s i o n model Y = a + cT + e i as i n S e c t i o n 4.2. i i O t h e r w i s e , a p p l y Eq. 5.4.1. The n u l l h y p o t h e s i s o f no t r e n d i s t h a t c = 0 and t h e magnitude o f t h e t r e n d s l o p e i s e s t i m a t e d by t h e v a l u e o f c . N o t e t h a t more e l a b o r a t e r e g r e s s i o n models o f t h e t i m e t e r m F o r example, an i n t e r a c t i o n t e r m c o u l d be added r e s u l t i n g i n 'i = a + bf(Xi) + CT i + d f (Xi)Ti + c o u l d be ei. I n c l u d i n g t h e i n t e r a c t i o n t e r m i n t h e model a l l o w s t h e s l o p e o f t h e Y vs. x r e l a t i o n s h i p t o change w i t h t i m e . Note, however, t h a t t h e c o e f f i c i e n t c i s n o l o n g e r s i m p l y i n t e r p r e t e d as t h e magnitude o f t h e t r e n d s l o p e . These more complex models s h o u l d b e examined o n l y a f t e r t h e e x i s t e n c e o f a s i g n i f i c a n t t r e n d i s e s t a b l i s h e d u s i n g t h e s i m p l e r model (Eq. 5 . 4 . 1 ) . T r y i n g models w i t h d i f f e r e n t t r e n d terms u n t i l a s t a t i s t i c a l l y s i g n i f i c a n t model i s d i s c o v e r e d r e s u l t s i n s t r o n g b i a s e s t o w a r d f i n d i n g a s i g n i f i c a n t t r e n d when none e x i s t s . A s l i g h t m o d i f i c a t i o n o f t h e above approach can be used t o t e s t f o r s t e p t r e n d s by s u b s t i t u t i n g an i n d i c a t o r v a r i a b l e f o r T (see S e c t i o n 4.3, p. 4 - 4 ) . i F o r t h e p a r a m e t r i c approach d e s c r i b e d above, one can combine i n t o a s i n g l e r e g r e s s i o n model an exogenous t e r m t o a c c o u n t f o r t h e e f f e c t s o f c l i m a t e and a t i m e t e r m t o account f o r t h e t r e n d . T h i s i s n o t t h e case w h e n u s i n g a r e g r e s s i o n model t o account f o r t h e c l i m a t i c e f f e c t s and a n o n p a r a m e t r i c t e s t for trend analysis. One approach t h a t h a s been recommended (Guy, 1957; H i r s c h e t a l . , 1982; and G i l b e r t , 1987) i s t o p e r f o r m t h e t r e n d t e s t i n two s t e p s . F i r s t , f i t a r e g r e s s i o n model o f t h e v a r i a b l e o f i n t e r e s t on an exogenous v a r i a b l e . Then, a p p l y t h e n o n p a r a m e t r i c t e s t t o t h e r e s i d u a l s f r o m t h e r e g r e s s i o n model. T h i s approach i s s i m i l a r t o t h a t d e s c r i b e d i n S u b s e c t i o n 5.5.2 f o r use w i t h a h y d r o l o g i c a l model. See S e c t i o n 7.3 f o r an example o f t h i s approach. The above method i s easy t o a p p l y i n p r a c t i c e . A l i m i t a t i o n o f t h e method i s t h a t i t w i l l t e n d t o u n d e r e s t i m a t e t h e magnitude o f t h e t r e n d and t o r e s u l t i n some l o s s i n power as a r e s u l t o f i g n o r i n g t h e i n t e r a c t i o n between t h e exogenous v a r i a b l e and t i m e ( A l l e y , 1 9 8 7 ) . The magnitude o f t h e s e l i m i t a t i o n s and a p o s s i b l e f i x - u p a r e d i s c u s s e d b y A l l e y ( 1 9 8 8 ) . The problems can b e avoided by e s t i m a t i n g t h e p a r a m e t e r s o f t h e r e g r e s s i o n model u s i n g d a t a f r o m o u t s i d e the t e s t period. 5-11 5.6 Step 5: Further Hydrological Analysis I f i t i s concluded t h a t some s i g n i f i c a n t changes i n catchment c h a r a c t e r i s t i c s have o c c u r r e d , f u r t h e r h y d r o l o g i c a l a n a l y s e s may b e c a r r i e d o u t . I t s h o u l d b e p o s s i b l e t o e x p l a i n t h e changes q u a l i t a t i v e l y w i t h i n t h e framework o f t h e known human a c t i v i t i e s . The p r o c e d u r e s f o r t h e f u r t h e r upon t h e s e l e c t e d model approach. hydrological analysis depend v e r y much I n t h i s case n o f u r t h e r a n a l y s i s can b e c a r r i e d o u t . 5.6.2 o n_ ce l model _ _ _ _Lumped, _ _ _ _ _c _ _p_t u_a_ _____-__------A r e c a l i b r a t i o n o f t h e model s h o u l d b e c a r r i e d o u t u s i n g t h e d a t a f o r t h e t e s t p e r i o d and a h y d r o l o g i c a l i n t e r p r e t a t i o n o f t h e changes i n model p a r a m e t e r v a l u e s s h o u l d b e made i n o r d e r t o check q u a l i t a t i v e c o n s i s t e n c y i n t h e t e s t r e s u l t s . I f some o b v i o u s i n c o n s i s t e n c i e s emerge during t h e h y d r o l c g i c a l anal y s i s , t h e e n t i r e a n a l y s i s s t a r t i n g f r o m S t e p l h a s t o be r e c o n s i d e r e d . I n t h i s case, t h e a n a l y s i s may b e more q u a n t i t a t i v e because i t may be p o s s i b l e t o p r e d i c t t h e e f f e c t s o f human a c t i v i t y and compare t h i s w i t h t h e r e c o r d e d data. F o r t h i s purpose t h e S I M t i m e s e r i e s d e s c r i b e d i n S u b s e c t i o n 5 . 4 . 2 a r e 2 u t i l i z e d . The approaches f o r t h e t h r e e d i f f e r e n t cases t h a t a r i s e (see S u b s e c t i o n 5 . 4 . 2 o r F i g . 5 . 4 . 1 ) a r e as f o l l o w s : The t i m e s e r i e s DEV = OBS-SIM i s d e r i v e d as t h e observed minus t h e s i m u l a t e d 2 2 v a l u e s w i t h t h e a c t u a l catchment d a t a . By making a s t a t i s t i c a l t e s t on CEV? € o r - t r e n d between t h e r e f e r e n c e and t e s t p e r i o d s i t can b e v e r i f i e d whethe? t h e model, t h r o u g h changes i n model p a r a m e t e r v a l u e s caused by t h e changes i r ! catchment c h a r a c t e r i s t i c s , i s a b l e t o e x p l a i n t h e d e t e c t e d t r e n d i n t h e obs e r v e d s e r i e s . I f a h y p o t h e s i s o f z e r o t r e n d i n DEV i s accepted, a q u a n t i t a t i v e consistency e x i s t s , w i t h i n t h e u n c e r t a i n t y 2 1 i m i t s accepted i n t h e s t a t i s t i c a l t e s t , and a n a l y s e s can be made r e g a r d i n g t h e e f f e c t s o f t h e c l i mate and o f t h e catchment, changes, r e s p e c t i v e l y . I f on t h e o t h e r hand t h e z e r o t r e n d h y p o t h e s i s i s r e j e c t e d , a s i g n i f i c a n t i n c o n s i s t e n c y e x i s t s and t h e e n t i r e a n a l y s i s s t a r t i n g f r o m S t e p 1. h a s t o be r e c o n s i d e r e d . 5-12 I n t h i s case, a s t e p t r e n d t e s t as c a r r i e d o u t under S t e p 4 i s s t r i c t l y n o t v a l i d . However, i t i s p o s s i b l e t h r o u g h t h e f o l l o w i n g p r o c e d u r e t o a n a l y z e whether a s i g n i f i c a n t t r e n d (caused by man's a c t i v i t y ) between t h e r e f e r e n c e and t h e t e s t p e r i o d s w o u l d have been d e t e c t e d , i f d a t a h a d e x i s t e d a l s o f o r t h e r e f e r e n c e p e r i o d . T h i s a n a l y s i s r e q u i r e s t h e assumption t h a t t h e human a c t i v i t i e s a r e p r o p e r l y a c c o u n t e d f o r b y t h e h y d r o l o g i c a l model. T h i s assumpt i o n i s a l s o r e q u i r e d i n Case 1 above, where d a t a a r e a v a i l a b l e f o r b o t h p e r i o d s . However, t h e assumption i s more c r u c i a l i n t h i s case because d a t a do n o t e x i s t f o r a r e f e r e n c e p e r i o d , and hence no q u a n t i t a t i v e c o n s i s t e n c y check, as d e s c r i b e d i n Case 1 above, i s p o s s i b l e h e r e . The t w o t i m e s e r i e s DEV = OBS-SIM and DEV = OBS-SIM a r e d e r i v e d as 1 t h e observed s e r i e s minus t h e s i m u l a t e d s e r i e s Z u r i n g t h e ? e s t p e r i o d w i t h p a r a m e t e r v a l u e s c o r r e s p o n d i n g t o no man a c t i v i t y and a c t u a l man a c t i v i t y , r e s p e c t i v e l y . A s t a t i s t i c a l t r e n d t e s t i s t h e n c a r r i e d o u t w i t h t h e n u l l hyp o t h e s i s , H , t h a t DEV and DEV can be assumed i d e n t i c a l , i . e . t h a t no t r e n d 1 2 has o c c u r r e g as t h e consequence o f man a c t i v i t y . A s a r e s u l t o f t h i s a n a l y s i s t h e e f f e c t s o f man's a c t i v i t y a r e e s t i m a t e d . Furthermore, i f t h e H i s r e j e c t 0 e d i t may be c o n c l u d e d t h a t t h e s e e f f e c t s w o u l d have been s 1 g n i f i c a n t . i . f d a t a h a d e x i s t e d f o r t h e r e f e r e n c e p e r i o d . I f H i s accepted i t may on t h e o t h e r 0 hand be concluded t h a t t h e s e e f f e c t s a r e so s m a l l as compared t o t h e u n c e r t a i n t i e s i n t h e model p r e d i c t i o n s t h a t t h e y m i g h t n o t have been d e t e c t e d as s i g n i f i c a n t i f d a t a h a d e x i s t e d f o r t h e r e f e r e n c e p e r i o d . I n t h i s case t h e p r o c e d u r e i s i d e n t i c a l t o Case 1 above, e x c e p t t h a t a monot o n i c t r e n d t e s t i s c a r r i e d o u t on t h e DEV time s e r i e s i n s t e a d of a s t e p 2 trend test. 5.6.4 S t a t i s t i c a l r e g r e s s i o n models .................................... I n t h i s case, no f u r t h e r a n a l y s i s can be c a r r i e d o u t . However, a f t e r a f i r s t q u i c k a n a l y s i s , S t e p 1-Step 4, u s i n g a s t a t i s t i c a l r e g r e s s i o n model i t may sometimes b e u s e f u l t o c a r r y o u t more comprehensive a n a l y s i s b y u s i n g a hydrol o g i c a l model i n w h i c h case f u r t h e r h y d r o l o g i c a l a n a l y s i s c a n be made. I 6-1 6. REFERENCES A b b o t t , M.B., B a t h u r s t , J.C., Cunge, J . A . , O ' C o n n e l l , P.E. and Rasmussen, J. ( 1 9 8 6 ) : A n i n t r o d u c t i o n t o t h e European H y d r o l o g i c a l System - Syst&me Hydrol o g i q u e Europgen SHE 1: H i s t o r y and p h i l o s o p h y o f a p h y s i c a l l y - b a s e d d i s t r i b u t e d m o d e l l i n g system, and 2 : S t r u c t u r e o f a p h y s i c a l l y - b a s e d d i s t r i b u t e d m o d e l l i n g system. J o u r n a l o f H y d r o l o g y , 87, pp. 45-77. - - A l l e y , W.M. ( 1 9 8 7 ) : A n o t e o n s t a g e w i s e r e g r e s s i o n . The American S t a t i s t i c i a n , 41, pp. 132-134. ( 1 9 8 8 ) : U s i n g exogenous v a r i a b l e s i n t e s t i n g f o r monotonic t r e n d s A l l e y , W.M. i n h y d r o l o g i c t i m e s e r i e s . Water Resources Research, 24, pp. 