W.S. Ch 8 Review #1

Chapter 8 Review #1
#1 – 12: Find the inverse of each function, and state the domain and range of each function and its inverse.
x
1. f(x) = 5x – 7
2. f(x) =  2
3. f(x) = x  1
3
4. f(x) =
x 3
5. f(x) =
7. f(x) =
x 3  4
8. f(x) =  4  x  3
9. f(x) =  x  1  2
11. f(x) =   x  1  2 , x  1
12. f(x) = (x – 4)2 + 2, x  4
10. f(x) = x2, x 1
2 x
6. f(x) = 1  x  4
2
13. f = {(-1, 2), (0,7), (2,5), (3,8)}, g = {(2,0), (7,2),(5, 3), (8, 1)}, find [f o g] and [g o f] if they exist.
#14 – 19: Solve over the set of Complex Numbers.
14. x2(x2 – 25) – 4(x2 – 25) = 0
2
15. (3 – x)2 + 56 = 15(3 – x)
16. w  12 w  27  0
18. y6 – 8y3 = 0
19. 15 
1
17. y 3  7 y 3  12  0
7
2

x  7  x  7 2
2
20.
3x  2 3x  8
23.
 x  2 2   x  2 4  2  0
1
1
 c2  6 
 c2  6 
21. 

4


5  0
 c 
 c 
22.
2x  8 2 x  9
 x 1 
 1 x 
24. 
  4
3
 x 3
 x 3
25.
32 x1  10 3x  3  0
#26 – 33: Let f(x) = x2 – 1, g(x) = 5x + 3, h(x) =
2
1
: find:
( x  1)( x  1)
26. f(g(-2))
27. [h o f] (1)
28. [h o f]
30. [g o f](x)
31. [h o f](y)
32. g(g(3))
 2
29. g(f(a + 1))
33. g(g(x))
#34 – 35: Using the definition of inverses, determine whether the following pairs of functions are inverse functions.
34. f(x) = 6x + 2, g(x) =
35. f(x) =
x2
6
7 x  1  2 , g(x) =
( x  5)( x  1)
7
36. Graph the function and its inverse on the same coordinate plane of:
#1, #6, #7, #8, #12