USING GEOMETER’S SKETCHPAD TO SUPPORT MATHEMATICAL THINKING GSP4 Polar Roses The polar rose is a curve that has the shape of a petalled flower. This curve was named rhodonea by the Italian mathematician Guido Grandi between 1723 and 1728 because it resembles a rose (MacTutor Archive). The polar equation of the rose is r = a sin( nθ ) , or € r = a cos( nθ ) . If n is odd, the rose is n–petalled. If n is even, the rose is 2n–petalled. € If n = r/s is a rational number, then the curve closes at a polar angle of where θ = πsρ, ρ = 1 if rs is odd and ρ = 2 if rs is even. Shelly Berman p. 1 of 4 Polar Roses.doc Jo Ann Fricker USING GEOMETER’S SKETCHPAD TO SUPPORT MATHEMATICAL THINKING If n is irrational, then there are an infinite number of petals. Eric W. Weisstein. "Rose." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Rose.html ( ) In principle, the graph of any polar equation r = f θ can be obtained by setting up a table and plotting a sufficient number of points. Indeed, this is the way a graphing calculator or a computer operates. We will use the polar rose, and our understanding of sine€and cosine functions, in order to understand the symmetry tests for polar graphs. ♦ Symmetry about the x–axis ( ) ( ) ( ) If the point r,θ lies on the graph, the point r,−θ or −r, π − θ lies on the graph. ♦ Symmetry about the y–axis € point r,θ lies on the graph, the € point € r, π − θ or −r,−θ lies If the ( ) ( ) ( ) on the graph. ♦ Symmetry about the origin € point r,θ lies on the graph, the € point −r,€θ or r, π + θ lies on If the ( ) ( ) ( ) the graph. If a graph has any two of the symmetries listed here, it also has the third. € Shelly Berman € p. 2 of 4 Polar Roses.doc € Jo Ann Fricker USING GEOMETER’S SKETCHPAD TO SUPPORT MATHEMATICAL THINKING Adapted from Exploring Precalculus with The Geometer’s Sketchpad 4.0 http://www.keypress.com/catalog/products/software/Prod_GSPModExpPrecalc.html Family of Roses Hide Cartesian Hide Polar + 105° 90° 2 30° 2 1 -90° 90° -1 180° 270° 360° 450° 0° 195° -3 210° 225° -5 30° 60° 90° 180° 270° 450° 360° Hide Polar 105° 90° -180° 2 -90° 180° 270° 450° 360° Edit the function below to try your own. You can use parameters a and b in the function you create. 540° a = 4.00 f(θ) = a⋅sin(b⋅θ) b = 2.00 Family of Roses Hide Polar 90° 75° 60° + 45° 135° 4 30° 105° 120° 5 150° 3 2 15° 30° 165° 15° 1 90° -1 180° 270° 360° 450° 0° 195° 210° 225° -5 30° 60° 90° 270° 450° 360° 300° Family of Roses Hide Polar + 105° 90° -180° 2 210° 330° 225° - 315° 240° 30° 60° 90° 0° 45° 300° 255° 270° 285° 180° 270° 450° 360° Edit the function below to try your own. You can use parameters a and b in the function you create. 540° a = 4.00 f(θ) = a⋅sin(b⋅θ) Animate b = 4.00 Family of Roses Hide Cartesian Hide Polar + 30° 2 1 75° 60° + 45° 150° 3 15° 90° 135° 4 165° 105° 120° 5 150° 3 345° Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press 60° + 45° 135° 4 -90° 75° 120° 5 0° 195° - b = 3.00 Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press Hide Cartesian 450° θ = 60° a = 4.00 f(θ) = a⋅sin(b⋅θ) Animate 360° -5 Edit the function below to try your own. You can use parameters a and b in the function you create. 540° 270° -4 255° 270° 285° 180° 180° -3 315° 240° - 90° -1 180° -2 330° θ = 60° 0° 45° -90° 345° -4 30° 165° 15° 1 90° -1 180° 270° 360° 180° 450° 0° 195° -2 -3 210° 225° -5 30° 60° 90° 0° 45° 180° 270° 360° 450° 540° Animate Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press Shelly Berman 180° 270° 360° 450° 0° 195° -3 345° 210° 330° -4 - 315° 300° Edit the function below to try your own. You can use parameters a and b in the function you create. f(θ) = a⋅sin(b⋅θ) a = 4.00 b = 5.00 225° -5 -90° 30° 60° 90° 0° 45° 180° 270° 360° 450° 540° Animate Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press p. 3 of 4 Polar Roses.doc 315° 300° 255° 270° 285° θ = 60° -180° 240° - 255° 270° 285° θ = 60° 90° -1 180° -2 330° 240° - -90° 345° -4 -90° 300° 255° 270° 285° + 180° -3 -180° 30° 60° 90° 0° 45° Hide Cartesian 60° + 45° 165° -2 -90° 315° 240° Animate 1 -90° - Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press 150° 3 330° 225° 75° 135° 4 0° 345° - a = 4.00 120° 5 450° 60° b = 1.00 Family of Roses 360° 210° 300° f(θ) = a⋅sin(b⋅θ) + 270° -5 Edit the function below to try your own. You can use parameters a and b in the function you create. 