1955-1961. , and J e n k i n s , G.M. (1976) : Time s e r i e s a n a l y s i s : 2nd ed. Holden-Day, San F r a n c i s c o . BOX, G.E.P. control. f o r e c a s t i n g and and T i a c , G.C. (1975): I n t e r v e n t i o n a n a l y s i s w i t h a p p l i c a t i o n s t o economic and e n v i r o n m e n t a l problems. J o u r n a l o f t h e American S t a t i s t i c a l A s s o c i a t i o n , 70, pp. 70-79. BOX, G.E.P., B r a d l e y , J.V. (1986): D i s t r i b u t i o n - f r e e Englewood C l i f f s , New J e r s e y . statistical tests. Prentice-Hall, - Cleveland, W.S., Dunn, D.M., Terpenning, I.J. ( 1 9 7 9 ) : SABL A r e s i s t a n t seas o n a l a d j u s t m e n t procedure w i t h g r a p h i c a l methods f o r i n t e r p r e t a t i o n and d i a g n o s i s . I n : A. Z e l l n e r ( E d . ) , Seasonal a n a l y s i s o f economic t i m e s e r i e s . U.S. Government P r i n t i n g O f f i c e , Washington, D.C. Crawford, N.H. and L i n s l e y , R.K. (1966): D i g i t a l s i m u l a t i o n i n hydrology, S t a n f o r d watershed model I V . D e p t . o f Civ.Eng., S t a n f o r d U n i v . , T e c h n i c a l Rep. 39. F l e m i n g , G. New Y o r k . (1975): Computer s i m u l a t i o n techniques i n hydrology. Elsevier, F r e e z e , R.A. (1980): A s t o c h a s t i c - c o n c e p t u a l a n a l y s i s o f r a i n f a l l - r u n o f f processes on a h i l l s l o p e . Water Resources Research 1 6 ( 2 ) , pp. 391-408. Freeze, R.A. and H a r l a n , R.L. (1969): B l u e p r i n t f o r a physically-based, d i g i tally-simulated h y d r o l o g i c a l response model. Journal of Hydrology, 9, pp. 237-258. G i l b e r t , R.O. ( 1 9 8 7 ) : S t a t i s t i c a l methods f o r e n v i r o n m e n t a l p o l l u t i o n m o n i t o r i n g . Van N o s t r a n d R e i n h o l d , New York. G r i g o r i e v a , A.S., Drozdov, O.A. and I l y i n a , S . S . (1983): O n t h e i n f l u e n c e o f e v a p o r a t i o n f r o m i r r i g a t e d a r e a s on p r e c i p i t a t i o n o f d r y y e a r s . T r a n s a c t i o n s o f G G I , V 280. 6-2 , Guy H. P. (1957) : The t r e n d o f suspended-sediment d i s c h a r g e o f t h e Brandywine Creek a t W i l m i n g t o n , Delaware, 1947-1955. U.S. G e o l o g i c a l Survey O p e n - f i l e Report. Slack, H i r s c h , R.M., lysis for monthly pp. 107-121. J.R., and S m i t h , R.A. water-quality data. ( 1 9 8 2 ) : Techniques o f t r e n d anaWater Resources Research, 18, H i r s c h , R.M. , and S l a c k , J.R. (1984) : A n o n p a r a m e t r i c t r e n d t e s t f o r seasonal d a t a w i t h s e r i a l dependence. Water Resources Research, 20, pp. 727-732. Hodges, J.L. Jr., and Lehmann, r a n k t e s t s . A n n . Math. S t a t i s t . , Hollander, M. and W o l f e , John W i l e y , New York. E.L. (1963): Estimates o f 34, pp. 598-611. (1973): D.A. Nonparametric l o c a t i o n based on statistical methods. Jensen, K.H., and Kefsgaard, J . C . (1988): S p a t i a l v a r i a b i l i t y o f p h y s i c a l parameters and processes i n f i e l d s o i l s : P a r t I: Water f l o w and s o l u t e t r a n s port in soil profiles P a r t 11: Water f l o w a t f i e l d s c a l e P a r t 111: S o l u t e t r a n s p o r t a t f i e l d s c a l e . N o r d i c H y d r o l o g i c a l Conference, Suomi, 1988. - Kendall, London. M.G. (1975) : - Rank K e n d a l l , M.G. , and S t u a r t , W i l e y , New York. A. correlation methods. 4th ed. Charles (1979) : The advanced t h e o r y o f s t a t i s t i c s . John (1985) : S e n s i t i v i t y o f w a t e r Klemes, V. t i o n s , WCP R e p o r t No. 98, WMO, Geneva. r e s o u r c e s systems t o c l i m a t e v a r i a - Klemes, V. (1986): O p e r a t i o n a l t e s t i n g o f H y d r o l o g i c a l Sciences J o u r n a l , 3 1 , pp. 13-24. hydrological s i m u l a t i o n models. ( 1 9 8 0 ) : M o d e l i p r o t s e s s o v f o r m i r o v a n i a rechnogo s t o k a Kuchment, L . S . f o r streamflow f o r m a t i o n ) Leningrad, G i d r o m e t e o i z d a t , p. 144. - Demidov, V.N., Kuchment, L.S., s t o k a (River r u n o f f formation) Griffin, (Models M o t o v i l o v , Yu.G. ( 1 9 8 3 ) : F o r m i r o v a n i e rechnogo MOSCOW, Nauka, p. 216. - L e t t e n m a i e r , D.P. (1976) : D e t e c t i o n o f t r e n d s i n w a t e r q u a l i t y d a t a from r e c o r d s w i t h dependent o b s e r v a t i o n s . Water Resources Research, 1 2 , pp. 10371046. L i n s , H.F. ( 1 9 8 7 ) : Trend a n a l y s i s o f m o n t h l y s u l f u r d i o x i d e emissions i n t h e conterminous U n i t e d S t a t e s , 1975-1984. Atmospheric Environment, 21, pp. 2297-2309. Mann, H.B. 245-259. (1945): Non-parametric t e s t against trend. Econometrica, 13, pp. Montgomery, R.H., and Reckhow, K.H. ( 1 9 8 4 ) : Techniques f o r d e t e c t i n g t r e n d s i n l a k e w a t e r q u a l i t y ; Water Resources B u l l e t i n , 20, pp. 43-52. M o r r i s , E.M. ( 1 9 8 0 ) : F o r e c a s t i n g f l o o d f l o w s i n grassy and f o r e s t e d b a s i n s u s i n g a d e t e r m i n i s t i c d i s t r i b u t e d m a t h e m a t i c a l model. I n H y d r o l o g i c a l Forec a s t i n g , I A H S P u b l i c a t i o n 129, pp. 247-255. 6- 3 Nash, J.E. ( 1 9 5 9 ) : S y s t e m a t i c d e t e r m i n a t i o n o f u n i t h y d r o g r a p h p a r a m e t e r s met h o d o f moments. J o u r n a l o f G e o p h y s i c a l Research, 64, pp. 111-115. N i e l s e n , D.R., Biggar, J . W . , and E h r , K.T. (1973): S p a t i a l v a r i a b i l i t y f i e l d measured s o i l - w a t e r p r o p e r t i e s . H i l g a r d i a 4 2 ( 7 ) , pp. 215-260. of Refsgaard, J . C . and Hansen, E. ( 1 9 8 2 ) : A d i s t r i b u t e d g r o u n d w a t e r / s u r f a c e w a t e r model f o r t h e Sus; catchment. P a r t 1: Model d e s c r i p t i o n , and P a r t 2 : Simulat i o n s o f s t r e a m f l o w d e p l e t i o n s due t o groundwater a b s t r a c t i o n s . N o r d i c Hydrology, 1 3 , pp. 299-322. Rogers, C.C.M. , Beven, K.J. , M o r r i s , E.M. , and Anderson, M.G. (1985) : Sensit i v i t y a n a l y s i s , c a l i b r a t i o n and p r e d i c t i v e u n c e r t a i n t y o f t h e I n s t i t u t e o f H y d r o l o g y D i s t r i b u t e d Model. J o u r n a l o f H y d r o l o g y , 81, pp. 179-191. Rumiantsev, V.A., K o n d r a t i e v , S.A., Kapotova, O p y t r a z r a b o t k i i primenenia mat.ematicheskikh ( E x p e r i e n c e o n development and a p p l i c a t i o n of r i v e r basins) L i n e n g r a d , G i d r o m e t e o i z d a t , pp. - N.I., L i v a n o v a , N.A. (1985): modelei basseinov malykh r e k m a t h e m a t i c a l models o f s m a l l 94. S c h e r t z , T.L., and H i r s c h , R.M. ( 1 9 8 5 ) : T r e n d a n a l y s i s o f weekly a c i d r a i n data 1978-83. U. S. G e o l o g i c a l Survey Water Resources I n v e s t i g a t i o n s R e p o r t 85-4211. - Sen, P.K. ( 1 9 6 8 ) : E s t i m a t e s o f t h e r e g r e s s i o n c o e f f i c i e n t based on K e n d a l l ’ s t a u . J o u r n a l o f t h e American S t a t i s t i c a l A s s o c i a t i o n , 63, pp. 1379-1389. Sherman, L.K. (1932) : Streamflow f r o m E n g l i s h News Record, 108, pp. 501-505. rainfall by the u n i t . g r a p h method. S t a t e H y d r o l o g i c a l I n s t i t u t e (1.984) : Recommendations on s t a t i s t i c methods f o r t h e a n a l y s i s o f homogeneity o f space-time v a r i a t i o n s o f s t r e a m f l o w , L e n i n g r a d . S t a t e H y d r o l o g i c a l I n s t i t u t e (1986) : M e t h o d o l o g i c a l recommendations o f t h e e s t i m a t i o n o f man’s a c t i v i t y e f f e c t s o n r u n o f f o f m i d - s i z e d and l a r g e r i v e r s and t h e r e c o v e r y o f r u n o f f c h a r a c t e r i s t i c s , Leningrad.. Storm, B. ( 1 9 8 6 ) : SHE. Systgme H y d r o l o g i q u e Europ6en. Danish H y d r a u l i c I n s t i t u t e . A short description. T h i e l , H. ( 1 9 5 0 ) : A r a n k - i n v a r i a n t method o f l i n e a r and p o l y n o m i a l r e g r e s s i o n a n a l y s i s , P a r t 3, I n : Proceedings o f K o n i n a l i j k e Nederlandse Akademie van Wetenschatpen A, 53, pp. 1397-1412. UNESCO (1980) : Casebook o f methods o f c o m p u t a t i o n o f q u a n t i t a t i v e changes i n t h e h y d r o l o g i c a l regime o f r i v e r b a s i n s due t o human a c t i v i t i e s . S t u d i e s and r e p o r t s i n Hydrology, 28, P a r i s . ( 1 9 8 4 ) : Nonparametric t e s t s f o r t r e n d i n w a t e r Van B e l l e , G . , and Bughes, J.P. q u a l i t y . Water Resources Research, 20, pp. 127-136. Vinogradov, Yu.B. (1385) : Model “Ob’em p o l o v o d i a - C G I - 8 2 “ volume - CGI-82’’ M o d e l ) . T r a n s . C G I , v o l . 304, pp. 3-42. (“Snowmelt (1987) : GGI-85 Model o f r u n o f f h y d r o g r a p h f o r m a t i o n Vuglinsky, V.S. D e s c r i p t i o n . S t a t e H y d r o l o g i c a l I n s t i t u t e , Leningrad, USSR. flood - Brief 6-4 Wardlaw, R.B. ( 1 9 7 8 ) : The development o f a d e t e r m i n i s t i c i n t e g r a t e d s u r f a c e / s u b s u r f a c e h y d r o l o g i c a l response model. Ph.D. T h e s i s , U n i v . of S t r a t c h c l y d e , Glasgow. Weeks, J.B. e t a 1 ( 1 9 7 4 ) : S i m u l a t e d e f f e c t s of o i l - s h a l e development on t h e h y d r o l o g y o f t h e Piceance b a s i n , Colorado. U.S. G e o l o g i c a l Survey, P r o f e s s i o n a l Paper 908. W o r l d M e t e o r o l o g i c a l O r g a n i z a t i o n (1988) : A n a l y z i n g l o n g t i m e s e r i e s o f hydrol o g i c a l d a t a w i t h r e s p e c t t o c l i m a t e v a r i a b i l i t y - P r o j e c t d e s c r i p t i o n . World C l i m a t e Programme A p p l i c a t i o n s WCAP-3, WMO/TD No. 2 2 4 . - 7-1 7. CASE STUDIES 7.1 Introduction A l t h o u g h many analyses o f man-induced changes as w e l l as o f c l i m a t e e f f e c t s have been made, few s t u d i e s t h a t f o c u s e x p l i c i t l y on d i s t i n g u i s h i n g between man's i n f l u e n c e and c l i m a t e have been r e p o r t e d . A s t h e above methodology i s new and appears as an i n t e g r a t i o n o f s t a t i s t i c a l methods and h y d r o l o g i c a l m o d e l l i n g , w h i c h t r a d i t i o n a l l y have been a p p l i ed s e p a r a t e l y , n o case s t u d i e s , t o t h e a u t h o r s ' knowledge, e x i s t , w h i c h f o l l o w s t r i c t l y t h e e s t a b l i s h e d methodology. T h e r e f o r e , a few case s t u d i e s have been p r e p a r e d f o r i l l u s t r a t i v e purposes by e x t r a c t i n g r e s u l t s f r o m and e x t e n d i n g r e l e v a n t studies. 