Chapter 8 Review #1
#1 – 12: Find the inverse of each function, and state the domain and range of each function and its inverse.
x
1. f(x) = 5x – 7
2. f(x) = 2
3. f(x) = x 1
3
4. f(x) =
x 3
5. f(x) =
7. f(x) =
x 3 4
8. f(x) = 4 x 3
9. f(x) = x 1 2
11. f(x) = x 1 2 , x 1
12. f(x) = (x – 4)2 + 2, x 4
10. f(x) = x2, x 1
2 x
6. f(x) = 1 x 4
2
13. f = {(-1, 2), (0,7), (2,5), (3,8)}, g = {(2,0), (7,2),(5, 3), (8, 1)}, find [f o g] and [g o f] if they exist.
#14 – 19: Solve over the set of Complex Numbers.
14. x2(x2 – 25) – 4(x2 – 25) = 0
2
15. (3 – x)2 + 56 = 15(3 – x)
16. w 12 w 27 0
18. y6 – 8y3 = 0
19. 15
1
17. y 3 7 y 3 12 0
7
2
x 7 x 7 2
2
20.
3x 2 3x 8
23.
x 2 2 x 2 4 2 0
1
1
c2 6
c2 6
21.
4
5 0
c
c
22.
2x 8 2 x 9
x 1
1 x
24.
4
3
x 3
x 3
25.
32 x1 10 3x 3 0
#26 – 33: Let f(x) = x2 – 1, g(x) = 5x + 3, h(x) =
2
1
: find:
( x 1)( x 1)
26. f(g(-2))
27. [h o f] (1)
28. [h o f]
30. [g o f](x)
31. [h o f](y)
32. g(g(3))
2
29. g(f(a + 1))
33. g(g(x))
#34 – 35: Using the definition of inverses, determine whether the following pairs of functions are inverse functions.
34. f(x) = 6x + 2, g(x) =
35. f(x) =
x2
6
7 x 1 2 , g(x) =
( x 5)( x 1)
7
36. Graph the function and its inverse on the same coordinate plane of:
#1, #6, #7, #8, #12
© Copyright 2026 Paperzz