INSIGHTS INTO RHYOLITE MAGMA DOME SYSTEMS BASED ON

ABSTRACT
INSIGHTS INTO RHYOLITE MAGMA DOME SYSTEMS BASED
ON MINERAL AND WHOLE ROCK COMPOSITIONS AT THE
MONO CRATERS, EASTERN CALIFORNIA
The Mono Craters magmatic system, found in a transtensional tectonic
setting, consists of small magmatic bodies, dikes, and sills. New sampling of the
Mono Craters reveals a wider range of magmatic compositions and a more
complex storage and delivery system than heretofore recognized. Space
compositional patterns, as well as crystallization temperatures and pressures taken
from olivine-, feldspar-, orthopyroxene-, and clinopyroxene-liquid equilibria, are
used to create a new model for the Mono Craters magmatic system.
Felsic magmas erupted throughout the entire Mono Craters chain, whereas
intermediate batches only erupted at Domes 10-12 and 14. Mafic magmas are
spatially restricted, having erupted only at Domes 10, 12 and 14. Data from the
new whole rock analyses illustrates a linear trend. Fractional crystallization does
not replicate this trend but rather the linear trend indicates magma mixing.
This study also analyzes samples from the Mono Lake Islands and the June
Lake Basalts and compares them to the Mono Craters. Although the Mono Lake
Islands fall into the intermediate to felsic group, they contain distinctly higher
Al2O3 and Na2O at a given SiO2. Therefore, this study concludes that the Mono
Craters represent a distinct magmatic system not directly related to the magmatic
activity that created the Mono Lake Islands.
Michelle Ranee Johnson
May 2017
INSIGHTS INTO RHYOLITE MAGMA DOME SYSTEMS BASED
ON MINERAL AND WHOLE ROCK COMPOSITIONS AT THE
MONO CRATERS, EASTERN CALIFORNIA
by
Michelle Ranee Johnson
A thesis
submitted in partial
fulfillment of the requirements for the degree of
Master of Science in Geology
in the College of Science and Mathematics
California State University, Fresno
May 2017
APPROVED
For the Department of Earth and Environmental Sciences:
We, the undersigned, certify that the thesis of the following student
meets the required standards of scholarship, format, and style of the
university and the student's graduate degree program for the
awarding of the master's degree.
Michelle Ranee Johnson
Thesis Author
Keith Putirka (Chair)
Earth & Environmental Sciences
John Wakabayashi
Earth & Environmental Sciences
Christopher Pluhar
Earth & Environmental Sciences
For the University Graduate Committee:
Dean, Division of Graduate Studies
AUTHORIZATION FOR REPRODUCTION
OF MASTER’S THESIS
X
I grant permission for the reproduction of this thesis in part or in
its entirety without further authorization from me, on the
condition that the person or agency requesting reproduction
absorbs the cost and provides proper acknowledgment of
authorship.
Permission to reproduce this thesis in part or in its entirety must
be obtained from me.
Signature of thesis author:
ACKNOWLEDGMENTS
I would like to express gratitude to Keith Putirka for his knowledge,
expertise, patience, and ability to push me past my self-imposed limits. I will
always be thankful to John Wakabayashi for his enthusiasm helping me with my
thesis and my AGU posters, even at the last minute. Many thanks go to Chris
Pluhar for his aid in helping me with my grammar and his knowledge of the Mono
Basin area. I appreciate Bernard Evans for his help and expertise with helping me
understand my thin sections.
I am immensely grateful for Margaret Mangan's interest in this project, her
knowledgeable answers to my many questions, and allowing me to use the USGS
electron microprobe. I am also thankful for her invitation and subsequent
opportunity to speak with her and her associates at the USGS concerning this
project. Thank you to the USGS scientists Dave Ponce, Darcy McPhee, Jared
Peacock, and Amanda Pera McDonnell for sharing their expertise and their
geophysical research on the Mono Craters and the surrounding area. Mae
Marcaida, USGS, kindly shared several of her samples from the Mono Lake
Islands for microprobe research. Tom Sisson, USGS, encouraged and helped me
gain perspective. Mike Clynne, USGS, shared his knowledge in volcanology and
willingly offered supportive words. It was an honor to meet Wes Hildreth, USGS,
who has a remarkable ability to explain and clarify concepts.
I am much obliged to Sarah Roeske at UC Davis and Leslie Hayden at the
USGS for helping me with the electron microprobes at their locations. I also want
to thank them for their knowledge and skill in the use of the machines and for their
patience in teaching me how to use their equipment.
v
Both Pete van der Water and Bob Dundas kindly helped me navigate
graduation requirements. Kerry Workman-Ford is appreciated for her talent in
making me smile when I needed a boost. Belinda Rossette, Sue Delcroix, and
Dawn Moate thoughtfully assisted me when I needed to complete paperwork and
meet deadlines. I also want to thank Sue Bratcher and Kellie Townsend for taking
their time to aid me in printing my AGU posters. Many thanks to Sue Bratcher,
Kellie Townsend, and Douglas Kliewer who helped me whenever there was a
problem with the lab equipment and/or when supplies were needed in the lab.
I am grateful for exceptional friends and colleagues whom I have made
over the years at CSU Fresno who have influenced and counseled me throughout
this journey. I am indebted to my personal friends who helped me collect samples
out in the field over the course of 1.5 weeks of the 9 weeks in the field: namely
Stuart Wilkinson (who helped me collect samples from Domes 17 & 18), Doug
Nidever (Domes 6-8;13-14), Alicia Castro (Dome 19), Kyle Davis and Lindsay
Mate (Domes 11&12), Nelly Sangrujiveth (Domes 25;27), and Keith Putirka,
Gerardo Torrez, Andrew Wonderly (Dome 12).
This paper would not have been possible without the unwavering support of
my parents, Joseph and Ranee Johnson. I am obliged to Bouakham Sriri-Perez,
who consistently provided sound advice and cheerfully encouraged me throughout
the process.
TABLE OF CONTENTS
Page
LIST OF TABLES ................................................................................................. vii
LIST OF FIGURES ............................................................................................... viii
INTRODUCTION .................................................................................................... 1
Geologic Background........................................................................................ 6
METHODS ............................................................................................................. 15
Field Observation and Sample Collection ...................................................... 15
Whole Rock Geochemistry ............................................................................. 17
Electron Microprobe Analyses (EPMA) ......................................................... 18
Thermobarometry Analyses and Calculations ................................................ 19
RESULTS ............................................................................................................... 20
Whole Rock Geochemistry Analysis .............................................................. 20
Petrology ......................................................................................................... 27
Thermobarometry Analysis............................................................................. 28
DISCUSSION......................................................................................................... 37
CONCLUSION ...................................................................................................... 44
REFERENCES CITED .......................................................................................... 45
APPENDIX: SUPPLEMENTAL TABLES ........................................................... 53
LIST OF TABLES
Page
Table 1: The number of samples collected per each dome. ................................... 16
Table 2: Number of samples collected at the Mono Craters from Kelleher and
Cameron (1990) study versus this newer study at the various textural
and mineralogical groupings that Kelleher and Cameron (1990) and
Wood (1983) named................................................................................. 38
Table A1: Whole rock geochemistry of the Mono Lake Islands (MLI), Mono
Craters (MC), and June Lake Basalts (JLB). ........................................... 54
Table A2: Comparison of minerals and their major elements analyzed at UC
Davis. ....................................................................................................... 59
Table A3: Comparison of minerals and their major elements analyzed at the
USGS, Menlo Park, CA. .......................................................................... 60
Table A4: Clinopyroxene compositions (wt %) ..................................................... 61
Table A5: Orthopyroxene compositions (wt %) .................................................... 66
Table A6: Plagioclase compositions ...................................................................... 67
Table A7: Sanidine compositions........................................................................... 74
Table A8: Olivine crystal compositions ................................................................. 78
Table A9: Petrology analysis ................................................................................. 80
LIST OF FIGURES
Page
Figure 1: Generalized map from Mono Lake in the North to Mammoth Mt and
Long Valley Caldera in the South............................................................. 2
Figure 2: GIS location map (produced by Bryant Platt) of the samples from
this study at the Mono Craters (n=111), Mono Lake Islands (n=9),
and June Lake Basalts (n=7). .................................................................... 5
Figure 3: Modified map of the Mono Craters from Kelleher and Cameron
(1990) showing the numbering system of Wood (1983). ......................... 8
Figure 4: Cross-section of the Mono Craters Tunnel (Jacques 1940). ..................... 9
Figure 5: Ages of the Mono Craters compiled by Marcaida (2015) of previous
studies. .................................................................................................... 11
Figure 6: Ages of the various Mono Craters domes from different studies. .......... 12
Figure 7: Transtensional tectonics in the LVC region (related to Walker Lane
and Eastern California Shear Zone; modified from Bursik, 2009). ........ 14
Figure 8: Zoomed-in map from Google Earth (2017) to show the new
numbering of Dome 9a and 9b from this study alongside Domes 8
and the explosion pit Dome 10. .............................................................. 17
Figure 9(a-i): Whole-rock analyses of 128 samples from the Mono Craters
(MC), Mono Lake Islands (MLI), and June Lake Basalts (JLB)............ 24
Figure 10(a-b): a. SiO2 versus Latitude of the Mono Craters, Mono Lake
Islands, and June Lake Basalts and b. Individual domes/craters vs.
