Practice Integrals If you would like answers, use Wolfram alpha (just type in, e.g., “Integrate x2 + 1” and it should give 3 you x3 + x + C). If you get stuck on how an integral works, there are some hints on the back. 1. Z 2. Z 3. Z xex dx Z Z ln(t)dt 4. Z (p + 1)3 (p + 2)2 dp Z 1 x ln(x) Z Z Z 7xe −2x2 Z 2 Z Z x sin 2 Z 5y dx y 2 4 1 dx x3 θ sin(π + θ2 )dθ x ln(x)dx x Z t2 e−t dt Z cos(s )sds dx Z cos(x) sin(2x)dx ecos(5y) sin(5y)dy 2 (1 + s) cos(s)ds Z ex cos(x)dx (sin(y) + 1)2 dy x (x2 − 1)3/2 Z 5. Z (r + 2)5/2 dr −1 2 x3 ex dx dy 6. Z e −x Z cos(5x)dx 1 x + 5x − x − 2 3 2 x6 − x4 − x2 dx x2 Z dx Z 7. Z Z 3 5x (5x) e dx 8. Z (u + 1)du 1 Z xm dx 0 Z 0 11. 1 p 1 − x2 dx Z (1 + t2 )−3/2 dt 9. 10. Z 2 Z Z 1 du u2 + 1 Z x+1 dx x ∞ e−x dx x−µ 2 1 √ e−( σ ) dx σ 2π −∞ Z x Z ln(t)dt 1 1 Z √ 0 x 2 0 1 Z tan(x)dx π/4 −π/4 Z 5 xdx 3e− x2 2 Z xdx 0 Z et dt (x2 + 1)3/2 tan(x)dx −∞ 0 ∞ Z 2 re−r dr x ln(x)(x − 1) dx x 1 2x Z 1 √ dx 1 − x2 sin(θ) dθ cos2 (θ) + 1 ∞ Z Z Z ln(y) dy y 1 ds 1 + s2 0 x e−y dy. Z cos(t)dt 0 Z x 1 dx 0 Selected Hints/Answers 1. R xex is integration by parts. ln(t)dt is also integration by parts: Z Z Z d d t dt = t ln(t) − ln(t) tdt. ln(t) = ln(t) dt dt R ex cos(x)dx is integration by parts, twice: Z Z Z Z d x d x x x x e cos(x)dx = e cos(x)dx = e cos(x) − e cos(x) dx = e cos(x) + ex sin(x) dx dx Z d x x = e cos(x) + e sin(x)dx dx Z Z d sin(x) = ex cos(x) + ex sin(x) − ex cos(x) = ex cos(x) + ex sin(x) − ex dx so Z Z ex cos(x)dx = ex cos(x) + ex sin(x) − ex cos(x)dx R so Z 2 so For Z ex cos(x)dx = ex cos(x) + ex sin(x) ex cos(x)dx = 1 x (e cos(x) + ex sin(x)) + C. 2 R cos(x) sin(2x)dx, note that sin(2x) = 2 sin(x) cos(x) (double angle formula for sine). R 2. To integrate sin2 (y), use the half angle formula for sine. t2 e−t dt is integration by parts. 3. The first is by parts, the next are all u-substitutions. 2 2 4. For the last one, do it by parts but split it like x3 ex = x2 (xex ). 5. Second one is integration by parts. The others can be done with u-substitutions. 8. I think something to the numerator. R the first one is hard. I did it by parts after adding and subtracting sin(θ) dθ, use u = cos(θ). For the last one, note that tan(θ) = For cossin(θ) 2 (θ)+1 cos(θ) and do a u-substitution. 2
© Copyright 2026 Paperzz