Pappus’s Theorem 1 2 8 9 4 3 7 5 6 The collinearity of (123), (456), (159), (168), (249), (267), (348), (357) imples the collineartity of (7,8,9). Pappus’s Theorem 1 2 8 9 4 3 7 5 6 The collinearity of (123), (456), (159), (168), (249), (267), (348), (357) imples the collineartity of (7,8,9). Pappus’s Theorem 1 2 8 9 4 5 3 7 6 1 2 3 4 5 6 7 8 9 1 a d O g j O m p O b e 1 h k O n q O c f O i l 1 o r Another proof by algebraic cancellation Pappus’s Theorem 1 2 8 9 4 5 3 7 6 1 2 3 4 5 6 7 8 9 1 a d O g j O m p O b e 1 h k O n q O c f O i l 1 o r (123) (159) (168) (249) (267) (348) (357) (456) (789) Another proof by algebraic cancellation ==> ==> ==> ==> ==> ==> ==> ==> ==> ce=bf iq=hr ko=ln ar=cp bj=ak fm=do dh=eg gl=ij mq=np Pappus’s Theorem 1 2 8 9 4 5 3 7 6 1 2 3 4 5 6 7 8 9 1 a d O g j O m p O b e 1 h k O n q O c f O i l 1 o r (123) (159) (168) (249) (267) (348) (357) (456) (789) Another proof by algebraic cancellation ==> ==> ==> ==> ==> ==> ==> ==> ==> ce=bf iq=hr ko=ln ar=cp bj=ak fm=do dh=eg gl=ij mq=np Pappus’s Theorem 1 2 8 9 4 5 3 7 6 1 2 3 4 5 6 7 8 9 1 a d O g j O m p O b e 1 h k O n q O c f O i l 1 o r (123) (159) (168) (249) (267) (348) (357) (456) (789) Another proof by algebraic cancellation ==> ==> ==> ==> ==> ==> ==> ==> <== ce=bf iq=hr ko=ln ar=cp bj=ak fm=do dh=eg gl=ij mq=np Generalizing this proof (123) (159) (168) (249) (267) (348) (357) (456) (789) ==> ==> ==> ==> ==> ==> ==> ==> <== ce=bf iq=hr ko=ln ar=cp bj=ak fm=do dh=eg gl=ij mq=np Problems: special choice of basis 2x2 determinants cancellation pattern For Desargues’s Theorem there is no such choice of a basis Grassmann-Plücker Relations 3 1 2 In every configuration of five points 1,2,3,x,y [123][1xy]-[12x][13y]+[12y][13x] = O is satisfied ( with [abc]=det(a,b,c) ). Grassmann-Plücker Relations x (123) collinear ==> 3 [12x][13y]=[12y][13x] 1 [12x][13y]=[12y][13x] ==> (123) collinear or 2 (1xy) collinear y In every configuration of five points 1,2,3,x,y [123][1xy]-[12x][13y]+[12y][13x] = O is satisfied ( with [abc]=det(a,b,c) ). Pappos’s Theorem 1 2 8 9 4 5 3 7 6 (123) (159) (168) (249) (456) (348) (267) (357) (789) ==> ==> ==> ==> ==> ==> ==> ==> <== [124][137]=[127][134] [154][197]=[157][194] [184][167]=[187][164] [427][491]=[421][497] [457][461]=[451][467] [487][431]=[481][437] [721][764]=[724][761] [751][734]=[754][731] [781][794]=[784][791] Same cancellation pattern as before Pappos’s Theorem 1 2 8 9 4 5 3 7 6 (123) (159) (168) (249) (456) (348) (267) (357) (789) ==> ==> ==> ==> ==> ==> ==> ==> <== [124][137]=[127][134] [154][197]=[157][194] [184][167]=[187][164] [427][491]=[421][497] [457][461]=[451][467] [487][431]=[481][437] [721][764]=[724][761] [751][734]=[754][731] [781][794]=[784][791] Same cancellation pattern as before Pappos’s Theorem 1 2 8 9 4 5 3 7 6 (123) (159) (168) (249) (456) (348) (267) (357) (789) ==> ==> ==> ==> ==> ==> ==> ==> <== [124][137]=[127][134] [154][197]=[157][194] [184][167]=[187][164] [427][491]=[421][497] [457][461]=[451][467] [487][431]=[481][437] [721][764]=[724][761] [751][734]=[754][731] [781][794]=[784][791] Same cancellation pattern as before Six points on a conic 2 1 3 6 4 5 Six points 1,2,3,4,5,6 are on a conic <==> [123][156][426][453] = [456][126][254][423] Pascal’s Theorem 2 1 3 8 9 6 7 4 5 [159][257] [126][368] [245][279] [249][268] [346][358] [135][589] [125][136][246][345] = = = = = = = -[125][579] +[136][268] -[249][257] -[246][289] +[345][368] -[159][358] +[126][135][245][346] [289][579] = +[279][589]
© Copyright 2026 Paperzz