SiO2. ........................................................................................................ 26
Figure 11: Alkali-Silica diagram of the Mono Craters, Mono Lake Islands, and
June Lake Basalts (both SiO2 and Na2O+K2O are in wt %). .................. 27
Figure 12(a-d): Equilibrium diagrams for clinopyroxene, orthopyroxene,
plagioclase, and olivine........................................................................... 31
Figure 13(a-d): Cpx and Opx quantitative analysis and thermobarometry
results of domes of the Mono Craters and June Lake Basalts. ............... 34
Figure 14: Comparing Kelleher and Cameron (1990) whole rock analyses of
Dome 12 with this study's analyses of Dome 12. ................................... 38
ix
Page
Figure 15: This AFC model using rock sample "MC-D12J" as the host
magma, clearly demonstrates that the samples do not fall on the
fractional crystallization trend, but instead show a linear trend. ............ 39
Figure 16: Whole rock analyses plots of the Mono Craters/Mono Lake
Islands/June Lake Basalts research between this research and the
studies from Kelleher and Cameron (1990), Bailey (2004), and
Cousens (1996). ...................................................................................... 40
Figure 17(a-b): Age (yrs BP) versus Pressure (kbar) and Temperature (oC). ........ 42
INTRODUCTION
Researching geologically young volcanic systems provides insight on how
volcanism commences and propagates in an area. For example, in extensional
settings, bimodal volcanism is produced; whereas, stratovolcanoes tend to develop
in compressional tectonic settings (Bursik 2009). Magmatic differentiation (i.e.,
fractional crystallization, assimilation, magma mixing), type(s) of magmatic
plumbing systems (one single chamber/multiple chambers/dikes and/or sills), and
the triggering mechanisms that occur are other ways these young volcanic centers
can provide insight.
The Long Valley Caldera region began erupting dacitic material around
3.5-2.5 Ma. Subsequently, rhyolitic eruptions took place at Glass Mountain (2.20.79 Ma), and the supervolcano eruption that produced the Bishop Tuff transpired
~760 ka at Long Valley Caldera (with less momentous eruptions that re-occurred
every ~200ka (see Figure 1; Hill et al. 1985; Hildreth 2004)). Smaller eruptions
ensued at the Inyo Craters (last eruption ~600 years ago), Mono Craters (latest
eruption ~600 years ago), and the Mono Lake Islands (last erupted ~1790 A.D.).
In the Mono Basin area, eruptions have routinely occurred at ~200-500 year
intervals (Bailey 1982; Hill et al. 1985; Hildreth 2004).
The main focus of this paper is the Mono Craters, which are a geologically
young (~40 ka-600 yr BP) group of volcanoes ~15 km NNW of the 'supervolcano'
Long Valley Caldera (see Figure 1). The Mono Craters, Inyo Craters, and Mono
Lake Islands are areas which have witnessed the most recent volcanic activity in
the vicinity as the reservoir beneath Long Valley Caldera is considered 'moribund,'
and the volcanic activity has moved northwards (Hildreth 2004; Bursik 2009). The
Mono Craters formed to the east of the transtensional NNW-trending Sierran
2
Figure 1: Generalized map from Mono Lake in the North to Mammoth Mt and
Long Valley Caldera in the South
Notes: modified from Bergfeld and Hunt (2015) after Bailey (1989). Mono Craters Tunnel
depicted. RC= Red Cones. LP= area of deep Long Period Earthquakes.
3
range-front fault system (Bailey 2004; Bursik 2009). Tectonic activity can affect
the magmatic systems of volcanoes and even change the activity level of a
volcano(s) (Lipman et al. 1985; Walter 2007), whereas magmatic intrusions may
trigger earthquakes by changing the stress at active faults (Thatcher and Savage
1982; Walter 2009). The extension rate of the Sierran range-front fault system
(and the other faults in the vicinity) directly affects the volcanic activity of the
Mono Craters and the surrounding volcanoes (Bursik and Sieh 1989; Bursik
2009).
This study focuses on understanding the nature of the magmatic plumbing
system of the Mono Craters (as well as the Mono Lake Islands and the June Lake
Basalts) by using thermobarometry, whole-rock geochemistry, and petrology.
Previous geochemical research of the Mono Craters focused solely on whole-rock
and trace-element geochemistry (Kelleher and Cameron 1990; Bailey 2004). Their
studies only gave a partial history of the Mono Craters as they did not research the
thermobarometry nor the petrology. Using whole-rock geochemistry alongside
thermobarometry and petrology are important as these methods can aid in
determining the depth and possible size of the magma chamber/pods/dikes/sills
underneath the Mono Craters. Unlike geophysical research, which can determine
what the magmatic system is like in the present, thermobarometry and petrology
can aid in reconstructing the storage systems and how they might have been in the
past (Dahrén 2015). By not examining the thermobarometry and the petrology, the
previous researchers did not investigate what the possible pressures and
temperatures of the magma chamber beneath the Mono Craters are, leaving out
much-needed details.
New geochemical data collected and subsequent analyses aid in
determining the depths of the magma chamber, pods, and/or dikes below the Mono
4
Craters, shedding new light on the volcanic processes beneath the Mono Craters.
The Mono Craters have demonstrated the ability to produce sub-plinian to plinian
eruptions in the past (Sieh and Bursik 1986). Therefore, investigating the
magmatic processes beneath the Mono Craters aids geologists in establishing the
size and possible magnitude of a future eruption by quantifying the depths and
temperatures of the magma chamber(s).
Magmatic differentiation is another way to comprehend the complexities of
the magmatic system and can aid in understanding magma genesis. Kelleher and
Cameron (1990) determined fractional crystallization was the main factor behind
the Mono Craters. This study differs from Kelleher and Cameron (1990) by
hypothesizing that magma mixing is the main process at the Mono Craters. Dome
22, for example, showed evidence of banded pumices and flow structures
(commonly found with magma mixing (Perugini and Poli 2012)). Three of the
Mono Craters domes have rocks ranging from mafic to felsic compositions, with
one having intermediate to felsic compositions. Harker Diagrams also show more
evidence for magma mixing versus fractional crystallization.
Whole-rock geochemical data listed on NAVDAT shows previous
researchers only analyzed eighteen samples from the Mono Craters and seven
samples from the Mono Lake Islands (Kelleher and Cameron 1990; Bailey 2004).
This new study examines 111 rocks from the Mono Craters (ranging from mafic to
felsic in composition), nine from the Mono Lake Islands (Intermediate to Felsic),
and seven from the June Lake Basalts (mafic). Figure 2 shows the sample
locations from this study.
A higher-density sampling of the Mono Craters in this study gives us
detailed information about the magma chamber(s) below and depicts a varied
volcanic history. The diversity of the geochemistry found within the Mono Craters
5
Figure 2: GIS location map (produced by Bryant Platt) of the samples from this
study at the Mono Craters (n=111), Mono Lake Islands (n=9), and June Lake
Basalts (n=7).