540° 180° 195° 255° 270° 285° Animate Hide Cartesian 90° -1 -3 315° Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press -180° 15° 180° -4 240° - -90° 30° 165° -2 330° θ = 60° 0° 45° -90° 345° -4 -90° 60° + 45° 1 180° -2 -180° 75° 150° 3 15° 90° 135° 4 165° 105° 120° 5 150° 3 Hide Polar + 60° + 45° 135° 4 Family of Roses Hide Cartesian 75° 120° 5 Edit the function below to try your own. You can use parameters a and b in the function you create. f(θ) = a⋅sin(b⋅θ) a = 4.00 b = 6.00 Jo Ann Fricker USING GEOMETER’S SKETCHPAD TO SUPPORT MATHEMATICAL THINKING Adapted from Exploring Precalculus with The Geometer’s Sketchpad 4.0 http://www.keypress.com/catalog/products/software/Prod_GSPModExpPrecalc.html Family of Roses Hide Cartesian Hide Polar + 105° 90° 2 30° 2 1 -90° 90° -1 180° 270° 360° 450° 0° 195° -3 210° 225° -5 30° 60° 90° 270° 450° 360° 300° -180° Hide Polar + 105° 90° 2 30° 30° 60° 90° 0° 45° 180° 270° 450° 360° 300° Edit the function below to try your own. You can use parameters a and b in the function you create. 540° f(θ) = a⋅cos(b⋅θ) a = 4.00 b = 0.50 Family of Roses Hide Polar 105° 90° 75° 120° 60° + 45° 135° 150° 3 2 15° 30° 165° 15° 1 90° -1 180° 270° 360° 450° 0° 195° 210° 225° -5 30° 60° 90° 270° 450° 360° 300° Family of Roses Hide Polar + 105° 90° -180° 2 210° 330° 225° - 315° 240° 30° 60° 90° 0° 45° 300° 255° 270° 285° 180° 270° 450° 360° Edit the function below to try your own. You can use parameters a and b in the function you create. 540° f(θ) = a⋅cos(b⋅θ) Animate Hide Polar + 2 1 75° 60° + 45° 150° 3 15° 90° 135° 4 30° 105° 120° 5 165° a = 4.00 b = 1.00 Family of Roses Hide Cartesian 150° 3 345° Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press 60° + 45° 135° 4 -90° 75° 120° 5 0° 195° - b = 0.75 Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press Hide Cartesian 450° θ = 60° a = 4.00 f(θ) = a⋅cos(b⋅θ) Animate 360° -5 Edit the function below to try your own. You can use parameters a and b in the function you create. 540° 270° -4 255° 270° 285° 180° 180° -3 315° 240° - 90° -1 180° -2 330° θ = 60° 0° 45° -90° 345° -4 30° 165° 15° 1 90° -1 180° 270° 360° 180° 450° 0° 195° -2 -3 210° 225° -5 30° 60° 90° 0° 45° 180° 270° 360° 450° 540° Animate Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press Shelly Berman 180° 270° 360° 450° 0° 195° -3 345° 210° 330° -4 - 315° 300° Edit the function below to try your own. You can use parameters a and b in the function you create. f(θ) = a⋅cos(b⋅θ) a = 4.00 b = 1.25 225° -5 -90° 30° 60° 90° 0° 45° 180° 270° 360° 450° 540° Animate Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press p. 4 of 4 Polar Roses.doc 315° 300° 255° 270° 285° θ = 60° -180° 240° - 255° 270° 285° θ = 60° 90° -1 180° -2 330° 240° - -90° 345° -4 -90° 315° 255° 270° 285° 4 180° -3 -180° 240° 5 165° -2 -90° 330° 225° + 1 -90° 345° 210° Hide Cartesian 150° 3 0° 195° Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press 60° + 45° 135° 4 -90° 75° 120° 5 450° Animate b = 0.25 Family of Roses Hide Cartesian 360° - a = 4.00 f(θ) = a⋅cos(b⋅θ) Animate 270° θ = 60° Edit the function below to try your own. You can use parameters a and b in the function you create. 540° 180° -5 255° 270° 285° 180° 90° -1 -3 315° Exploring Precalculus with Sketchpad (C) 2005 by Key Curriculum Press -180° 15° 180° -4 240° - -90° 30° 165° -2 330° θ = 60° 0° 45° -90° 345° -4 -90° 60° + 45° 1 180° -2 -180° 75° 150° 3 15° 90° 135° 4 165° 105° 120° 5 150° 3 Hide Polar + 60° + 45° 135° 4 Family of Roses Hide Cartesian 75° 120° 5 Edit the function below to try your own. You can use parameters a and b in the function you create. f(θ) = a⋅cos(b⋅θ) a = 4.00 b = 1.50 Jo Ann Fricker
© Copyright 2026 Paperzz