7- 2 7.2 Groundwater Development i n t h e Kgge Sus; Catchments, Denmark A and T h i s case s t u d y i l l u s t r a t e s t h e a p p l i c a t i o n o f a d i s t r i b u t e d , p h y s i c a l l y based model.The case s t u d y h a s been d e r i v e d f r o m t h e Susd p r o j e c t , w h i c h i s d e s c r i b ed i n more d e t a i l i n Hansen and D y h r - N i e l s e n (1983) and t h e m o d e l l i n g a c t i v i t i e s i n p a r t i c u l a r i n R e f s g a a r d and Hansen ( 1 9 8 2 ) . The Sus: p r o j e c t was c a r r i e d o u t i n 1977-81 as p a r t o f a m a j o r D a n i s h I H P r e s e a r c h p r o j e c t i n t h e Suss Catchment. The main h y d r o l o g i c a l problem i n v e s t i g a t e d i n t h e p r o j e c t was t h e i n t e r a c t i o n between groundwater and s u r f a c e w a t e r i n o r d e r t o be a b l e t o p r e d i c t t h e h y d r o l o g i c a l consequences on s t r e a m f l o w s and h y d r a u l i c heads o f groundwater developments. A s p e c i f i c o b j e c t i v e was t o d e v e l o p a m a t h e m a t i c a l model s u i t a b l e f o r l o w f l o w p r e d i c t i o n . The s t u d y area, i n c l u d i n g t h e catchments o f Sus3 and t h e n e i g b o u r i n g catchments K@ge A , V e d s k G l l e A and T r y g g e v e l d e A , c o v e r s a b o u t 1000 k m o f t h e c e n t r a l and s o u t h e r n p a r t o f Zealand, a t a d i s t a n c e o f 50-70 k m south-west o f Copenhagen. The model area, t h e t o p o g r a p h i c d i v i d e s , and t h e groundwater model p o l y g o n a l mesh a r e shown i n F i g . 7.2.1. 9 The w a t e r s u p p l y o f m u n i c i p a l i t i e s and i n d u s t r i e s w i t h i n t h e b a s i n i s g e n e r a l l y based on l o w - i n t e n s i t y groundwater a b s t r a c t i o n schemes. However, a c e n t r a l i z e d h i g Q - i n t e n s i t y groundwater a b s t r a c t i o n f o r Copenhagen approximatel y 1 5 m i l l i o n m / y e a r i s l o c a t e d around Reqnemark w i t h i n and j u s t o u t s i d e t h e n o r t h - e a s t e r n p a r t o f t h e catchment. The groundwater a b s t r a c t i o n d u r i n g t h e 1950-80 p e r i o d i s shown i n F i g . 7.2.2. Discharge s i t e s Fig. 7.2.1 Model area, catchment b o u n d a r i e s and groundwater p o l y g o n a l grid, and d i s c h a r g e s i t e s u t i l i z e d i n t h e t w o examples. 7- 3 Groundwater o brt roct ion A (106 myytwrl Grandvoter obstruction lm'k) + F i g . 7.2.2 The gryundwater a b s t r a c t i o n during t h e 1950-80 p e r i o d w i t h i n t h e 940 k m a r e a c o v e r e d by t h e groundwater model. F i g . 7.2.3 Schematic d e s c r i p t i o n o f groundwater movements, r e c h a r g e an6 d i s charge areas. The landscape i s a moraine l a n d s c a p e formed b y g l a c i e r s d u r i n g t h e l a s t g l a shows a schematic c r o s s e c t i o n t h r o u g h one o f t h e m a i n c i a l p e r i o d . F i g . 7.2.3 r i v e r v a l l e y s and an upstream c r e e k . The l o w e r c o n f i n e d a q u i f e r i s r e g i o n a l and c o n s i s t s o f l i m e s t o n e . I t i s o v e r l a y e r e d by g l a c i a l d e p o s i t s , p r e d o m i n a n t l y c o n s i s t i n g of moraine c l a y , y e t w i t h some few a r e a s w i t h sandy s o i l . The t h i c k n e s s o f t h e g l a c i a l d e p o s i t s ranges f r o m l e s s t h a n 1 0 m e t r e s i n a few p l a c e s i n t h e c e n t r a l p a r t c f t h e catchment, t o more t h a n 100 m e t r e s i n t h e n o r t h - w e s t e r n p a r t s . The p h r e a t i c w a t e r t a b l e i n t h e g l a c i a l d e p o s i t s i s obs e r v e d t o b e h i g h l y dependent on t h e topography, and i s g e n e r a l l y s i t u a t e d a c o u p l e o f m e t r e s below t h e g r o u n d s u r f a c e . 7-4 The o v e r a l l s t r u c t u r e o f t h e model i s o u t l i n e d i n F i g . 7 . 2 . 4 . A s may b e observed, t h e model c o n s i s t s o f f o u r s e p a r a t e components f o r t h e c o n f i n e d r e g i o n a l a q u i f e r , t h e a q u i t a r d , t h e p h r e a t i c a q u i f e r s and t h e r o o t zone, r e s p e c t i v e l y . T h e t i m e s t e p s i n t h e c a l c u l a t i o n s a r e one day f o r a l l components of t h e model. The n e a r l y h o r i z o n t a l groundwater f l o w i n t h e c o n f i n e d r e g i o n a l a q u i f e r i s accounted f o r b y a t r a d i t i o n a l , s p a t i a l l y d i s t r i b u t e d , two-dimensional model o f t h e i n t e g r a t e d f i n i t e d i f f e r e n c e t y p e . The l o c a l v e r t i c a l exchange o f w a t e r t h r o u g h t h e a q u i t a r d between t h e p h r e a t i c and t h e c o n f i n e d a q u i f e r depends on t h e h e i g h t d i f f e r e n c e between t h e w a t e r t a b l e and t h e p i e z o m e t r i c head. The n o n - s t a t i o n a r y a q u i t a r d f l o w s a r e c a l c u l a t e d b y n u m e r i c a l i n t e g r a t i o n o f a n a l y t i c a l a q u i t a r d response f u n c t i o n s . Precipitation Evaporation U I l Jf Snow storage 1. Main area Meadow 97% Root zone Surface flow from meadow areas Model distribution M o d e l parameters Lumped 7 sub-areas Degree day factor 1 Evapotranspiration I loss I I I M a i n area I I I Meadow Evapotransporation parameters I Lumped 7 x 5 sub-areas Phreatic aquifer I I Meadow I I I I M a i n area Rootdistribution factor ' Root depths I Leaf-area index Lumped 7 sub-areas I I I Field capacity I Wilting point I Threshold values I Bypass constants I I Storage capacities Meadowarea in each polygon Evapotranspiration loss coming from baseflow or from phreatic aquifer 1 I I Aquitard t -- t Confined aquifer -- Subsurface outflow, groundwater abstraction, etc. 112 x 4 sub-polygons Storage coefficient time constants 112 x 4 sub-polygons Hydraulic conductivity specific storage 112 polygons Transmissivity storage coefficient c Fig. 7.2.4 The v e r t i c a l s t r u c t u r e , t h e h y d r o l o g i c a l model. spatial distribution, and p a r a m e t e r s o f The h o r i z o n t a l w a t e r movement i n t h e p h r e a t i c a q u i f e r i s m o d e l l e d as a d i r e c t r o u t i n g o f r u n o f f t o t h e r i v e r s , l i n e a r l y dependent on t h e h e i g h t of t h e w a t e r t a b l e e l e v a t i o n above a b a s e f l o w and a d r a i n w a t e r o u t l e t ( e l e v a t i o n o f t i l e drain pipes). 7-5 F o r t h e r o o t zone c a l c u l a t i o n s , t h e catchment i s d i v i d e d i n t o seven subareas denoted p r e c i p i t a t i o n areas w i t h s e p a r a t e p r e c i p i t a t i o n input and s o i l parameters. S p a t i a l v a r i a t i o n i n v e g e t a t i o n i s accounted f o r b y s u b d i v i d i n g each o f t h e seven p r e c i p i t a t i o n areas f u r t h e r i n t o s i x d i f f e r e n t v e g e t a t i o n a r e a s i n accordance w i t h t h e a c t u a l v e g e t a t i o n d i s t r i b u t i o n w i t h i n each p r e c i p i t a t i o n area. F o r t h e p r e s e n t p u r p o s e , some m o d e l l i n g r e s u l t s from two catchments have been e x t r a c t e d and a p p l i e d a c c o r d i n g t o t h e methodology d e s c r i b e d i n C h a p t e r 5. I t i s emphasized t h a t t h e o r i g i n a l s t u d y was n o t c a r r i e d o u t w i t h t h i s methodology i n mind. Hence t h e two cases have been p r e p a r e d i n c o n n e c t i o n w i t h t h e p r e s e n t r e p o r t m a i n l y f o r i l l u s t r a t i v e purposes. The m a i n q u e s t i o n t o b e a n a l y s e d was whether t h e Regnemark groundwater development, i n o p e r a t i o n s i n c e 1964/65 had any s i g n i f i c a n t i n f l u e n c e on s e l e c t e d h y d r o l o g i c a l variables;! i . e . t h e annual mean f l o w s Q and y n u a l m i n i m u m f l o w s Q f o r t h e 1 3 3 k m K@ge min A a t L e l l i n g e and f o r thaeve256 k m Sus: a t V e t t e r s l e v . 7.2.2 Example 1: Koge ........................ fi The m a i n p a r t o f t h e w e l l f i e l d s f o r t h e Regnemark Waterworks i s l o c a t e d w i t h - i n t h e KGge A catchments, and hence a c o n s i d e r a b l e i n f l u e n c e i s e x p e c t e d o n t h e r i v e r f l o w s . D i s c h a r g e d a t a was a v a i l a b l e f r o m 1350 onwards and t h u s i n c l u d e 1 4 y e a r s b e f o r e t h e s t a r t o f t h e development. T h e methodology has been a p p l i e d s t e p by s t e p as f o l l o w s : A s t e p t r e n d t e s t was s e l e c t e d , because t h e groundwater a b s t r a c t i o n t o t h e Regnemark Waterworks was i n c r e a s e d f r o m z e r o t o f u l l c a p a c i t y w i t h i n a few y e a r s . The u n d e r l y i n g monotonic t r e n d i n t h e l o c a l w a t e r s u p p l y , see F i g . 7.2.2, i s o f m i n o r i m p o r t a n c e i n t h i s catchment and i s hence n e g l e c t e d . The two p e r i o d s s e l e c t e d f o r a n a l y s i s were 1959-63 1974-78 ( t e s t p e r i o d ) . ( r e f e r e n c e p e r i o d ) and STEP2: S e l e c t i o n o f model t y p e .............................. Two a l t e r n a t i v e m o d e l l i n g approaches were c o n s i d e r e d , namely (a) No model, (b) The d i s t r i b u t e d p h y s i c a l l y based Sus5 model d e s c r i b e d above. i.e. s t a t i s t i c a l t e s t on t h e r e c o r d e d s t r e a m f l o w d a t a o n l y , and STEP3: Model c a l i b r a t i o n , v a l i d a t i o n and a p p l i c a t i o n _____-_-_--__--------------------------------------I t i s r e c a l l e d f r o m Chapter 5 t h a t t h e methodology p r e s c r i b e s a model c a l i b r a t i o n on t h e r e f e r e n c e p e r i o d , i n c l u d i n g a d i f f e r e n t i a l s p l i t sample t e s t f o r changes i n c l i m a t e c o n d i t i o n s . T h i s p r o c e d u r e was n o t f o l l o w e d i n t h e o r i g i n a l s t u d y and EO r e c a l i b r a t i o n / r e v a l i d a t i o n was c a r r i e d o u t f o r t h e p u r p o s e o f %he present p r o j e c t . 