Notes: The Mono Craters' numbering system of Wood (1983) depicted. Fault locations from the
USGS and CGS (USGS and CGS, 2006).
6
indicates one of three possibilities. Either the magma chamber is more diverse in
composition than just a felsic magma body, or there may be more than one magma
chamber, or lastly, there may be a series of dikes and sills underneath the Mono
Craters at varying levels.
Other mostly rhyolitic systems also have intermediate to mafic
inclusions/activity (Bacon and Metz 1984; Bacon 1986; Varga et al. 1990). One
nearby example is the Inyo Craters, which have andesite inclusions near the vents
of Deadman Creek and Glass Creek domes (both ~600 years old; Varga et al.
1990). Varga et al. (1990) determined that these inclusions represent mixing of
both rhyolitic and basaltic magmas. The andesitic inclusions had hornblende and
biotite as microphenocrysts, which suggested that crystallization occurred at
pressures of ≥2 kbar (Naney 1983; Varga et al. 1990).
This research also assesses if there is an interconnection between the Mono
Craters and the surrounding volcanoes (i.e., Mono Lake Islands, June Lake
Basalts, and Long Valley Caldera). Thermobarometry analysis aids in determining
the pressures and temperatures of the magma chamber(s) beneath the Mono
Craters. Lastly, this study investigates the diversification of magmas by analyzing
the Mono Craters' whole-rock geochemistry and thermobarometry.
Geologic Background
The June Lake Basalts erupted ~75-25 ka and ended with the eruption north
of Mono Lake at Black Point ~13.3 ka (Bailey et al. 1976). Hildreth (2004) stated
that <20 vents of the Mono Craters-Inyo Craters have been active with subplinian
to plinian eruptions in the last 2000 years. Since ~20 ka, eruption rates occurred at
the Mono Craters within ~200-500-year intervals (Bailey 1982; Hill et al. 1985).
According to Hildreth (2004), all but four of the Mono Craters are Holocene in
7
age, with three domes being ~13 ka, and one ~20 ka. During the Holocene, the
magmatic system underneath Dome 12 of the Mono Craters chain moved both
north and south, producing ~30 dike-fed domes (see Figures 2 and 3 for
numbering system; Domes 1 and 2 of Wood (1983) numbering system are Paoha
and Negit Island of the Mono Lake Islands). The latest eruption of the Mono
Craters was ~600-650 years ago and ejected ~0.6 km3 of volcanic material
(Hildreth 2004; Sieh and Bursik 1986). The Mono Lake Islands are the youngest
eruptions of basalt, dacite, and low-silica rhyolite in the area (14-0.25 ka; Hildreth
2004).
Previous researchers hypothesized that the Mono Craters are all high-silica
rhyolitic domes, except dacitic Dome 12 (Figure 3; Kelleher and Cameron 1990;
Hildreth 2004). Earlier research done by Kelleher and Cameron (1990) separated
the Mono Craters into six different sections (Dome 12, Porphyritic Biotite-bearing
Domes, Porphyritic Orthopyroxene-bearing Domes, Porphyritic-Fayalite bearing
Domes, Sparsely Porphyritic Domes, and Aphyric Domes; see Figure 3).
However, both andesite and basalt were alongside rhyolite during the excavation
of the Mono Craters Tunnel, which extended the Los Angeles Aqueduct in the
1930's (Jacques 1940; see Figure 4). Jacques’ (1940) findings, as well as results
from this new study, demonstrate that the Mono Craters' have a more varied
magmatic history and introduces a different perspective than what has been
thought to be the magmatic system beneath the Mono Craters. The diversity of
magmas indicates there is more to the Mono Craters magmatic system than just a
shallow, felsic magma body/dike system.
Bergfeld and Hunt’s (2015) study of magmatic CO2 emissions in the Mono
Basin area hypothesized these emissions might reflect basalt is intruding beneath
the silicic magma chambers. The North Coulée (Dome 13) yielded the largest
8
Figure 3: Modified map of the Mono Craters from Kelleher and Cameron (1990)
showing the numbering system of Wood (1983).
9
Figure 4: Cross-section of the Mono Craters Tunnel (Jacques 1940).
amount of CO2 emissions in the vicinity and found to be similar to fumaroles in
the West Moat of the Long Valley Caldera and on Mammoth Mountain (Bergfeld
and Hunt 2015). This similarity made Bergfeld and Hunt (2015) hypothesize that
there is a connection in both the silicic and basaltic magmatic sources in the area,
similar to the process at the Emmons Lake Volcanic Center in the Aleutian arc
(Mangan et al. 2009).
10
Eichelberger et al. (2006) stated that mixing and/or some form of contact
is a common occurrence between different batches of magma. When
mixing/contact occurs, it may trigger an eruption which does not allow time for
their chemistry or phase assemblages to alter (Eichelberger et al. 2006).
Reagon et al. (2003) posited that at any given volcanic center, ~104-105
years of mafic magmatism were needed to produce silicic andesites and dacites. If
Reagon et al. (2003) are correct, then the magmatic source beneath the Mono
Craters dacitic dome (Dome 12; considered to be the oldest dome in the chain)
would be much older than when the dome initially erupted.
Both Sampson and Cameron (1987), as well as Hildreth (2004) and this
study, believed the volcanic systems in the Mono Basin and Long Valley area to be
separate, yet adjacent systems. According to Hildreth (2004), the magmatic foci
changed over time, once actively lying underneath Long Valley Caldera, currently
lies beneath the Mono Craters and Inyo Craters. Hildreth (2004) hypothesized that
the mantle-driven magmatic foci had moved continually, allowing various silicic
reservoirs to be abandoned (including the Long Valley Caldera magma chamber that
produced the Bishop Tuff, which has now crystallized and currently moribund).
Marcaida (2015) plotted age dates of the various geochronology studies
(Dalrymple 1967 (K-Ar sanidine); Bursik and Sieh 1989 (recalibrated hydration
rind); Hu et al. 1994 (40Ar/39Ar sanidine); Reid (2003; 238U-230Th allanite); and
Vazquez et al. (2013; 238U-230Th zircon/allanite and 40Ar/39Ar sanidine) along with
Marcaida's (2015) 238U-230Th zircon-allanite age dates) (see Figure 5). Added to
Marcaida (2015) map are Sieh and Bursik (1986) stratigraphic and radiocarbon
age dates (Figure 5). The data shows ages ranging from 0.66±20 ka to 42.5±1.1 ka,
but does not include ages from Domes 7, 10, 12, 14, 16, 18, 21-23. Marcaida
(2015) also determined by using titanomagnetite chemistry that dome 24 consists
of two separate domes: an "upper lobe" (26±1.2 ka) and "lower lobe" (38±1.2 ka).
The "upper lobe" has been renamed Dome 31 (see Figure 5).
11
Figure 5: Ages of the Mono Craters compiled by Marcaida (2015) of previous
studies.
Notes: Modified to include the research of Sieh and Bursik (1986) added. Red stars indicate
where Marcaida (2015) study took samples, including her newly numbered dome 31 (age 26±1.2
ka).
12
In Figure 6, the Mono Craters domes are compared with the ages of the
eruptions using the data from the various studies: Dalrymple (1967), Sieh and
Bursik (1986), Bursik and Sieh (1989, 2013), Hu et al. (1994), Reid (2003),
Vazquez et al. (2013), and Marcaida (2015). Only Dome 12 shows terraces from
the old shoreline of Mono Lake (Lajoie 1968; Wood 1983; Bursik and Sieh 1989;
Marcaida 2015). Thus, Dome 12 is considered the oldest dome in the Mono
Craters chain (but does not have any geochronology work thus far to specify an
age date).
Figure 6: Ages of the various Mono Craters domes from different studies.
Notes: Studies include (color of diamond, researcher, type of geochronology): Green: Dalrymple
(1967), K-Ar sanidine geochronology; Dark Red: Sieh and Bursik (1986), stratigraphic and
radiocarbon; light blue: Stine (1987) & Benson et al. (2003), shoreline
ages/dendrochronology/sedimentation rates; Black: Bursik and Sieh (1989), recalibrated
hydration-rind ages; Purple: Reid (2003), 238U-230Th sanidine geochronology; Pink: Vazquez et al.
