Model : C Mansoura University Faculty of Engineering Eng. Math. & Physics Dept. Engineering Mechanics I Midterm Exam (2011-2012) Time: One hour Instructors: Prof. Dr. Bishri Abdel-Mo'emen, Assoc. Prof. Ayman Ashour, and Dr. Waleed Albeshbeshy Student Name: ……………………………………………………………………………. :اإلسم Section No: …………………… F= 10 kN . Question 1: ( 5 Points ) Resolve the 10 kN force F in Fig. (P1) into components acting along the u and v axes and determine the magnitudes of these components. Take θ=95o and β=25o. Fu 95 u Fu= -10 cos 25o = -9.063 N F= 10 kN 60 β Fv u 25 θ Fv = 10 sin 25o = 4.226 N v θ v 𝐹𝑢 10 = sin 25 sin 95 𝐹𝑣 10 = sin 60 sin 95 𝐹𝑣 = 10 sin 60 sin 95 = 8.693 𝑘𝑁 𝐹𝑢 = 10 sin 95 sin 25 = 4.242 𝑘𝑁 (in the negative u direction y F1= 500 N Question 2: ( 5 Points ) I If the magnitude of the resultant force acting on the eyebolt is 1000 N and is directed along the positive x axis, determine the magnitude of F2 and the angle θ. 30 o x θ 5 Given: Rx= 1000 N Ry= 0 Rx= 500 cos 30o + F2 cosθ - 350 (3/5) 1000 = 433 + F2 cosθ - 210 F2 cos θ = 777 N ………………………………… (1) 4 3 F3= 350 N Ry= 500 sin 30o - F2 sinθ - 350 (4/5) 0= 250 - F2 sinθ - 280 F2 sin θ = -30 ……………………………….. (2) Dividing (2) by (1), 5 tan θ = (-30)/(777)= -0.039 4 ∴ 𝜃 = −2.21𝑜 ( the negative means that F2 in the 3 first quadrant ) Substituting in either (1) or (2) F3= 350 N ∴ 𝐹2 = 777.6 𝑁 F2 y F1= 500 N o 30 x θ F2 B Question 3: ( 5 Points ) In order to raise the lamp post from the position shown, the force F on the cable must create a counterclockwise moment of 2100 N.m about point A. Determine the magnitude of F that must be applied to the cable F 3m o 65 C From Triangle ABC: The cosine law gives 𝐶𝐵 = 32 + 1.52 − 2 1.5 3 𝑐𝑜𝑠115 = 15.054 = 3.88 From the sine law: 1.5 3.88 = 𝑠𝑖𝑛𝛽 𝑠𝑖𝑛115 B ∴ 𝑠𝑖𝑛𝛽 = 0.35 F β The moment about A: MA = 𝐹 𝑠𝑖𝑛𝛽 3 ∴ 2100 = 𝐹 × 0.35 × 3 ∴ F =2000 N 3m α C o 115 1.5 m A Question 4: ( 5 Points ) As an airplane's brake are applied, the nose wheel exerts two forces on the end of the landing gear as shown. Determine the horizontal and vertical components of reaction at the pin B and the force in strut AC. C B o 30 30 cm A o 20 50 cm From the FBD: a=0.8 tan 20o= 0.291 m b= 0.3 tan 20o=0.109 m Equilibrium conditions: 𝑀𝐵 = 0; −6 × 𝑎 + 3 × 0.8 − 𝐹𝑠𝑖𝑛50 × 0.3 + 𝐹𝑐𝑜𝑠50 × 𝑏 = 0 −6 × 0.291 + 3 × 0.8 − 𝐹𝑠𝑖𝑛50 × 0.3 + 𝐹𝑐𝑜𝑠50 × 0.109 = 0 ∴ 0.16 𝐹 = 0.653 ∴ 𝐹 = 4.081 𝑘𝑁 A 1.5 m 3 kN O 6 kN a Bx By b B C o 30 A F Equilibrium conditions: o 20 𝐹𝑥 = 0; −𝐵𝑥 − 𝐹𝑠𝑖𝑛50 + 3 = 0 ∴ 𝐵𝑥 = 3 − 4.081 𝑠𝑖𝑛50 = −0.126 𝑘𝑁 (opposite to assumed direction) 3 kN O Equilibrium conditions: 𝐹𝑦 = 0; 𝐵𝑦 − 𝐹𝑐𝑜𝑠50 + 6 = 0 6 kN ∴ 𝐵𝑦 = −6 + 4.081 𝑐𝑜𝑠50 = −3.377 𝑘𝑁 (opposite to assumed direction ) 0.3 m 0.5 m
© Copyright 2026 Paperzz