7-6 The c a l i b r a t i o n and v a l i d a t i o n p r o c e d u r e i n c l u d e d many o f t h e recommended elements, such as c a l i b r a t i o n i n one subcatchment and v a l i d a t i o n i n a n o t h e r ( u n c a l i b r a t e d ) subcatchment, c a l i b r a t i o n i n one t i m e p e r i o d and v a l i d a t i o n i n a n o t h e r t i m e p e r i o d w i t h d i f f e r e n t groundwater pumping r a t e s . F o r d e t a i l s r e g a r d i n g t h e c a l i b r a t i o n and v a l i d a t i o n p r o c e d u r e r e f e r e n c e s a r e made t o t h e o r i g i n a l r e p o r t s b y S t a n g ( 1 9 8 1 ) , R e f s g a a r d ( 1 9 8 1 ) , and Refsgaard and Stang ( 1 9 8 1 ) . A l e s s d e t a i l e d d e s c r i p t i o n i s g i v e n i n Refsgaard and Hansen (1982). I n t h e s e p u b l i c a t i o n s a l s o t h e s i m u l a t i o n r e s u l t s are shown w i t h r e s p e c t t o s t r e a m f l o w , s o i l m o i s t u r e , d r a i n a g e p i p e r u n o f f and p i e z o m e t r i c heads. I t may be concluded t h a t a comprnhensive t e s t i n g p r o c e d u r e was c a r r i e d o u t i n t h e o r i g i n a l s t u d y , a l t h o u g h n o t i n s t r i c t compliance w i t h t h e method o l o g y recommended i n t h i s r e p o r t . The example i s , however, b e i n g c o n t i n u e d f o r i l l u s t r a t i v e purposes. Two model s i m u l a t i o n s were and F i g . 5.4.1, namely: c a r r i e d out, cf. CASE 1 o f S u b s e c t i o n 5.4.2 o SIM1: One s i m u l a t i o n where t h e model p a r a m e t e r s a r e unchanged as compared t o t h e r e f e r e n c e p e r i o d . T h i s i s done b y k e e p i n g t h e groundwater a b s t r a c t i o n unchanged and e q u a l t o t h e v a l u e s v a l i d i n t h e . p e r i o d 1959-64. o SIM2: Another s i m u l a t i o n where t h e a c t u a l groundwater a b s t r a c t i o n s a r e i n t r o d u c e d . A l l o t h e r parameter v a l u e s a r e unchanged as compared t o SIMl. The s i m u l a t i o n r e s u l t s a r e g i v e n i n T a b l e 7.2.1. STEP4: Trend t e s t ---------------_- The model r e s u l t s were s u b j e c t t o t h e s t e p t r e n d t e s t s on t h e r e f e r e n c e and t e s t p e r i o d s u s i n g d e v i a t i o n s between observed and s i m u l a t e d v a l u e s c a l c u l a t e d as DEVl = OBS-SIM1 F o r t e s t i n g whether t h e DEVl samples can b e assumed i d e n t i c a l between t h e t e s t and r e f e r e n c e p e r i o d s (H h y p o t h e s i s ) , t w o - s i d e d W i l c o x o n Rank Sum t e s t s 0 were c a r r i e d o u t , a c c o r d i n g t o t h e p r o c e d u r e o u t l i n e d i n S e c t i o n 4.2. For sample l e n g t h s n = 5 and m = 5 H i s accepted, i f t h e r a n k sum, W i s within 0 t h e i n t e r v a l 18 5 W 2 37 ( B r a d l e y , 1 9 6 8 ) . The e s t i m a t e o f t h e d i f ? e r e n c e ben tween t h e two s e r i e s can be o b t a i n e d f r o m t h e Hodges-Lehman e s t i m a t o r , A . The s i m u l a t e d and observed d a t a a r e shown i n T a b l e 7.2.1 t h e DEV and DEV s e r i e s , t h e t e s t s t a t i s t i c s and t h e r e s u l t s . 1 2 together w i t h From t h e t a b l e i t appears t h a t t h e t e s t on t h e observed d a t a d i r e c t l y ( t h e no model approach) does n o t g i v e a s t a t i s t i c a l l y s i g n i f i c a n t t r e n d i n t h e a n n u a l f l o w s whereas t h e t r e n d on t h e l o w f l o w s i s s i g n i f i c a n t . U t i l i z i n g t h e m o d e l l i n g r e s u l t s and a n a l y z i n g t h e d e v i a t i o n s (DEV1 columns) t h e t e s t shows t h a t t h e t r e n d i n b o t h annual f l o w s and l o w f l o w s i s statistically significant. 7-7 Thus, i t c a n b e concluded t h a t t h e groundwater a b s t r a c t i o n h a s a s i g n i f i c a n t e f f e c t o n b o t h a n n u a l f l o w s and l o w f l o w s . The example i l l u s t r a t e s how t h e models a b i l i t y t o e x p l a i n some o f t h e c l i m a t e i n d u c e d v a r i a b i l i t y i n t h e h y d r o l o g i c a l s e r i e s reduces t h e v a r i a n c e i n t h e DEV s e r i e s as compared t o t h e OBS s e r i e s and t h e r e b y i n c r e a s e s t h e power 1 o f t h e s t a t i s t i c a l t e s t so t h a t t h e e f f e c t o f t h e groundwater a b s t r a c t i o n on t h e a n n u a l f l o w s can be d e t e c t e d . Table 7.2.1 Recorded and s i m u l a t e d v a l u e s € o r t h e s t e p t r e n d t e s t o n K@ge A R a i n f a 11 (mm) Year OBS Annual R u n o f f (mm) SIMl SIM2 DEVl DEV2 OBS Annual Low F l o w ( l / s ) DEVl DEV2 SIM SIM 1 2 _____--_____---- Reference P e r i o d 494 842 723 805 652 105 229 173 223 171 101 161 166 199 110 101 161 166 199 110 4 68 7 24 61 4 68 7 24 61 18 35 67 140 60 48 58 80 133 63 48 58 80 133 63 -30 -23 -13 - 7 - 3 -30 -23 13 7 - 3 703 180 147 147 33 33 64 76 76 -12 -12 138 50 41 41 30 30 47 34 34 1974 1975 1976 1977 1978 772 530 502 703 768 143 117 24 98 180 242 181 68 155 201 182 143 25 90 129 -39 -26 - 1 8 61 5 1 0 1 4 67 56 57 82 76 4 3 3 3 4 - - 99 64 44 57 21 Y 655 112 169 114 - 57 1 2 68 3 S 130 58 65 60 2 11 1 25 Yes 1959 1960 1961 1962 1963 X sX ----------- - 15 15 - 62 55 57 81 72 1 - 2 - 3 - 2 0 - 65 - 1 Test P e r i o d W Y n H accept? 0 A - 37 - - 29 39 35 40 341 Yes No 73 - 88 Yes - 33 - - 1.1 2 40 40 201 No No 59 - 52 STEPS: Further hydrological analysis -___---___----______---------------The m o d e l ' s a b i l i t y t o s i m u l a t e t h e e f f e c t o f t h e groundwater a b s t r a c t i o n was e v a l u a t e d b y c o n s i d e r i n g t h e s i m u l a t i o n where t h e a c t . u a l groundwater a b s t r a c t i o n d a t a were a p p l i e d ( S I M ) . The t e s t s on t h e DEV s e r i e s (DEV, = O B S - S I M ) 2 2 2 i n d i c a t e t h a t a h y p o t h e s i s o f unchanged c o n d i t i o n s i n t h e DEV s g r i e s between 2 t h e t w o p e r i o d s i s accepted b o t h € o r a n n u a l f l o w s and l o w f l o w s . Yes 11 7-8 A n a n a l y s i s o f t h e e f f e c t s o f c l i m a t e and groundwater s p e c t i v e l y , on t h e a n n u a l r u n o f f shows t h e f o l l o w i n g : abstraction, rc- The average a n n u a l r a i n f a l l i s observed t o decrease f r o m 1959-63 t o 1974-78, a l t h o u g h n o t a s t a t i s t i c a l l y s i g n i f i c a n t t r e n d . I n s p i t e o f t h i s t h e mean a n n u a l r u n o f f would have i n c r e a s e d f r o m 1 4 7 mm/year t o 169 mm/year i f t h e r e h a d n o t been any groundwater a b s t r a c t i o n ( S I M 1 ) . Thus, t h e e f f e c t o f c l i m a t e i s (169-147) mm/year = + 2 2 mm/year change i n annual r u n o f f from reference t o t e s t p e r i o d . When a c c o u n t i n g f o r a c t u a l groundwater a b s t r a c t i o n ( S I M 2 ) t h e s i m u l a t e d mean a n n u a l r u n o f f i s seen t o decrease f r o m 147 mm/year t o 114 mm/year. Thus t h e s e p a r a t e e f f e c t o f t h e groundwater a b s t r a c t i o n i s (114-169) mm/year = - 55 mm/year change i n a n n u a l r u n o f f f r o m r e f e r e n c e t o t e s t period. From t h e s t a t i s t i c a l t e s t , i t can b e e s t i m a t e d t h a t t h e e f f e c t o f t h e groundwater a b s t r a c t i o n i s a change i n t h e mean a n n u a l f l o w o f A = - 88 mm/year . The q u a n t i t a t i v e c o n s i s t e n c y check i s made by comparing t h e model p r e d i c t e d e f f e c t o f groundwater a b s t r a c t i o n ( - 55 mm/year) t o t h e e s t i m a t e f r o m t h e s t a t i s t i c a l t e s t ( - 88 mm/year). The d i f f e r e n c e between t h e s e two f i g u r e s i n d i c a t e s t h a t t h e r e i s n o t f u l l c o n s i s t e n c y . The reason f o r t h i s d i f f e r e n c e i s m a i n l y due t o a t o o l o w r u n o f f s i m u l a t i o n i n t h e r e f e r e n c e p e r i o d , w h i c h a l s o r e s u l t e d i n a l a r g e , but n o t s t a t i s t i c a l l y significant, test s t a t i s t i c W on t h e DEV series. As a conclusion a n q u a n t i t a t i v e c o n s i s t e n c y w i t h i n t h e acceptez u n c e r t a i n t y l i m i t s h a s been o b t a i n e d . However, t h e a n a l y s i s a l s o i n d i c a t e d t h a t scope f o r f u r t h e r improvements e x i s t s i n t h e model work. C o r r e s p o n d i n g l y , t h e e f f e c t s o f groundwater a b s t r a c t i o n and o f t h e c l i mate o n t h e a n n u a l l o w f l o w s c a n b e e s t i m a t e d as f o l l o w s : Model s i m u l a t i o n s : E f f e c t s o f climate: Effects o f abstraction: (a) (b) - 8 l/s 65 l / s - 52 l / s E s t i m a t e from s t a t i s t i c a l t e s t : Effects o f abstraction: (C) I n t h i s case t h e r e i s seen t o b e a n a c c e p t a b l e ( a n d b e t t e r t h a n € o r a n n u a l r u n o f f v a l u e s ) q u a n t i t a t i v e c o n s i s t e n c y between t h e model s i m u l a t i o n s and t h e s t a t i s t i c a l t e s t , where a l s o observed l o w f l o w v a l u e s a r e u t i l i z e d . 7.2.3 Example 2: Suss a t V e t t e r s l e v .................................... No w e l l f i e l d s t o Regnemark a r e l o c a t e d w i t h i n t h e Suss catchment upstream o f V e t t e r s l e v . However, some o f t h e w e l l f i e l d s a r e l o c a t e d i n t h e same r e g i o n a l a q u i f e r . Furthermore, t h e l o c a l a b s t r a c t i o n s f r o m t h e a q u i f e r t a k i n g p l a c e w i t h i n o r c l o s e t o t h e catchment a r e a l s o i n c r e a s e d s l i g h t l y w i t h t i m e , c f . I 7 -9 Hence, t h e purpose of t h i s example i s t o a n a l y s e whether t h e i n F i g . 