(2013), 238U-230Th zircon/allanite and 40Ar/39Ar sanidine geochronology; Orange: Marcaida
(2015), 238U-230Th zircon/allanite geochronology.
Achauer et al. (1986) determined using seismographic and magnetotelluric
methods that the top of the Mono Craters magma chamber was only ~10 km deep,
with a relatively small volume of 200-600 km3. Current studies completed by
Peacock et al. (2015), posited that there are two magma chambers, likely linked by
13
a dike (also using magnetotelluric and seismographic methods). They determined
the northerly magma chamber lies underneath Panum Crater (Dome 3), while the
southerly chamber is found beneath South Coulée (Dome 22). They also
determined that the top of the magma mush column is ~10 km with a volume of
~300 km3 (Peacock et al. 2015).
Busby (2012; 2013) and Bursik (2009) both concurred that the Mono
Craters structural environment was part of a releasing bend in a transtensional
environment (Figure 7). These releasing bends were large-scale pull-aparts (~10100 km) between oblique slip faults (Bursik 2009). Bursik (2009) suggested that
the magmatic activity that occurred underneath Long Valley Caldera moved
northwest during the Quaternary and lies currently beneath the Mono Craters. This
theory is consistent with the focus of tectonic activity that has also moved
northwest (Bursik 2009). The tectonic extension in the Mono Basin aided in
bringing magma up to the surface (Bursik and Sieh 1989; Bursik et al. 2014).
Bormann et al. (2016) hypothesized that the dike injections along the Mono
Craters (Riley et al. 2012; Marshall et al. 1997; Feng and Newman 2009) could
accommodate the right-lateral slip and the extension rates in the Bormann et al.
(2016) model.
14
Figure 7: Transtensional tectonics in the LVC region (related to Walker Lane and
Eastern California Shear Zone; modified from Bursik, 2009).
Notes: Bold lines = major range-bounding faults (vertical component of motion depicted). Rightlateral motion shown on NNW-trending faults; left-lateral motion on NE-trending faults (Bursik
and Sieh 1989). Rates of vertical slip (mm/yr) shown as numbers next to faults. The dashed
line=area of maximum caldera subsidence (~3 km; Carle 1988). Colors=ages of the volcanic
vents. Cross=basaltic vent; Circle=evolved vent. MLF=Mono Lake Fault; CMF=Cowtrack
Mountain Fault; SLF=Silver Lake Fault; HSF=Hartley Springs Fault; SPF=Sagehen Peak Fault;
HCF=Hilton Creek Fault; CDMF=Casa Diablo Mountain Fault.Scale and orientation =
approximate.
METHODS
Field Observation and Sample Collection
Samples (n=128) were collected from the Mono Craters, June Lake Basalts,
and Mono Lake Islands (number of samples from each dome shown in Table 1).
The Mono Lake Island samples were loaned out to this study from the USGS. No
samples were collected from Dome 21 of the Mono Craters because it lacked
outcroppings. Due to the domes/craters proximity to one another, most of the
samples were collected on the peaks or close to the peaks of the volcanoes (unless
the rocks were noticeably in situ). Obtaining rocks at or near the peaks and/or the
volcanic plug confirmed the samples were taken from those exact domes/craters.
The domes with the highest number of samples collected were either the domes
with the most geochemical variation or had more diverse volcanic flows.
An observation in the field on Domes 8-11 was Dome 9 appeared to be two
domes, not one. In the Wood (1983) numbering system, Dome 9 was circular in
shape with what looks to be a smaller rounded shape to the south (see Figure 3).
Out in the field, the smaller circular shape of Dome 9 appears to be a smaller, yet
separate dome entirely (see Figure 8; it has a separate vent from the larger dome
9). This study now divides Dome 9 into two domes: Dome 9a (the larger dome to
the North) and 9b (the smaller dome to the South). To the SSE of Dome 9a is an
explosion pit (Dome 10). In field estimations (and what would need to be further
addressed in future studies), Dome 10 appears to be an older explosion pit, then
Dome 9b erupted, with Dome 9a being the youngest of the three different volcanic
vents.
16
Table 1: The number of samples collected per each dome.
MLI=Mono Lake Islands, MC=Mono Craters, JLB=June Lake Basalts.
Volcano/Dome #
Amount of rocks collected
MLI-Negit Island
2
MLI-Paoha Island
7
MC-3
2
MC-4
2
MC-5
1
MC-6
3
MC-7
1
MC-8
3
MC-9
1
MC-10
5
MC-11
11
MC-12
14
MC-13
4
MC-14
10
MC-15
2
MC-16
2
MC-17
8
MC-18
2
MC-19
4
MC-20
4
MC-21
0
MC-22
13
MC-23
4
MC-24
1
MC-25
2
MC-26
2
MC-27
4
MC-28
3
MC-29
1
MC-30
3
JLB
7
17
Figure 8: Zoomed-in map from Google Earth (2017) to show the new numbering
of Dome 9a and 9b from this study alongside Domes 8 and the explosion pit Dome
10.
Whole Rock Geochemistry
The samples were analyzed at two different laboratories. The majority of
the samples (n=114) were analyzed for SiO2, TiO2, Al2O3, Fe2O3, MgO, MnO,
CaO, Na2O, K2O, P2O5, and Cr2O3 on the Phillips Analytical Wavelength
Dispersive X-Ray Fluorescence Spectrometer at California State University,
Fresno (CSUF) (see next paragraph for where the remaining samples were
analyzed). Rock powders were calcined at CSUF's lab for ten minutes ranging
from 750-1000oC. LOI numbers were then recorded (see Appendix, Table A1).
The 1:6 ratio of the calcined sample powder and pre-fused flux (Claisse's 35% Litetraborate, 65% Li-metaborate flux) were mixed in a platinum crucible before
adding six drops of LiI, the releasing agent. This mixture was fused into beads
using the Claisse Fluxy fusion machine. The calibration standards used at CSUF
(Busby et al., 2008) were AGV-2, BCR-2, BHVO-2, DTS-2, GSP-2, QLO-1,
18
RGM-1, SDC-1, STM-1, and W-2. For each analysis, the Standard Error Estimate
for calibrations was ±1.0 wt % of standard major oxide values.
The remaining rock samples (n=14) were shipped to Washington State
University's (WSU) XRF lab for analysis of the same whole rock geochemistry
(except WSU measured FeO instead of Fe2O3). WSU used a ThermoARL XRF
using the Hooper, (1964) and Johnson et al., (1999) methods. WSU analyzed
samples using a ratio of 3.5:7 of sample powder and pure Li2B4O7, mixed for
seven minutes, subsequently fused in a muffle furnace for five minutes at 1000oC
(LOI numbers recorded in Appendix Table A1). Samples were reground into glass
powders upon cooling and returned to the furnace for another five minutes. The
standards used for calibration were AGV-1, BCR-1, BIR-1, DNC-1, G-2, GSP-1,
PCC-1, STM-1, and W-2.
Electron Microprobe Analyses (EPMA)
Cognate inclusions of plagioclase, sanidine, olivine, pyroxene, and
biotite/hornblende (used in the pyroxene runs) from thirty-nine polished thin
sections were analyzed, and the mineral compositions were determined by using
both the Cameca-SX100 electron microprobe at UC Davis (see Appendix Table
A2) and the JEOL-8900 electron microprobe at the USGS in Menlo Park, CA (see
Appendix Table A3).
The peak times varied from 10-60s at UC Davis and 10-20s at the USGS.
The accelerating voltage was 15 kV at both laboratories. The raster length at the
USGS was 10 µm, whereas the raster length ranged from 1-10 µm at UC Davis.
Beam currents ranged from 10-20 nA at UC Davis, while 5-15 nA were the beam
currents at the USGS. The beam diameter at the USGS varied from1-5 µm,
whereas at the USGS the beam diameter stayed at a consistent 1 µm.
19
Thermobarometry Analyses and Calculations
Pressures and temperatures of crystallization were determined using
clinopyroxene-liquid thermobarometry, orthopyroxene-liquid thermobarometry,
olivine-liquid geothermometry, and plagioclase-melt equilibrium geothermometry
(Putirka et al., 2003; Putirka, 2008; see Appendix Tables A4-A8).
Equilibrium for cpx, opx, and ol was obtained by using KD(Fe-Mg).
Plagioclase and sanidine equilibrium were attained by using KD(Na-Ca). Both KD
equilibria were based on the equation: KD = csolid/cliquid.
RESULTS
Whole Rock Geochemistry Analysis
Whole-rock analyses of samples from the Mono Craters, Mono Lake
Islands, and June Lake Basalts have mafic (~53-61% SiO2), intermediate (~6571% SiO2), and felsic (~74-78% SiO2) magmas within the Mono Craters proper
(Figures 9(a-i); see Appendix Table A1). The oxides of TiO2, Al2O3, Fe2O3, MnO,
MgO, CaO, and P2O5 all have negative slopes when plotted against SiO2 (Figures
9a-f; i). K2O vs. SiO2 has a positive slope (Figure 9h), and Na2O does not depict a
variation (Figure 9g).
The felsic samples from the Mono Lake Islands contain ~69-71% SiO2,
whereas the intermediate samples contain ~64-65% SiO2. Although the Mono
Lake Islands fall into the intermediate to felsic group, they have distinctly higher
Al2O3 and Na2O at a given SiO2 when compared to the Mono Craters, as well as
being lower silica rhyolites than the Mono Craters (Figure 9a;c). Lastly, the June
Lake Basalts contain ~54-55% SiO2.
a.
21
b.
c.
22
d.
e.
23
f.
g.
24
h.
i.
Figure 9(a-i): Whole-rock analyses of 128 samples from the Mono Craters (MC),
Mono Lake Islands (MLI), and June Lake Basalts (JLB).
Notes: The Mono Craters are broken down into three sections: Felsic Domes (the majority of the
domes), Intermediate to Felsic Dome (only Dome 11), and the Mafic to Felsic Domes (Domes
10;12;14). Error bars included (some are small errors so are hidden beneath the triangles).
25
This higher-density sampling of the Mono Craters also reveals
spatiotemporal patterns. For example, high-silica rhyolite magmas (~73-78%
SiO2) erupted throughout the entire Mono Craters chain (Figure 10(a-b)).
Whereas, the intermediate magmas erupted in only two areas (Mono Lake Islands
and Domes 10-12, 14 of the Mono Craters) (Figure 10(a-b)). Figure 10(a-b) also
depicts two distinct areas where the mafic magmas erupted: (Domes 10, 12, 14 of
the Mono Craters and June Lake Basalts). Only Domes 10, 12 and 14 had mafic
to felsic eruptions (Figure 10(a-b)).
a.
26
b.
Figure 10(a-b): a. SiO2 versus Latitude of the Mono Craters, Mono Lake Islands,
and June Lake Basalts and b. Individual domes/craters vs. SiO2.
Notes: For reference: Domes 1&2=Mono Lake Islands; 3-30 = Mono Craters.
Figure 11 demonstrates that the Mono Craters and Mono Lake islands
illustrate two different trends that do not overlap. On this basis, this paper
hypothesizes that the Mono Lake Islands eruptions represent a distinct episode of
magmatism not directly related to the magmatic activity that created the Mono
Craters due to the Mono Lake Islands having trending trachydacite-rhyolite versus
the Mono Craters which trend andesite-dacite-rhyolite.
27
Figure 11: Alkali-Silica diagram of the Mono Craters, Mono Lake Islands, and
June Lake Basalts (both SiO2 and Na2O+K2O are in wt %).
Petrology
Glassy matrixes are found in ~90% of thin sections analyzed. Percentages
of crystals found in the thin sections of this study range between ~0-22% (see
Appendix Table A9). These percentages can be broken down into the Mono
Craters range from 0-18%; Mono Lake Islands 0-8%; and the June Lake Basalts
have an array from 9-22%. The various textures found in these thin sections are
Baveno, Carlsbad, polysynthetic, lamellar, oscillatory zoning, perthitic texture,
28
and some seriticized textures. Two thin sections (D11c and D12h-1) have
grommerblasts of varying different crystals (typically they are pl+sa±ol±cpx).
Thermobarometry Analysis
The clinopyroxene (cpx), orthopyroxene (opx), plagioclase (plag), and
olivine (ol) equilibrium tests show that the analyses are in equilibrium (Figures
12a-d; see Appendix Tables A4-6; 8).
a.
29
b.
30
c.
31
d.
Figure 12(a-d): Equilibrium diagrams for clinopyroxene, orthopyroxene,
plagioclase, and olivine.
Notes: Figure 12b: Blue=Mono Lake Islands, Green=Mono Craters Felsic Domes, Orange=Mono
Craters Mafic-Felsic Domes, and Red=June Lake Basalts. Figure 12d: Orange=Mono Craters
Mafic-Felsic Domes and Red = June Lake Basalts.
32
The opx and cpx thermobarometry (Figures 13a-d) have felsic samples
crystallizing at lower temperatures and pressures with more mafic samples
crystallizing at higher temperatures and pressures, which is to be expected. The
Mono Lake Islands cpx and opx thermobarometry suggest that both types of
crystals crystallized at fairly shallow depths (5-15 km) with temperatures ranging
from ~990-1200oC. The felsic opx samples of the Mono Craters crystallized at ~5
km and ~1000oC, whereas the more mafic opx crystallized at much higher
temperatures (~1200oC) and pressures (~4.8 kbar). The cpx thermobarometry
depicted a much broader range of crystallization depth ranges (~1-~35 km), as
well as temperatures (~1000-1200oC). The June Lake Basalts have a narrower
range of temperatures for both cpx and opx thermobarometry (~1100-1150oC), and
depths (~5-20 km).
a.
33
b.
c.
34
d.
Figure 13(a-d): Cpx and Opx quantitative analysis and thermobarometry results of
domes of the Mono Craters and June Lake Basalts.
Notes: These graphs include a) cpx quantitative analysis; b). opx quantitative analysis; c) cpx and
opx T vs P; d). cpx and opx T vs Depth (km), e). cpx and opx T vs. Latitude; f). cpx P vs. latitude,
g). SiO2 vs. Cpt T of the June Lake Basalts and Mono Craters mafic samples.
In Figure 13b, when comparing temperature versus latitude between all of
the thermometers (cpx, opx, ol, and plag), the data depicted temperatures ranging
from ~750-1250oC. In general, the plagioclases (shown in squares) were the
lowest in temperatures, but the plagioclases also had the widest range of
temperatures, as they were the highest in temperature in the June Lake Basalts (as
well as the June Lake Basalt's lowest temperatures).The Mono Lake Islands
showed a narrow range of temperatures in all the thermometers (~1000-1100oC),
whereas the Mono Craters Mafic to Felsic Domes had the widest range of
temperatures around Latitude 37.9 (~750-1200oC). The pressures versus latitude
(Figure 13c) shows a similar story as the temperatures. The mafic to felsic Mono
Craters rocks have the widest range of pressures (~0.3-7.6 kbar). For the pressures,
only cpx and opx is used as these are barometers. The felsic Mono Craters samples
have a very narrow crystallization window regarding pressure (~1.2 kbar) for the
35
samples that had opx (no cpx was in equilibrium for the felsic samples). The
Mono Lake Islands had a similar, yet lower pressure range (~2-4) as the June Lake
basalts (~1.3-5 kbar).
In the thermometry shown in Figure 13d, when comparing SiO2 versus
temperature, the plagioclase thermometry has a hot and a cool trend, versus the
other thermometers, which group with the hotter trend. The lower the SiO2, the
higher the temperature, whereas the lower temperatures correlate with the higher
SiO2. The two trends (hot and cold) depict two different mixing trends. The hotter
trend (that corresponds with the thermometry of cpx, opx, ol and plag) may all
come from mixing with a more mafic source than the cooler trend (found only in
the plagioclase thermometry, which may correlate to the more evolved magma
which was not mixing with the more mafic source).
Thermobarometry of the purely high-silica rhyolitic (felsic) domes (Domes
3-9; 13; 15-30) demonstrated temperatures ranging from ~760o-1015oC (Figures
13a-d). None of the felsic cpx barometers were in equilibrium, so there are no
pressure estimates for the felsic domes of the Mono Craters. These domes are
distinctive in that they only contain high-silica rhyolite, with no maficintermediate samples being found.