7.2.2. creased groundwater a b s t r a c t i o n has had any s i g n i f i c a n t e f f e c t on t h e a n n u a l f l o w s and l o w f l o w s a t Suss, V e t t e r s l e v . D i s c h a r g e d a t a were a v a i l a b l e f o r one p e r i o d , 1974-80. A s t e p t r e n d t e s t was s e l e c t e d . STEP2: S e l e c t i o n o f model t y p e .............................. A s streamflow approach i s a model. d a t a were o n l y a v a i l a b l e f o r one p e r i o d t h e o n l y p o s s i b l e d i s t r i b u t e d , p h y s i c a l l y based model - i n t h i s case t h e SusA The model c a l i b r a t i o n and v a l i d a t i o n i n t h e o r i g i n a l s t u d y i s d e s c r i b e d u n d e r Example 1 above. I t i s r e c a l l e d f r o m S u b s e c t i o n 5.4.2 Case 2 t h a t t h e t e s t r e q u i r e m e n t s a r e a d i f f e r e n t i a l s p l i t - s a m p l e t e s t f o r c l i m a t e change i n t h e t e s t p e r i o d and p r o x y - b a s i n d i f f e r e n t i a l s p l i t - s a m p l e t e s t s f o r groundwater a b s t r a c t i o n u s i n g d a t a f o r two o t h e r b a s i n s . A s d i s c u s s e d under Example 1 t h e s e t e s t r e q u i r e ments have n o t been s t r i c t l y f u l f i l l e d , y e t a comprehensive t e s t i n g p r o c e d u r e was c a r r i e d o u t . Thus, t h e s p e c i f i c r e s u l t s i n t h e f o l l o w i n g w i l l have t o be t a k e n w i t h some r e s e r v a t i o n s , however t h e p r o c e d u r e i 1 l u s t r a . t i n g t h e methodology i s s t i l l valid. The model s i m u l a t i o n s f o l l o w s t h e p r o c e d u r e o u t l i n e d as Case 2 o f s e c t i o n 5 . 4 . 2 and F i g . 5.4.1, namely: Sub- 0 SIM1: One s i m u l a t i o n w i t h p a r a m e t e r s c o r r e s p o n d i n g t o a c o n s t a n t groundwater a b s t r a c t i o n e q u a l t o t h e v a l u e s v a l i d i n 1950. 0 SIM Another s i m u l a t i o n where t h e a c t u a l groundwater a b s t r a c t i o n s a r e introduced. 2: Trend t e s t -_--------------STEP4: No s t a t i s t i c a l t r e n d t e s t i s c a r r i e d o u t u n d e r STEP4. Hence no s t a t i s t i c a l l y based s t r i c t c o n c l u s i o n r e g a r d i n g t h e e f f e c t s o f c l i m a t e v e r s u s man i s obtained. Instead a hydrological under STEP5 below. analysis and statistical tests are carried out 7-10 _-_______________------------------- STEPS: F u r t h e r h y d r o l o g i c a l a n a l y s i s I n o r d e r t o a n a l y s e t h e e f f e c t s o f t h e groundwater a b s t r a c t i o n on t h e f l o w regime t h e t w o s e r i e s o f d e v i a t i o n s between observed and s i m u l a t e d v a l u e s were calculated DEVl = OBS-SIM1 DEV2 = OBS-SIM2 Two-sided W i l c o x o n Rank t h a t t h e PEV hypothesis, HO a selected s i g n i f i c a n c e l e v e l accepted i f t h e r a n k sum W n 1968). Sum t e s t s a r e then c a r r i e d o u t w i t h t h e n u l l and DEV samples can b e assumed i d e n t i c a l . W i t h 2 o f 5% and sample l e n g t h s n = 7 and m = 7, H, i s i s w i t h i n t h e i n t e r v a l 37 5 W 2 68 (BradYey, n The r e s u l t s a r e shown i n T a b l e 7.2.2. The e f f e c t o f t h e groundwater pumping o n t h e mean a n n u a l r u n o f f i s e s t i mated t o be A = 11 mm/year. However, t h i s e f f e c t i s s o s m a l l compared t o unc e r t a i n t i e s i n t h e model p r e d i c t i o n s t h a t , i f d a t a had e x i s t e d f o r a r e f e r e n c e p e r i o d a l s o a n a n a l y s i s b y use o f t h i s model would p r o b a b l y n o t have been a b l e t o d e t e c t t h i s e f f e c t as a s t a t i s t i c a l l y s i g n i f i c a n t trend. - The e s t i m a t e d e f f e c t on t h e groundwater a b s t r a c t i o n on t h e l o w f l o w s i s a r e d u c t i o n , A = - 4 1 l / s . I n c o n t r a r y t o t h e e f f e c t on t h e annual flows t h e e f f e c t on t h e l o w f l o w s would p r o b a b l y have been d e t e c t e d as s t a t i s t i c a l l y s i g n i f i c a n t if d a t a h a d e x i s t e d i n a r e f e r e n c e p e r i o d and model analyses were made. T a b l e 7.2.2 Year Recorded and s i m u l a t e d v a l u e s f o r t h e s t e p t r e n d t e s t on Sus; Rainfall (mm) OBS Annual R u n o f f (mm) SIMl S I M 2 DEVl DEV2 OBS a t Vetterslev Annual Low F l o w ( l / s ) SIMl SIM2 DEVl DEV2 T est P e r i o d -----_----- 1974 1975 1976 1977 1978 1979 1980 - 772 530 502 703 768 710 913 236 189 77 167 248 244 355 272 199 73 180 235 240 397 262 192 65 166 221 227 384 - 36 10 4 13 13 4 42 700 217 228 217 - 143 86 98 97 - - 26 3 12 1 27 17 29 154 137 66 131 137 202 295 181 148 150 197 180 186 356 148 109 109 155 139 159 297 11 0 160 200 159 21 21 72 71 64 - - - 27 11 84 66 43 16 61 - 39 - - - - 6 28 43 24 2 43 2 X sx - 45 n ' H 0 A accept? 60 1 35 29 363 684 Ih_c_ Yes No -11 -41 7-11 7.2.4 References .................... B r a d l e y , J.V. (1968) : D i s t r i b u t i o n - f r e e Enqlewood C l i f f s , New J e r s e y . statistical tests. Prentice-Hall, Hansen, E. and D y h r - N i e l s e n , M. ( 1 9 8 3 ) : The Sus; p r o j e c t : M o d e l l i n g f o r w a t e r r e s o u r c e s arrangement. N a t u r e and Resources, V o l . 19, No. 3, pp. 10-18. Refsgaard, J . C . (1981) : The s u r f a c e w a t e r component o f an i n t e g r a t e d h y d r o l o g i c a l model. D a n i s h Committee f o r H y d r o l o g y . R e p o r t SUSA H 1 2 , 108 pp. Refsgaard, J . C . , and Hansen, E. (1982): A d i s t r i b u t e d g r o u n d w a t e r / s u r f a c e w a t e r model € o r t h e Sus;-catchment. P a r t I:model d e s c r i p t i o n and P a r t 11: S i m u l a t i o n s o f s t r e a m f l o w d e p l e t i o n due t o groundwater a b s t r a c t i o n . N o r d i c H y d r o l o g y , V o l . 1 3 , No. 5, pp. 299-322. and Stang, 0 . ( 1 9 8 1 ) : A n i n t e g r a t e d q r o u n d w a t e r / s u r f a c e w a t e r Refsgaard, J . C . , h y d r o l o g i c a l model. D a n i s h Committee f o r H y d r o l o g y . R e p o r t SUSA H 1 3 , 1 2 2 pp. Stang, 0 . ( 1 9 8 1 ) : A r e g i o n a l groundwater model € o r t h e Susb-area. m i t t e e f o r Hydrology. R e p o r t SUSA H 9, 1 1 2 pp. D a n i s h Com- 7-12 7.3 The B l u e R i v e r B a s i n , Nebraska, USA The L i t t l e and B i g B l u e R i v e r b a s i n s ( B l u e R i v e r b a s i n ) , l o c a t e d i n southe a s t e r n Nebraska ( F i g u r e 7 . 3 . 1 ) , i s an a r e a o f i n t e n s i v e groundwater development f o r i r r i g a t i o n . Groundwater c o n d i t i o n s t h r o u g h 1962 were used by Emery (1966) t o c a l i b r a t e an e l e c t r i c a n a l o g f l o w model. The model was used t o make p r e d i c t i o n s o f w a t e r - l e v e l changes and s t r e a m f l o w d e p l e t i o n s due t o groundw a t e r pumping a s o f t h e y e a r s 1982 and 2022. A subsequent e x a m i n a t i o n o f t h e m o d e l ' s p r e d i c t i v e c a p a b i l i t i e s was done a p p r o x i m a t e l y t w e n t y y e a r s l a t e r by A l l e y and Emery ( 1 9 8 6 ) . Because streamflow d e p l e t i o n was a m a j o r o b j e c t i v e o f t h e m o d e l l i n g , t r e n d s i n s t r e a m f l o w were examined as p a r t o f t h i s p o s t - a u d i t a n a l y s i s and compared t o t h e e a r l i e r p r e d i c t i o n s by Emery ( 1 9 6 6 ) . S t r e a m f l o w r e c o r d s were examined f o r t h e f i v e s t a t i o n s l i s t e d i n T a b l e 7.3.1. F o u r o f t h e s t a t i o n s a r e shown on F i g . 7.3.1. S t a t i o n 8820, n o t shown on F i g . 7 . 3 . 1 , i s l o c a t e d o n t h e B l u e R i v e r n e a r t h e Nebraska-Kansas S t a t e l i n e about 50 k m e a s t o f s t a t i o n 8840. T r e n d a n a l y s i s u s i n g t h e Mann-Kendall t e s t was p e r f o r m e d on t w o . s t r e a m f l o w s t a t i s t i c s during t h e 1963-1982 w a t e r y e a r s : Annual s t r e a m f l o w volume and combined October t h r o u g h December s t r e a m f l o w volume. The l a t t e r volume r e p r e s e n t s s t r e a m f l o w during months t h a t o c c u r a f t e r t h e i r r i g a t i o n season, and t h u s r e d u c t i o n s i n f l o w s would n o t be due t o s u r f a c e w a t e r d i v e r s i o n s . Streamf l o w during t h e s e months may i n c r e a s e o v e r t i m e as a r e s u l t o f r e t u r n f l o w s f r o m s u r f a c e w a t e r i r r i g a t i o n ; however, t h i s t e n d s t o make e s t i m a t e s o f downt r e n d s more c o n s e r v a t i v e . ............................................................... STEP 1: D e t e r m i n a t i o n o f s t e p t r e n d o r monotonic t r e n d a n a l y s i s A monotonic t r e n d t e s t was s e l e c t e d because t h e changes i n s t r e a m f l o w deplet i o n o c c u r r e d g r a d u a l l y over time. STEP 2: S e l e c t i o n o f model t y p e -----------_---_--------------Two s e p a r a t e a n a l y s e s o f t r e n d s i n t h e a n n u a l f l o w s t a t i s t i c s were made. The f i r s t a n a l y s i s t e s t e d f o r t r e n d s i n t h e f l o w s themselves. I n t h e second anal y s i s an a t t e m p t was made t o remove t h e v a r i a b i l i t y o f f l o w s due t o c l i m a t i c f l u c t u a t i o n s b e f o r e p e r f o r m i n g t h e t r e n d t e s t . The l a t t e r a n a l y s i s was p e r formed by f i r s t e s t i m a t i n g a n n u a l s t r e a m f l o w s f o r each s t a t i o n u s i n g a s i m p l e m o n t h l y w a t e r b a l a n c e model ( T h o r n t h w a i t e and Mather, 1955; Mather, 1 9 8 1 ) . STEP 3 : Model c a l i b r a t i o n , v a l i d a t i o n , and a p p l i c a t i o n ...................................................... Parameters i n t h e w a t e r b a l a n c e model were based on r e g i o n a l i z e d e s t i m a t e s used by t h e U.S. Departments o f Commerce and A g r i c u l t u r e i n t h e computation o f t h e Palmer D r o u g h t S e v e r i t y I n d e x . A r e g r e s s i o n e q u a t i o n between t h e observed a n n u a l f l o w s and t h o s e from t h e w a t e r b a l a n c e model was t h e n developed f o r each s t a t i o n as: . Qi = a + bQ. + e 1 i (7.3.1) 7-13 where Q . and Q . a r e t h e o b s e r v e d and s i m u l a t e d a n n u a l f l o w f o r y e a r i, a and b 1 1 a r e r e g r e s s i o n c o e f f i c i e n t s , and e i s t h e r e s i d u a l f o r y e a r i. The r e g r e s s i o n i c o e f f i c i e n t s were always s i g n i f i c a n t a t t h e CL = 0 . 0 1 l e v e l . STEP 4: Trend t e s t -----------------The r e s u l t s a r e i n The t r e n d t e s t was a p p l i e d t o t h e r e s i d u a l s o f Eq. 7 . 3 . 