Dome 11 is unique to the Mono Craters chain in that it only contains
intermediate and felsic samples. Thermobarometry calculations of this dome's
samples indicate temperatures ranging from ~850o-1110oC, with pressures varying
from ~1.6-3 kbar (Figures 13a-d).
The most varied domes (10,12, and 14) contain mafic, intermediate and
felsic compositions and their thermobarometry calculations suggest temperatures
that vary from ~745o-1185oC, with pressures ranging from ~0.3-7.6 kbar (Figures
13a-d).
36
Thermobarometry results from the June Lake basalts have temperatures
ranging from ~950o-1215oC with pressures ranging from ~1.3-5 kbar (Figures 13ad). The Mono Lake Islands temperatures from this study vary from ~980o-1115oC
(Figure 14) and have pressures ranging from ~2-4 kbar. It may be noted in all of
the Mono Craters, Mono Lake Islands, and June Lake Basalts that as SiO2 of the
whole rocks increases, the temperature decreases (Figure 13d).
DISCUSSION
Although all of the Mono Craters contain high-silica rhyolite, they have a
more varied magmatic history than heretofore recognized. Hildreth (2004) states
that all lava from the Mono Craters, except Dome 12, are high-silica rhyolite (~7577% SiO2). Recent research from Peacock (personal communication, 2014)
disagrees with Hildreth (2004) because Peacock's findings indicate that the Mono
Craters are too magnetic to be composed of an all high-silica rhyolite composition.
Peacock (personal communication, 2014), therefore, surmises intermediate to
more mafic components lie beneath the domes. This study, having found mafic to
intermediate samples at multiple domes (Domes 10-12;14) and having found
higher phenocryst content (~0-18%) than Hildreth's (2004) research (~0-8%),
concurs with Peacock's findings.
However, this study does agree with Hildreth's (2004) findings regarding
the unitary, mushy, plutonic parent lying beneath the Mono Craters. High-silica
rhyolite samples are nearly identical in both studies. In contrast, this study reveals
no signs of fractional crystallization. No fractional crystallization trend may
indicate that the intermediate-mafic portions of the Mono Craters do not tap into
the plutonic, parental reservoir hypothesized by Hildreth (2004).
Mafic-intermediate magmas of the Mono Craters are spatially restricted (as
shown in Figures 10a-b). The author hypothesizes that the larger felsic magma
body/dikes may suppress the mafic-intermediate magma movement to only limited
areas.
In Figure 14, samples from this new study are compared to the Kelleher and
Cameron (1990) study. Kelleher and Cameron (1990) picked ~2-4 samples from
each of their different mineralogical and textural groupings of the domes, whereas
38
this study selected anywhere from ~11-26 samples per assemblage (see Table 2).
Kelleher and Cameron’s (1990) study is therefore limited due to the small
sampling studied.
Figure 14: Comparing Kelleher and Cameron (1990) whole rock analyses of
Dome 12 with this study's analyses of Dome 12.
Table 2: Number of samples collected at the Mono Craters from Kelleher and
Cameron (1990) study versus this newer study at the various textural and
mineralogical groupings that Kelleher and Cameron (1990) and Wood (1983)
named.
Samples
Kelleher and Cameron (1990)
Johnson
Dome 12
2
14
Porphyritic-biotite bearing
4
16
Porphyritic-opx bearing
2
12
Porphyritic-fayalite bearing
2
29
Sparsely Porphyritic
3
16
Aphyric
2
24
Total
15
111
39
Data developed by this new study differs from Kelleher and Cameron's
(1990) hypothesis in that Kelleher and Cameron (1990) hypothesized that
fractional crystallization controls the Mono Craters. Graphing done by this newer
study using Harker Diagrams does not produce compositions that match fractional
crystallization trends (see Figure 15). Instead, linear trends are found, which are
more indicative of magma mixing.
Figure 15: This AFC model using rock sample "MC-D12J" as the host magma,
clearly demonstrates that the samples do not fall on the fractional crystallization
trend, but instead show a linear trend.
Neither researchers Kelleher and Cameron (1990) nor Hildreth (personal
communication, 2012) believe Dome 12 to be part of the Mono Craters chain. In
contrast, this study finds that Dome 12 correlates well with the whole rock and
thermobarometry analyses in the mixing trend, and, therefore, deems Dome 12
should be included with the rest of the Mono Craters chain.
Kelleher and Cameron (1990) hypothesize that the Mono Craters come
from several different batches of magma and not from a single chamber. This
study concurs with their analysis because the Mono Craters are not just felsic in
40
composition; there are mafic-intermediate rocks found in the middle of the
volcanic chain at Domes 10-12 and 14. Figure 16 portrays data from this study in
comparison to older studies (Kelleher and Cameron (1990), Cousens (1996),
Bailey (2004)) shows the data depicting similar trends and geochemical groupings.
Figure 16: Whole rock analyses plots of the Mono Craters/Mono Lake
Islands/June Lake Basalts research between this research and the studies from
Kelleher and Cameron (1990), Bailey (2004), and Cousens (1996).
In the past, there have been two opposing theories about the Mono Crater's
and Long Valley's magmatic system. Hermance et al. (1984) postulated that the
Mono Craters were from one magma chamber since they found them to be
chemically homogeneous, geologically young with frequent eruptions. They also
hypothesized that beneath the NW section of Long Valley were magma reservoirs
that extended 30-35 km N to the Mono Lake Islands. Several researchers
concurred with these findings (Bailey et al. 1976; Bailey 1982; Reid et al. 1997).
Contrasting with the above theory, this study (2017) as well as Hildreth
(1981; 2004), Sampson and Cameron (1987), and Bailey (2004) concur that the
Mono Craters, Mono Lake Islands, Long Valley and the other surrounding
41
volcanoes are not interconnected nor interrelated. Instead, the Mono Craters are a
distinct volcanic system and are a series of silicic domes/craters that show
evidence of magma mixing.
Hildreth (1981) explained that when magma mixing occurs for prolonged
periods of time, at depth, then intermediate hybrids might occur. Intermediate
inclusions were found in both this study and Kelleher and Cameron's (1990) study.
In this new research, numerous intermediate samples are found at Domes 10-12
and 14 of the Mono Craters, showing mixing trends.
Analyzing age dates from previous researchers (Stine (1987); Benson et al.
(2003); Dalrymple (1967); Bursik and Sieh (1989); Reid (2003); Vazquez et al.
(2013) and Hu et al. (1994)) with this study's thermobarometry results gives us
some insights into the age progression (Figures 17(a-b)). Unfortunately, there are
no age dates that correlate with this study's mafic-felsic domes (10,12, and 14) to
see their temporal evolution.
The Mono Craters' intermediate to felsic dome (Dome 11) shows the widest
array of pressures as well as temperatures (~1.5-3.25 kbar; ~800-1150oC) and is
the oldest volcanic dome with thermobarometry results (Figure 17(a-b)). There are
two eruption ages for Dome 11 (~13 ka (Bursik and Sieh (1989) and ~20 ka (Reid
(2003); Vazquez et al. (2013)). The Mono Craters felsic domes have the lowest
pressures (~1-1.5 kbar) and yield the lowest temperatures (~750-1000oC). These
felsic domes that have thermobarometry analyses have eruption ages ranging from
~6-12.5 ka (Figure 17(a-b); Dalrymple (1967); Hu et al. (1994)). The youngest
eruptions in the vicinity are from the Mono Lake Islands ~250 yrs BP (Figure
17(a-b); Stine (1987); Benson et al. (2003)). These magmas depict crystallization
pressures of ~2-4 kbar and temperatures ranging from ~950-1150oC.
42
a.
b.
Figure 17(a-b): Age (yrs BP) versus Pressure (kbar) and Temperature (oC).
Notes: Looking at the temporal evolution of the magmatic system by analyzing age from the
various geochronology studies (see Figures 5 and 6) versus this study's thermobarometry results.
43
This study hypothesizes that the evolved felsic magmas are stored at
shallow depths (with pressures ~1-1.5 kbar) within a quasi-continuous or welllinked series of en-echelon oriented dikes or chambers. These form as a response
to regional transtensional stresses (Busby 2012; Bursik 2009; Bailey 2004). The
mafic magmas come up from deeper depths in limited areas (Domes 10-12; 14) to
mix with the felsic magmas to produce the intermediate magmas.
CONCLUSION
The Mono Craters are an independent volcanic center and are not
interconnected nor interrelated to the Mono Lake Islands, nor the Long Valley
Caldera.
The magmatic system beneath the Mono Craters is more than just a felsic
system. This study includes numerous samples from multiple domes with SiO2
contents between ~52-78% (with the dacitic dome 12 itself having samples
ranging between ~53-77% SiO2). The Mono Craters do not show signs of
fractional crystallization; instead, they show evidence of magma mixing by the
linear trends shown in the numerous diagrams.
The magma diversity suggests a more complex magmatic system than
heretofore recognized. The evolved felsic magmas store at shallow depths within a
quasi-continuous or well-linked series of en-echelon oriented dikes or chambers.
The spatially restricted and deeper mafic magmas do not infiltrate the more
shallow, brittle-deformed dike system that is so well exploited by the felsic
magmas, except in the spatially restricted area of Domes 10-12; 14 where mafic to
intermediate magmas are found. Future research of the Mono Craters on the
geochronology of the mafic to felsic domes (Domes 10, 12, and 14) would need to
be done to aid and fill in the gaps of the temporal evolution of the Mono Craters.
REFERENCES CITED
REFERENCES CITED
Achauer, U., Greene, L., Evans, J.R., and Iyer, H.M. (1986) Nature of the magma
chamber underlying the Mono Craters area, eastern California, as determined
from teleseismic travel time residuals. Journal of Geophysical Research:
Solid Earth, 91, 13873-13891.
Bacon, C.R. (1985) Implications of silicic vent patterns for the presence of large
crustal magma chambers. Journal of Geophysical Research: Solid Earth, 90,
11243-11252.
Bailey, R.A. (1982) Other potential eruption centers in California; Long Valley,
Mono Lake, Coso, and Clear Lake volcano fields. Status of volcanic
prediction and emergency response capabilities in volcanic hazard zones of
California. California Division of Mines and Geology Special
Publication, 63, 17-28.
Bailey, R.A. (2004) Eruptive history and chemical evolution of the precaldera and
postcaldera basalt-dacite sequences, Long Valley, California: Implications
for magma sources, current seismic unrest, and future volcanism. No. 1692.
US Department of the Interior, US Geological Survey, 1-75.
Bailey, R.A., Dalyrymple, G. B., and Lanphere, M. A. (1976) Volcanism,
structure, and geochronology of Long Valley Caldera, Mono County,
California. Journal of Geophysical Research, 81, 725-744.
Benson, L., Linsley, B., Smoot, J., Mensing, S., Lund, S., Stine, S., and SarnaWojcicki, A. (2003) Influence of the Pacific Decadal Oscillation on the
climate of the Sierra Nevada, California and Nevada. Quaternary Research,
v. 59, 151-159.
Bergfeld, D., Evans, W.C., Howle, J.F., and Hunt, A.G. (2015) Magmatic gas
emissions at Holocene volcanic features near Mono Lake, California, and
their relation to regional magmatism. Journal of Volcanology and
Geothermal Research, 292, 70-83.
Bormann, J.M., Hammond, W.C., Kreemer, C., and Blewitt, G. (2016)
Accommodation of missing shear strain in the Central Walker Lane, western
North America: Constraints from dense GPS measurements. Earth and
Planetary Science Letters. 440, 169-177.
47
Bursik, M. (2009) A general model for tectonic control of magmatism: Examples
from Long Valley Caldera (USA) and El Chichón (México). Geofísica
Internacional, 48, 171-183.
Bursik, M., and Sieh, K. (1989) Range front faulting and volcanism in the Mono
Basin, Eastern California. Journal of Geophysical Research: Solid Earth, 94,
15587-15609.
Bursik, M., Renshaw, C., McCalpin, J., and Berry, M. (2003) A volcanotectonic
cascade: Activation of range front faulting and eruptions by dike intrusion,
Mono Basin‐Long Valley Caldera, California. Journal of Geophysical
Research: Solid Earth, 108, ECV 10, 1-14.
Bursik, M.I. and Sieh, K. (2013) Digital database of the Holocene tephras of the
Mono-Inyo Craters, California (Online). Available:
https://pubs.usgs.gov/ds/758/data/monoinyodates.html (accessed March 22,
2017). U.S. Geological Survey Data Series 758.
Busby, C.J., Hagan, J.C., and Renne, P. (2013) Initiation of Sierra Nevada range
front-Walker Lane faulting ca. 12 Ma in the Ancestral Cascades arc.
Geosphere, 9(5), 1125-1146.
Busby, C.J. (2012) Extensional and transtensional continental arc basins: Case
studies from the southwestern United States. In Busby, C.J. and Azor, A.
Eds., Tectonics of Sedimentary Basins: Recent Advances, p. 382-404.
Blackwell Publishing, Ltd., UK.
Carle, S. F. (1988) Three dimensional gravity modeling of the geologic structure
of Long Valley Caldera. Journal of Geophysical Research, 93, 11, 13,23713,250.
Clemens, J.D., and Birch, W.D. (2012) Assembly of a zoned volcanic magma
chamber from multiple magma batches: The Cerberean Cauldron, Marysville
Igneous Complex, Australia. Lithos, 155, 272-288.
Cousens, B.L. (1996) Magmatic evolution of Quaternary mafic magmas at Long
Valley Caldera and the Devils Postpile, California: Effects of crustal
contamination on lithospheric mantle-derived magmas. Journal of
Geophysical Research, 101(B12), 27,673-27,689.
Dahrén, B. (2016) Magma plumbing architecture in Indonesia and the North
Atlantic Igneous Province, 46 p. Digital Comprehensive Summaries of
Uppsala Dissertations from the faculty of Science and Technology 1328.
Uppsala: Acta Universitatis Upsaliensis.
48
Dalrymple, G.B. (1964a) Cenozoic chronology of the Sierra Nevada, California.
University of California Publications in Geological Science, 47, 1-41.
Dalrymple, G.B. (1964b) Potassium-argon dates of three Pleistocene interglacial
basalt flows from the Sierra Nevada, California. Geological Society of
America Bulletin, 75, 753-758.
Dalrymple, G.B. (1967) Potassium-Argon ages of recent rhyolites of the Mono
and Inyo Craters, California. Earth and Planetary Science Letters, 3, 289-298.
Dawson, P.B., Iyer, J.R., and Evans, H.M. (1990). Teleseismic tomography of the
compression wave velocity structure beneath the Long Valley Region,
California. Journal of Geophysical Research., 95, 11,021-11,050.
DePaolo, D.J., and Daley, E.E. (2000) Neodymium isotopes in basalts of the
southwest basin and range and lithospheric thinning during continental
extension. Chemical Geology, 169, 157-185.
Deer, W.A., Howie, R.A., and Zussman, J. (1992) An introduction to the RockForming Minerals, 696 p. Longman Group Limited, Essex.
Dodge, F.C., and Moore, J. (1981) Late Cenozoic volcanic rocks of the southern
Sierra Nevada, California; II, Geochemistry. Geological Society of America
Bulletin, 92, 912-914.
Druitt, T.H., and Bacon, C.R. (1989) Petrology of the zoned calcalkaline magma
chamber of Mount Mazama, Crater Lake, Oregon. Contributions to
Mineralogy and Petrology, 101, 245-259.
Eichelberger, J.C., Izbekov, P.E., and Browne, B.L. (2006) Bulk chemical trends
at arc volcanoes are not liquid lines of descent. Lithos, 87, 135-154.
Hermance, J.F., Slocum, W.M., and Neumann, G.A. (1984) The Long
Valley/Mono Basin volcanic complex: a preliminary magnetotelluric and
magnetic variation interpretation. Journal of Geophysical Research: Solid
Earth, 89, 8325-8337.