1 . c l u d e d i n T a b l e 7.3.1. The p - v a l u e s shown a r e t h e p r o b a b i l i t i e s o f i n c o r r e c t l y r e j e c t i n g t h e n u l l hypothesis t h a t t h e r e i s no t r e n d i n t h e d a t a . W i t h one m i n o r e x c e p t i o n , a l l s l o p e s f r o m t h e t r e n d a n a l y s i s i n d i c a t e d decreases i n s t r e a m f l o w o v e r t i m e . Trends w i t h p - v a l u e s l e s s t h a n 0.10 were d e t e c t e d a b o u t h a l f t h e t i m e . The average r a t e s o f s t r e a m f l o w d e p l e t i o n e s t i mated by t r e n d a n a l y s i s were t y p i c a l l y an o r d e r o f magnitude o r more g r e a t e r t h a n t h o s e e s t i m a t e d by Emery ( 1 9 6 6 ) . There was f a i r c o n s i s t e n c y among t h e t r e n d s l o p e e s t i m a t e s , p a r t i c u l a r l y among t r e n d s w i t h l o w p - v a l u e s . Trend s l o p e e s t i m a t e s i n d i c a t e d i n c r e a s e s i n s t r e a m f l o w d e p l e t i o n downstream, as expected. Mote t h a t t h e observed t r e n d s i n a n n u a l s t r e a m f l o w volume r e p o r t e d i n Table 7.3.1 when u s i n g t h e October-December f l o w s were computed as t h e t r e n d observed d u r i n g t h e 3-month p e r i o d m u l t i p l i e d by f o u r . The t r e n d s l o p e d a t a suggest ay ayfrage r a t e o f decrease o f a n n u a l p e r y e a r f o r t h e combined B i g and s t r e a m f l o w volume on t h e o r d e r o f 8 h m y r L i t t l e Blue River basins. U s i n g t h i s e s t i m a t e and s u b t r a c t i n g e s t i m a t e d s t r e a m f l o w d e p l e t i o n s due t o s u r f a c e w a t e r d i v e r s i o n s , y i e l d s an e s t i a t e o f t o t a l s t r e a m f l o w d e p l e t i o n d u r i n g t h e 1963-1982 w a t e r y e a r s o f 700 hm This i s t e n t i m e s l a r g e r t h a n t h e v a l u e p r e d i c t e d by Emery's a n a l o g model. F u r t h e r h y d r o l o g i c p e r s p e c t i v e s on t h i s d i s c r e p a n c y a r e d i s c u s s e d by A l l e y and Emery (1986). Y. References A l l e y , W.M. , and Emery, P.A. (1986) : Groundwater model o f t h e B l u e R i v e r bas i n , Nebraska-twenty y e a r s l a t e r . J o u r n a l o f H y d r o l o g y , 85, pp. 225-249. Emery, P.A. (1966) : Use o f a n a l o g model t o p r e d i c t s t r e a m f l o w d e p l e t i o n , and L i t t l e B l u e R i v e r b a s i n , Nebraska. Ground Water, 4, pp. 13-20. Mather, J . R . ( 1 9 8 1 ) : Usirig computed s t r e a m f l o w i n watershed a n a l y s i s . Resources B u l l e t i n , 1 7 , pp. 474-482. T h o r n t h w a i t e , C.W., and Mather, J.R. ( 1 9 5 5 ) : The w a t e r b a l a n c e t i o n s i n C l i m a t o l o g y , L a b o r a t o r y o f C l i m a t o l o g y , C e n t e r t o n , N.J., In: Big Water Publica8 , 1 0 4 pp. d 0 0; 7-14 C .rl 4-J aJ rl 0 2 $ n h .-C P 5 f v) D .Y 4 ? a a 01 - 2 L C 3 c - x 0 P 5 .-In P 0 c 0 C 0 c w U 9 U E 0 E s P Y P Y 0 c M .In U .!z a 'z1 I aJ U E 2 1 7-15 - 0, 20 10 w 20 Miles 10 BUTLER \ 30 7, ; NEBRASKA 7-- Index Map HAMILTON I I YORK SEWARD _- ADAMS b WEBSTER A ~ K O L L S - ExpImMllon A OMo Gaoino station and number table lor Station names) &: - -Topographic dwde 40”- I NEBRASKA ----KANSAS 98” Fig. 7.3.1 L o c a t i o n o f t h e B i g and L i t t l e B l u e R i v e r b a s i n s . APPENDIX A Influence o f Global C l i m a t e Changes o n Water Resources A p p e n d i x A i s p r e p a r e d by M.I. B u d y k o and K.Ya. V i n n i k o v , 1987 A- 1 INFLUENCE O F GLOBAL CLIMATIC CHANGES ON WATER RESOURCES M . I . Budyko and K. Ya. V i n n i k o v ( S t a t e H y d r o l o g i c a l I n s t i t u t e , L e n i n g r a d , USSR) The f i r s t q u a n t i t a t i v e e s t i m a t e s o f t h e e x p e c t e d a n t h r o p o g e n i c change o f mean g l o b a l s u r f a c e a i r temperature were d e r i v e d by i n d i v i d u a l s c i e n t i s t s . Accord0 i n g t o t h e f o r e c a s t p u b l i s h e d i n 1972 (Budyko, 1972) a 0.8 C i n c r e a s e i n temp e r a t u r e due t o carbon d i o x i d e by 2 0 0 0 , 1.5OC by 2025 and 2OC by 2050 s h o u l d be observed. A subsequent f o r e c a s t r e f l e c t i n g t h e agreed p o s i t i o n o f USSR s c i e n t i s t s s t u d y i n g t h i s p r o b l e m was p u b l i s h e d i n 1 9 8 1 and i t c o n t a i n e d t h e f o l l o w i n g e s t i m a t e s of changing mean a i r t e m p e r a t u r e : 0.9OC by 2000, 1.8OC by 0 2025 and 2.8 C by 2050 (Budyko e t a l . , 1981) I n 1 9 8 1 a j o i n t U.S./USSR forec a s t was o b t a i n e d showing t h a t t h e most p r o b a b l e t e m p e r a t u r e changes w i l l b e i n c r e a s e s o f l 0 C by 2000, 2OC by 2025 and 3OC by 2050 (The C l i m a t i c E f f e c t s o f 1982). T h i s f o r e c a s t was based on e s t i m a t i n g a combined e f f e c t Increased o f CO and o t h e r gases t a k i n g i n t o a c c o u n t t h e t h e r m a l i n e r t i a o f t h e c l i m a t e 2 system. L a t e r on, i n 1985 a t t h e UNEP, WMO and ICSU meetings i n V i l l a c h ( A u s t r i a ) t h e f o r e c a s t was adopted t h a t t h e g l o b a l warming e q u i v a l e n t t o t h e e f f e c t o f d o u b l i n g atmospheric CO2 c o n c e n t r a t i o n (1.5-4.5OC) would p r o b a b l y b e reached by a p p r o x i m a t e l y 2030. . ...., A new e s t i m a t e r e f l e c t i n g updated knowledge f r o m t h e USSR i s proposed i n a j o i n t monograph (Man-induced c l i m a t i c changes, 1987) by r e s e a r c h w o r k e r s o f r e s e a r c h i n s t i t u t e s o f t h e S t a t e Committee o f Hydrometeorology and C o n t r o l o f t h e N a t u r a l Environment and t h e USSR Academy o f Sciences. A c c o r d i n g t o t h i s e s t i m a t e , as compared w i t h t h e g r e i n d u s t r i a l epoch, t h e mean s u r f a c e a i r temp e r a t u r e had i n c r e a s e d by 0.5 C by t h e :id-1970s t h e anthropogenic g l o b a l 0 warming amount t o a b o u t 1.3 c by 2000, 2.5 C by 2025 and 3-4OC by 2050. Thus, t h e a v a i l a b l e e s t i m a t e s o f expected change o f mean a i r t e m p e r a t u r e a r e r e l a t i v e l y c o n s i s t e n t . They a r e g r a d u a l l y improved due t o more c o r r e c t c o n s i d e r a t i o n o f t h e most i m p o r t a n t f a c t o r s i n f l u e n c i n g i t . I t i s i m p o r t a n t t h a t a l l o f t h e f o r e c a s t s p r e d i c t a warming f a r exceeding t h o s e c o m p a r a t i v e l y s m a l l v a r i a t i o n s i n mean t e m p e r a t u r e t h a t a p e a r due t o n a t u r a l reasons. There i s l i t t l e q u e s t i o n whether t h e warming o f 1 , 2 o r 3OC w i l l come, t h e p r o b l e m i s t h e t i m e when i t w i l l o c c u r i n t h e f u t u r e . The f a c t i t s e l f o f f u r t h e r development o € anthropogenic g l o b a l warming seems t o b e undoubted, a t l e a s t f o r t h e n e x t hundred y e a r s . 8 0 Less c e r t a i n a r e t h e e s t i m a t e s o f t h e p o s s i b l e r e g i o n a l changes o f t h e c l i m a t i c c o n d i t i o n s . B o t h t h e c l i m a t e models and e m p i r i c a l d a t a a r e u s e d t o o b t a i n them. R e g i o n a l Changes o f S u r f a c e A i r Temperature and P r e c i p i t a t i o n I n r e c e n t y e a r s , d e t a i l e d comparisons have been made o f t h e r e s u l t s o f u s i n g c l i m a t e models t o o b t a i n e s t i m a t e s o f t h e e f f e c t o f i n c r e a s i n g CO c o n c e n t r a 2 t i o n i n t h e atmosphere on t h e g e o g r a p h i c a l d i s t r i b u t i o n o f s u r f a c e a i r t-emper a t u r e and p r e c i p i t a t i o n . I t p r o v e d t h a t f o r t h e a i r t e m p e r a t u r e f i e l d t h e r e s u l t s o f a p p l y i n g d i f f e r e n t models agree a t l e a s t q u a l i t a t i v e l y , whereas f o r t h e p r e c i p i t a t i o n f i e l d t h e r e s u l t s o f u s i n g even v a r i o u s v e r s i o n s o f t h e same model have f r e q u e n t l y l i t t l e i n common ( S c h l e s s i n g e r , 1 9 8 4 ) . T h i s p r e s e n t s an e s s e n t i a l d i f f i c u l t y i n u s i n g c l i m a t e models t o e s t i m a t e r e g i o n a l c l i m a t i c changes w h e n a n t h r o p o g e n i c g l o b a l warming develops. A- 3. ~n i m p o r t a n t r e s u l t o b t a i n e d b y u s i n g c l - i m a t e models i s t h e c o n c l u s i o n t h a t t h e c l i m a t i c system has a l m o s t t h e same response t o a d d i t i o n a l h e a t f l u x e s s p r e a d d i f f e r e n t l y by l a t i t u d e . Manabe and Wetherald ( 1 9 8 0 ) , have shown by s i m u l a t i o n s w i t h a g e n e r a l a t m o s p h e r i c c i r c u l a t i o n model, t h a t changes i n l a t i t u d i n a l d i s t r i b u t i o n o f mean a n n u a l s u r f a c e a i r t e m p e r a t u r e and o t h e r c l i mate elements w i t h d o u b l i n g CO c o n c e n t r a t i o n i n t h e atmosphere p r a c t i c a l l y 2 c o i n c i d e s w i t h t h o s e caused b y a 2 % i n c r e a s e i n t h e s o l a r c o n s t a n t . L a t e r , Hansen e t a l . (1984) demonstrated t h a t t h i s c o n c l u s i o n c o u l d be a p p l i e d t o l a t i t u d e s e a s o n a l and s p a t i a l d i s t r i b u t i o n o f t e m p e r a t u r e change and, p r o b a b l y , o t h e r c l i m a t e elements. Moreover, t h e r e i s no s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s between e m p i r i c a l e s t i m a t e s ( d e r i v e d from d a t a on modern c l i m a t e change) o f l a t i t u d e - s e a s o n a l d i s t r i b u t i o n o f s u r f a c e t e m p e r a t u r e s e n s i t i v i t y t o v a r i a t i o n s i n a t m o s p h e r i c CO c o n c e n t r a t i o n and i t s t r a n s p a r e n c y ( V i n n i k o v and Groisman, 1982; V i n n i k o v , 1&36). T h i s r e s u l t gave u s wide p o s s i b i l i t i e s € o r o b t a i n i n g t h e e m p i r i c a l e s t i mates o f r e g i o n a l changes o f c l i m a t e c o n d i t i o n s a t d i f f e r e n t stages o f development o f q l o b a l a n t h r o p o g e n i c warming. These e s t i m a t e s a r e based on d a t a on changing c l i m a t i c c o n d i t i o n s over t h e p e r i o d o f i n s t r u m e n t a l m e t e o r o l o g i c a l o b s e r v a t i o n s and on p a l e o c l i m a t i c r e c o n s t r u c t i o n f o r warmer epochs of t h e past. Even t h e f i r s t p r e d i c t i o n o f r e g i o n a l c l i m a t i c changes f r o m t h e USSR t e r r i t o r y was based o n e m p i r i c a l e s t i m a t e s o b t a i n e d f r o m d a t a on modern c l i m a t i c 0 changes f o r a 0.5 C g l o b a l warming and on p a l e o c l i m a t i c r e c o n s t r u c t i o n s f o r g l o b a l warming b y s e v e r a l degrees (Budyko e t a l . , 1975). A t p r e s e n t , schematic c h a r t s o f changing mean a n n u a l and s e a s o n a l c h a r a c t e r i s t i c s o f d i f f e r e n t c l i m a t i c elements f o r much o f t h e N o r t h e r n Hemisphere a r e c o m p i l e d b y u s i n g d a t a on modern c l i m a t i c changes ( V i n n i k o v and Groisman, 1979; Groisman, 1981; V i n n i k o v and Kovyneva, 1983; Kovyneva, 1984, V i n n i k o v , 1 9 8 6 ) . These schematic c h a r t s can b e used t o e s t i m a t e p r o b a b l e v a r i a t i o n s i n 0 r e g i o n a l c l i m a t i c c o n d i t i o n s a t an i n c r e a s e d mean a i r t e m p e r a t u r e o f 0.5 C compared w i t h i t s average v a l u e f o r t h e l a s t hundred y e a r s . The c l i m a t i c cond i t i o n s o f t h e Holocene optimum, 5-6 thousand y e a r s ago, o f t h e l a s t i n t e r g l a c i a l epoch ( t h e M i k u l i n o i n t e r g l a c i a l ) , 1 2 5 thousand y e a r s ago, and o f t h e P l i o c e n e optimum, 3-4 thousand y e a r s ago (Borzenkova and Zubakov, 1984, 1985; V e l i c h k o e t a l . , 1982, 1983, 1984) a r e t h e p a l e o c l i m a t i c analogues o f c l i m a t i c c o n d i t i o n s f o r t h e p e r i o d s o f t i m e when t h e mean g l o b a l a i r t e m p e r a t u r e w i l l 0 0 0 b e 1 . 2 C, 2.0 C and 3-4 C above t h e modern. S i n c e c l i m a t e during t h e p r e s e n t epoch h a s changed c o n s i d e r a b l y , we w i l l assume t h a t t h e t e r m "modern c l i m a t e " r e f e r s t o t h e l a t e p a r t o f t h e p r e v i o u s c e n t u r y and t h e f i r s t h a l f o f t h e c u r r e n t one. I n t h i s case, i f we use t h e f o r e c a s t o f c h a n g i n g t h e mean a i r t e m p e r a t u r e , we f i n d t h a t t h e schematic c h a r t s o f t e m p e r a t u r e and p r e c i p i t a t i o n v a r i a t i o n s f o r a 0.5 0C g l o b a l warming c o n s t r u c t e d by d a t a on modern c l i m a t i c change s h o u l d be used f o r p r e d i c t i n g r e g i o n a l c l i m a t i c changes i n t h e l a t e 1 9 8 0 ' s . I n f o r m a t i o n o n changing c l i m a t i c 0 c o n d i t i o n s f o r t h e Holocene optimum ( a 1 . 2 C warming) y i e l d s d a t a f o r f o r e c a s t i n g r e g i o n a l c l i m a t i c changes f o r t h e e a r l y 2000's a p p r o x i m a t e l y . C h a r t s 0 f o r t h e M i k u l i n o i n t e r g l a c i a l ( a 2 C warming) can serve t h e b a s i s f o r f o r e c a s t i n g t h e changes i n r e g i o n a l c l i m a t i c c o n d i t i o n s around 2 0 2 0 . The m i d d l e of t h e n e x t hundred y e a r s can be compared w i t h t h e r e c o n s t r u c t e d c l i m a t i c c o n d i t i o n s o f t h e Holocene c l i m a t i c optimum. A- 3 . T h e q u e s t i o n o f p o s s i b i l i t y o f u s i n g i n f o r m a t i o n on c l i m a t i c c o n d i t i o n s o f t h e epochs w i t h warmer c l i m a t e t o e s t i m a t e f u t u r e c l i m a t i c c o n d i t i o n s i s n o t v e r y s i m p l e . The warmings u n d e r c o n s i d e r a t i o n were caused by d i f f e r e n t reasons. The 1 9 3 0 ' s warming was i n d u c e d m a i n l y b y i n c r e a s i n g t r a n s p a r e n c y o f t h e atmosphere. The Holocene optimum and t h e M i k u l i n o i n t e r g l a c i a l w e r e caused m a i n l y b y a l t e r a t i o n s i n t h e E a r t h ' s o r b i t p a r a m e t e r s . The P l i o c e n e optimum r e s u l t e d , p r o b a b l y , f r o m t h e g r o w t h o f a t m o s p h e r i c CO concentration. It i s 2 necessary t o s t u d y i n d e t a i l t h e s t a b i l i t y o f t h e r e l a t i o n s h i p between r e g i o n a l c l i m a t i c changes and g l o b a l t e m p e r a t u r e v a r i a t i o n s due t o v a r i o u s f a c t o r s . N o t i n g d i f f i c u l t i e s o f c h o o s i n g analogues of anthropogenic c l i m a t i c changes, i t i s necessary t o i n d i c a t e l i m i t e d a c c u r a c y o f t h e a v a i l a b l e d a t a on s p a t i a l d i s t r i b u t i o n o f m e t e o r o l o g i c a l elements during warm epochs. I t i s nat u r a l t h a t e r r o r s o f t h e s e d a t a grow as t h e age o f t h e epochs under c o n s i d e r a t i o n increases. I n f l u e n c e o f g l o b a l warming on p r e c i p i t a t i o n p a t t e r n o v e r t h e c o n t i n e n t s i s f o u n d t o b e v e r y c o m p l i c a t e d as compared t o i t s e f f e c t s on s u r f a c e a i r t e m p e r a t u r e . F i g . A-1 r e p r e s e n t s a c h a r t o f v a r i a t i o n s i n a n n u a l p r e c i p i t a t i o n 0 w i t h i n c r e a s i n g g l o b a l t e m p e r a t u r e by 0 . 5 C c o n s t r u c t e d by d a t a on modern c l i m a t i c changes. T h i s chart. shows a v e r y c o m p l i c a t e d system of i s o l i n e s , however, h e r e can b e n o t i c e d t h e tendency f o r some i n c r e a s e i n p r e c i p i t a t i o n o v e r a g r e a t e r p a r t o f Western Europe, i n U k r a i n e , i n t h e n o r t h o f European USSR and i n C e n t r a l S i b e r i a . P r e c i p i t a t i o n decreased o v e r a g r e a t e r p a r t o f a C e n t r a l Europe as w e l l as i n t h e c e n t r a l r e q i o n o f t h e European USSR and i n a number o f r e g i o n s o f West S i b e r i a and Kazakhstan. O v e r t h e a r e a o f t h e Holecene optimum warming ( F i g . A-2) the region o f i n c r e a s i n g p r e c i p i t a t i o n i s d i v i d e d i n t o two zones, one i n t h e n o r t h o f Europe and A s i a and t h e o t h e r , i n C e n t r a l A s i a and o v e r a p a r t o f Kazakhstan. Over a g r e a t e r p a r t o f Western Europe and i n t h e USSR p r e c i p i t a t i o n i n t h e m i d l a t i t u d e s decreased. A reversed p r e c i p i t a t i o n p a t t e r n i s discovered i n c h a r t s c o n s t r u c t e d f o r much warmer epochs: t h e M i k u l i n o i n t e r g l a c i a l ( F i g . A-3 and t h e P l i o c e n e c l i m a t i c optimum ( F i g . A - 4 ) . D a t a p r e s e n t e d i n t h e f i r s t o f t h e s e c h a r t s show t h a t a l m o s t o v e r t h e e n t i r e a r e a under c o n s i d e r a t i o n p r e c i p i t a t i o n i n c r e a s e s , t h e g r e a t e s t i n c r e a s e i n a n n u a l p r e c i p i t a t i o n b e i n g i n C e n t r a l Europe. D a t a g i v e n i n t h e c h a r t f o r t h e P l i o c e n e demonstrate a v e r y s i m i l a r p r e c i p i t a t i o n p a t t e r n . The c h a r t d e p i c t e d i n F i g . A-4 i s c o n s t r u c t e d b y N.A. Yefimova and r e p r e s e n t s an improved v e r s i o n o f h e r c h a r t p u b l i s h e d e a r l i e r (The C l i m a t i c E f f e c t s of Increased 1982). ...., I t s h o u l d be p o i n t e d o u t t h a t t h e i d e a o f a n o n - l i n e a r r e l a t i o n s h i p between p r e c i p i t a t i o n and t h e g l o b a l . t e m p e r a t u r e has been r e p e a t e d l y c o n c e i v e d i n a number o f s t u d i e s (Budyko, 1 9 8 0 ; Drozdov, 1981; The C l i m a t i c E f f e c t s o f Increased 1 9 8 2 ) . T h i s i d e a i s based on a r a t h e r o b v i o u s t h o u g h t t h a t w i t h g l o b a l warming t h e t e m p e r a t u r e d i f f e r e n c e between t h e p o l e s and t h e e q u a t o r decreases. T h i s r e s u l t s i n v a r i e d a t m o s p h e r i c p r e s s u r e p a t t e r n and changes i n g e n e r a l c i r c u l a t i o n o f t h e atmosphere, w h i c h c o n s i d e r a b l y a f f e c t s p r e c i p i t a t i o n patterns. ..., O n e can b e l i e v e t h a t w i t h a comparative1.y s m a l l warming t h e s u b t r o p i c a l zone o f h i g h p r e s s u r e i n t h e N o r t h e r n Hemisphere moves t o h i g h e r l a t i t u d e s . A-4 Fig. A-1 Changes i n a n n u a l p r e c i p i t a t i o n p a t t e r n (cm) 0 0.5 C ( V i n n i k o v and Groisman, 1979) ,i.o 0 F i g . A-2 M 110 w 4 Chan P S i n a n n u a l p r e c i p i t a t i o n p a t t e r n ( c m ) o f 1 C (Borzenkova and Zubakov, 1984) 8- w i t h g l o b a l warming o f w i t h a g l o b a l warming A- 5 00 ICO 100 -. F i g . A-3 Changes i n a n n u a l p r e c i p i t a t i o n p a t t e r n (cm) w i t h g l o b a l warming o f 1.5OC ( V e l i c h k o e t a l . , 1982, 1983, 1984) F i g . A-4 Changes i n a n n u a l p r e c i p i t a t i o n p a t t e r n (cm) w i t h a g l o b a l warming 0 of 3-4 C (Yefirnova, The c l i m a t e e f f e c t s o f 1982) ......, A- 6 T h i s promotes i n c r e a s i n g t h e f r e q u e n c y o f d r o u g h t s i n some c o n t i n e n t a l m i d l a t i t u d e r e g i o n s . A c o n s i d e r a b l e warming i n d u c e s a n o t i c e a b l e g r o w t h o f absol . u t e a i r h u m i d i t y , w h i c h causes a c o n s i d e r a b l e i n c r e a s e i n a i r mass p r e c i p i t a t i o n . I n t h i s case m o i s t u r e c o n d i t i o n s on t h e c o n t i n e n t s become more homogeneous. I t should b e mentioned t h a t i n t h e p r e s e n t s t a t e - o f - t h e - a r t , very general c o n c l u s i o n s about g e o g r a p h i c a l d i s t r i b u t i o n o f changes i n p r e c i p i t a t i o n w i t h i n c r e a s i n g a t m o s p h e r i c CO c o n c e n t r a t i o n can b e drawn b y u s i n g c l i m a t e models 2 ( S c h l e s i n g e r , 1984; Manabe, 1983, e t c . ) I t t h i s case t h e e m p i r i c a l methods y i e l d c o n s i d e r a b l y more d e t a i l e d and r e l i a b l e r e s u l t s . Thus, t h e charts-schemes o f v a r i a t i o n s i n t h e annual p r e c i p i t a t i o n ( F i g s . A-4) can be c o n s i d e r e d a t e n t a t i v e and approximate f o r e c a s t o f v a r i a t i o n s i n norms o f r e g i o n a l p r e c i p i t a t i o n f o r v a r i o u s s t a g e s o f a n t h r o p o g e n i c g l o b a l warming. A-l - I n f l u e n c e o f Anthropogenic Changes i n G l o b a l C l i m a t e on t h e H y d r o l o g i c a l C y c l e A l t h o u g h t h e q u e s t i o n o f t h e e f f e c t s o f c l i m a t e change on s u r f a c e w a t e r i s o f g r e a t p r a c t i c a l importance, s t u d y i n g t h e i n f l u e n c e o f anthropogenic g l o b a l warming on t h e h y d r o l o g i c a l c y c l e o f t h e E a r t h ' s c o n t i n e n t s p r e s e n t s g r e a t d i f f i c u l t i e s . They a r e caused b y t h e c o m p l e x i t y of v a r i a t i o n s i n t h e atmospher i c g e n e r a l c i r c u l a t i o n as t h e c l i m a t e change and have n o t y e t been overcome completely. A t p r e s e n t , t o e v a l u a t e p r o b a b l e changes i n t h e h y d r o l o g i c a l c y c l e on t h e c o n t i n e n t s , we can use e s t i m a t e s o f c h a n g i n g s u r f a c e a i r t e m p e r a t u r e and mean a n n u a l p r e c i p i t a t i o n o b t a i n e d f r o m e m p i r i c a l d a t a on c l i m a t e s o f warmer epochs of t h e past. The f i r s t a t t e m p t a t e s t i m a t i n g changes i n p o t e n t i a l e v a p o r a t i o n and mean a n n u a l r u n o f f f o r t h e 2 0 2 0 ' s was made a b o u t t e n y e a r s ago (Budyko e t a l . , 1 9 7 8 ) . L a t e r , i n f o r m a t i o n on t h e f u t u r e c l i m a t i c c o n d i t i o n s a l l o w e d us t o c l a r i f y d a t a on t h e h y d r o l o g i c a l c y c l e o f t h e end o f t h e 2 0 t h and t h e b e g i n n i n g of t h e 2 1 s t c e n t u r i e s . The p r o b l e m o f e s t i m a t i n g p o s s i b l e changes i n annual r u n o f f can be s o l v e d e a s i e r f o r t h e epochs when t h e mean g l o b a l a i r t e m p e r a t u r e i n c r e a s e d b y 0.5 0C ( r e l a t i v e t o t h e mean t e m p e r a t u r e o v e r t h e l a s t hundred y e a r s ) . I n t h i s case, t h e p o s s i b i l i t y e x i s t s t o e s t i m a t e t h e dependency o f r i v e r r u n o f f on c l i m a t e warming f r o m h y d r o l o g i c a l o b s e r v a t i o n a l d a t a . A t p r e s e n t , t h e r e a r e a few r i v e r s i n t h e World whose h y d r o l o g i c a l c y c l e h a s n o t been changed by i n c r e a s i n g a n t h r o p o g e n i c i n f l u e n c e on catchments, hyd r o t e c h n i c a l c o n s t r u c t i o n s and r e s e r v o i r s and i r r e t r i e v a b l e consumption o f w a t e r b y a g r i c u l t u r e and i n d u s t r y . T h e r e f o r e o n l y a c o m p a r a t i v e l y s m a l l p o r t i o n o f t h e a v a i l a b l e l o n g t e r m s e r i e s o f t h e annual r u n o f f can be c o n s i d e r e d homogeneous. P r i m a r i l y , t h i s r e f e r s t o a p a r t o f s m a l l r i v e r s . Besides, t h e a v a i l a b l e h y d r o l o g i c a l methods sometimes a l l o w u s t o r e s t o r e t h e l o s t homog e n e i t y of measurement d a t a s e r i e s . The r e s u l t s o f t h e s t a t i s t i c a l e s t i m a t i o n o f t h e r e l a t i o n s h i p between a n n u a l r u n o f f and mean a i r t e m p e r a t u r e b y N.A. Speranskaya e n a b l e d us t o draw A- 7 some c o n c l u s i o n s about p r o b a b l e v a r i a t i o n s i n a n n u a l r u n o f f f o l l o w i n g c l i m a t i c 0 changes when t h e warming o f t h e N o r t h e r n Hemisphere was 0.5 C h i g h e r compared w i t h t h e l a s t hundred y e a r c l i m a t e ( V i n n i k o v , 1 9 8 6 ) : 1. The r u n o f f o f r i v e r s i n C e n t r a l and Volgo-Vyatka USSR has decreased by 10-20%. region of t h e European 2. The r u n o f f o f t h e upper O b r i v e r h a s i n c r e a s e d by 2 - 7 % . 3. The r u n o f f o f Yenisey i n t h e upper reaches has i n c r e a s e d b y 7 - 1 0 $ . 4. The r u n o f f o f Amur has i n c r e a s e d b y 5 - 2 0 % , being the greatest. changes i n i t s m i d d l e s t r e a m r e p r e s e n t s t h e r e s u l t s o f t h e more d e t a i l e d c a l c u l a t i o n o f F i g . A-5 0 changing mean a n n u a l c l i m a t i c r u n o f f i n t h e USSR t e r r i t o r y w i t h a 0.5 C i n crease i n mean g l o b a l a i r t e m p e r a t u r e . The c a l c u l a t i o n i s c a r r i e d o u t b y N.A. Lemeshko who u s e d t h e complex method f o r d e t e r m i n i n g e v a p o r a t i o n f r o m l a n d . I n t h e g i v e n c h a r t , t h e v a s t areas o f i n c r e a s i n g ( o r d e c r e a s i n g ) r u n o f f a r e d i s t i n c t l y seen w h i c h i n case o f a r e l a t i v e l y s m a l l warming p r o v e t o b e a l m o s t d i g i t l y r e l a t e d t o t h e r e g i o n s o f i n c r e a s i n g ( o r decreasing) p r e c i p i t a t i o n . 60 F i g . A-5 80 100 E s t i m a t e s o f changing a n n u a l r u n o f f norms temperature increase. I eo (cm) w i t h a 0 . 5 0 C global A- 8 The i n d i c a t e d c h a r a c t e r o f changes i n a n n u a l r u n o f f would a l s o r e m a i n 0 w i t h a 1 C warming, f o r w h i c h t h e changes i n a n n0u a l p r e c i p i t a t i o n p a t t e r n r e m a i n m a i n l y s i m i l a r t o t h o s e o c c u r r i n g w i t h a 0 . 5 C warming. I-Iowever, f o r more c o n s i d e r a b l e g l o b a l warming t h e c h a r a c t e r o f t h e g e o g r a p h i c a l d i s t r i b u t i o n o f a n n u a l p r e c i p i t a t i o n and r u n o f f would change: d e t a i l e d c a l c u l a t i o n s s h o u l d b e c a r r i e d o u t t o e s t i m a t e t h e a n n u a l r u n o f f changes t h a t appear i n t h i s case. E a r l i e r , c o n s i d e r i n g a n t h r o p o g e n i c changes i n w a t e r r e s o u r c e s , h y d r o l o g i s t s have n o t t a k e n i n t o a c c o u n t t h e a n t h r o p o g e n i c changes of g l o b a l c l i m a t e and r e s t r i c t e d themselves t o e s t i m a t i n g man's i m p a c t on watersheds. However, a s t h e g l o b a l warming develops, s t u d y i n g t h e g l o b a l a s p e c t s of t h e problem o f a n t h r o p o g e n i c changes i n w a t e r r e s o u r c e s a c q u i r e s g r e a t p r a c t i c a l i m p o r t a n c e . References Borzenkova, 1.1. and Zubakov V.A. ( 1 9 8 4 ) : The Holocene optimum as t h e model o f g l o b a l c l i m a t e o f t h e b e g i n n i n g o f t h e 2 1 s t c e n t u r y . M e t e o r o l o g y and Hydrol o g y , N 8, pp. 69-77. Borzenkova, 1.1. and Zubakov V.A. as a n analogue o f t h e m i d - 2 l s t I n s t i t u t e , v o l . 339, pp. 93-118. Budyko, M . I . Budyko, p. 351. ( 1 9 8 5 ) : The c l i m a t e optimum o f c e n t u r y c l i m a t e . Proc. S t a t e ( 1 9 7 2 ) : Man's i m p a c t o n c l i m a t e . L.: (1980): E a r t h ' s Climate: (Academic Press, 1 9 8 4 ) . M.I. Hydrometeoizdat, P a s t and F u t u r e . L.: t h e Pliocene Hydrological p. 46. Hydrometeoizdat, Budyko, M . I . , B y u t n e r , E.K., V i n n i k o v , K.Ya., G o l i t s y n , G.S., Drozdov O.A., and K a r o l I. I.(1981) : Anthropogenic changes i n g l o b a l c l i m a t e . M e t e o r o l o g y and Hydrology, N 5 , pp. 5-14. Budyko, M . I . , V i n n i k o v , K.Ya. , Drozdov, O.A. , and Yefimova, N.A. (1979) : Impending c l i m a t i c change. 9 I z v . AS USSR, s e r . geogr., 1978, N 6 , pp. 5-20. ( S o v i e t Geography, Review and T r a n s l a t i o n , September 1979, v.20, N 7 ) . C l i m a t i c E f f e c t s o f I n c r e a s e d Atmospheric Carbon D i o x i d e , The. ( 1 9 8 2 ) : L.: Hydrometeoizdat, p. 57 (June 15-20, 1981, R e p o r t o f U.S./USSR Workshop, L e n i n g r a d , USSR). Drozdov, O.A. (1981): Formation o f l a n d m o i s t e n i n g w i t h M e t e o r o l o g y and Hydrology, N 4, pp. 17-28. climatic changes. Groisman, P.Ya. ( 1 9 8 1 ) : E m p i r i c a l e s t i m a t e s o f t h e r e l a t i o n s h i p between t h e p r o c e s s e s o f g l o b a l warming and c o o l i n g and t h e m o i s t u r e regime o v e r t h e t e r r i t o r y o f t h e USSR. I z v . AS USSR, s e r . geogr., N 5, pp. 86-95. Hansen, J., L a c i s , A . , Ring, D., R u s s e l l , G., Stone, P., Fung, I., Ruedy, R., L e r n e r , J. ( 1 9 8 4 ) : C l i m a t e s e n s i t i v i t y : A n a l y s i s o f feed-back mechanisms. C l i m a t e p r o c e s s e s and c l i m a t e s e n s i t i v i t y . Geophys. Monograph. 29, v o l . 5, pp. 130-163. Kovyneva, N.P. (1984) : Modern changes i n t h e p a t t e r n s o f s u r f a c e a i r temperat u r e and p r e c i p i t a t i o n . I z v . AS USSR, s e r . geogr., N 6, pp. 29-39. A- 9 Manabe, S. ( 1 9 8 3 ) : Carbon d i o x i d e and c l i m a t i c change. v o l . 25, pp. 39-82. Advances i n Geophysics, (1980) : O n t h e d i s t r i b u t i o n o f c l i m a t e change Manabe, S. , and Wetherald, R.T. r e s u l t i n g f r o m an i n c r e a s e i n CO c o n t e n t o f t h e atmosphere. J . A t m . S c i . , 2 v o l . 3 7 , N 1, pp. 99-118. S c h l e s i n g e r , M.E. ( 1 9 8 4 ) : C l i m a t e model s i m u l a t i o n s change. Adv. i n Geophys., vo1.26, pp. 141-235. of CO - i n d u c e d 2 climatic (1983) : V e l i c h k o , A.A. , G r i c h u k , V.P. , Gurtovaya, Ye.Ye. , and Z e l i k s o n , E.M. The p a l e o c l i m a t e i n t h e USSR t e r r i t o r y during t h e optimum o f t h e l a s t ( M i k u l i n o ) i n t e r g l a c i a l . I z v . AS USSR, s e r . geogr., N 6, pp. 30-45. V e l i c h k o , A.A., Barash, M.S., G r i c h u k , V.P., Gurtovaya, Ye.Ye., and Z e l i k s o n , E.M. ( 1 9 8 4 ) : The N o r t h e r n Hemisphere c l i m a t e d u r i n g t h e epoch o f t h e l a s t M i k u l i n o i n t e r g l a c i a l . I z v . AS USSR, s e r . geogr., N 1, pp. 5-18. Velichko, A.A., G r i c h u k , V.P., Gurtovaya, Ye.Ye., and Z e l i k s o n , E.M., and B o r i s o v a , O.K. (1982): P a l e o c l i m a t i c r e c o n s t r u c t i o n s f o r t h e M i k u l i n o i n t e r g l a c i a l optimum i n t h e t e r r i t o r y o f Europe. I z v . AS USSR, s e r . geogr. , N 1, p. 1 5 . Vinnikov, p. 224. K.Ya. (1986) : The sensitivity of climate. L. : Hydrometeoizdat, V i n n i k o v , K.Ya. , and Groisman, P.Ya. (1979) : E m p i r i c a l model o f modern c l i m a t i c changes. M e t e o r o l o g y and H y d r a u l i c , N 3 , pp. 25-36. V i n n i k o v , K.Ya., and Groisman, P.Ya. (1982): E m p i r i c a l study o f t h e c l i m a t e s e n s i t i v i t y . I z v . AS USSR, P h y s i c s o f t h e Atmosphere and Ocean, v.18, N 11, pp. 1159-1169. V i n n i k o v , K.Ya., and Kovyneva, N.P. ( 1 9 8 3 ) : O n c l i m a t i c change p a t t e r n w i t h g l o b a l warming. Meteorology and H y d r o l o g y , N 5, pp. 10-19.
© Copyright 2026 Paperzz