Hildreth, W. (1981) Gradients in silicic magma chambers: implications for
lithospheric magmatism. Journal of Geophysical Research: Solid Earth, 86,
10153-10192.
49
Hildreth, W. (2004) Volcanological perspectives on Long Valley, Mammoth
Mountain, and Mono Craters: several contiguous but discrete systems.
Journal of Volcanology and Geothermal Research: Solid Earth, 136, 169198.
Hill, D.P., Bailey, R.A., and Ryall, A.S. (1985) Active tectonic and magmatic
processes beneath Long Valley caldera, eastern California: an overview.
Journal of Geophysical Research: Solid Earth, 90, 11111-11120.
Hu, Q., Smith, P.E., Evensen N.M., and York, D. (1994) Lasing in the Holocene:
extending the 40Ar- 39Ar laser probe method into the 14C age range. Earth and
Planetary Science Letters, 123, 331-336.
Jacques, H.L. (1940) Mono Craters tunnel construction problems. American Water
Works Association, 32, 43-56.
Jellinek, A.M., and DePaolo, D.J. (2003) A model for the origin of large silicic
magma chambers: precursors of caldera-forming eruptions. Bulletin of
Volcanology, 65, 363-381.
Kelleher, P.C., and Cameron, K.L. (1990) The Geochemistry of the Mono
Craters‐Mono Lake Islands Volcanic Complex, eastern California. Journal of
Geophysical Research: Solid Earth, 95, 17643-17659.
Lajoie, K.R. (1968) Late Quaternary stratigraphy and geologic history of Mono
Basin, eastern California, 271 p. Ph.D. thesis, University of California,
Berkeley.
Lipman, P.W., Lockwood, J.P., Okamura, R.T., Swanson, D.A., Yamashita, K.M.,
(1985) Ground Deformation associated with the 1975 magnitude-7.2
earthquake and resulting changes in activity of Kilauea Volcano, Hawaii, p.
45. U.S. Geological Survey Professional Paper 1276, Reston, VA.
Macdonald, R., Smith, R.L., and Thomas, J.E. (1992) Chemistry of the subalkalic
silicic obsidian, 214 p. US Geological Survey, Professional Paper 1523.
Washington, DC: US Government Printing Office.
Mahood, G.A., Ring, J.H., Manganelli, S., and McWilliams, M.O. (2010) New
40
Ar/39Ar ages reveal contemporaneous mafic and silicic eruptions during the
past 160,000 years at Mammoth Mountain and Long Valley caldera,
California. Geological Society of America Bulletin, 122, 396-407.
50
Mangan, M., Miller, T., Waythomas, C., Trusdell, F., Calvert, A., and Layer. P.
(2009) Diverse lavas from closely spaced volcanoes drawing from a common
parent: Emmons Lake Volcanic Center, eastern Aleutian arc. Earth Planet
Science Letters, 287, 363-372.
Mankinen, E.A., Grommé, C.S., Dalrymple, G.B., Lanphere, M.A., and Bailey,
R.A. (1986) Paleomagnetism and K‐Ar ages of volcanic rocks from Long
Valley Caldera, California. Journal of Geophysical Research: Solid Earth, 91,
633-652.
Marcaida, M., Mangan, M.T., Vazquez, J.A., Bursik, M.I., and Lidzbarski, M.I.
(2014) Geochemical fingerprinting of Wilson Creek formation tephra layers
(Mono Basin, California) using titanomagnetite compositions. Journal of
Volcanology and Geothermal Research, 273, p. 1-14.
Marcaida, M. (2015) Resolving the timing of Late Pleistocene dome emplacement
at Mono Craters, California, from 238U-230Th and 40Ar/39Ar dating, 96 p. San
Jose State University.
Marshall, G.A., Langbein, J., Stein, R.S., Lisowski, M., and Svarc, J. (1997)
Inflation of Long Valley Caldera, California, Basin and Range strain, and
possible Mono Craters dike opening from 1990-94 GPS surveys.
Geophysical Research Letters, 24(9), 1003-1006.
"Mono Craters, Mono County, CA", 37.910997, -119.025850. (Online). Available:
https://www.google.com/maps/place/37%C2%B054'39.6%22N+119%C2%B
001'33.1%22W/@37.9104101,119.0323015,1760m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d37.910997
!4d-119.02585 (accessed March 21, 2017). Google Earth.
Naney, M.T. (1983) Phase equilibria of rock-forming ferromagnesian silicates in
granitic systems. American Journal of Science, 283(10), 993-1033.
Ormerod, D.S. (1988) Late-to post-subduction magmatic transitions in the
Western Great Basin, USA, 313 p. Ph.D. thesis, Open University, Milton
Keynes, U.K.
Peacock, J.R. (2014) Personal communication.
Peacock, J.R., Mangan, M.T., McPhee, D., and Ponce, D.A. (2015) Imaging the
magmatic system of Mono Basin, California, with magnetotellurics in three
dimensions. Journal of Geophysical Research: Solid Earth, 120, 7273-7289.
51
Perugini, D., and Poli, G. (2012) The mixing of magmas in plutonic and volcanic
environments: analogies and differences. Lithos, 153, 261-277.
Petford, N., and Gallagher, K. (2001) Partial melting of mafic (amphibolitic) lower
crust by periodic influx of basaltic magma. Earth and Planetary Science
Letters, 193, 483-499.
Putirka, K.D. (2008) Thermometers and barometers for volcanic systems. In
Putirka, K.D. and Tepley, F.J. III, Eds., Minerals, Inclusions, and Volcanic
Processes, 69, p. 61-120. Reviews in Mineralogy and Geochemistry,
Mineralogical Society of America, Chantilly, Virginia.
Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H. (2003) New
clinopyroxene-liquid thermobarometers for mafic, evolved, and volatilebearing lava compositions, with applications to lavas from Tibet and the
Snake River Plain, Idaho. American Mineralogist, 88, 1542-1554.
Reagan, M.K., Sims, K.W.W., Erich, J., Thomas, R.B., Cheng, H., Edwards, R.L.,
Layne, G. and Ball, L. (2003) Time-scales of differentiation from mafic
parents to rhyolite in North American continental arcs. Journal of Petrology,
44, 1703-1726.
Reid, M.R. (2003) New ages for young rhyolites, Mono Craters, California; ion
microprobing into the Holocene: Geological Society of America Abstracts
with Programs, 35(6), p. 183.
Reid, M.R., Coath, C.D., Harrison, T.M., and McKeegan, K.D. (1997) Prolonged
residence times for the youngest rhyolites associated with Long Valley
Caldera: 230 Th-238U ion microprobe dating of young zircons. Earth and
Planetary Science Letters, 150, 27-39.
Riley, P., Tikoff, B., and Hildreth, W. (2012) Transtensional deformation and
structural control of contiguous but independent magmatic systems: MonoInyo Craters, Mammoth Mountain, and Long Valley Caldera, California.
Geosphere, 8, 740-751.
Sampson, D.E., and Cameron, K.L. (1987) The geochemistry of the Inyo volcanic
chain: Multiple magma systems in the Long Valley region, eastern California
Journal of Geophysical Research: Solid Earth, 92, 10403-10421.
Sieh, K., and Bursik, M. (1986) Most recent eruption of the Mono Craters, eastern
central California. Journal of Geophysical Research: Solid Earth, 91, 1253912571.
52
Stine, S. (1990) Late Holocene fluctuations of Mono Lake, eastern California:
Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 333-381.
Thatcher, W., and Savage, J.C. (1982) Triggering of large earthquakes by magmachamber inflation, Izu Peninsula, Japan. Geology, 10(12), 637-640.
U.S. Geological Survey and California Geological Survey (2006) Quaternary fault
and fold databases for the United States (Online). Available:
http://earthquakes.usgs.gov/hazards/qfaults/ (accessed March 1, 2017). U.S.
Geological Survey.
Varga, R.J., Bailey, R.A., and Suemnicht, G.A. (1990) Evidence for 600 year‐old
basalt and magma mixing at Inyo Craters Volcanic Chain, Long Valley
Caldera California. Journal of Geophysical Research: Solid Earth, 95, 2144121450.
Vazquez, J. and Lidzbarski, M.I. (2012) High-resolution tephrochronology of the
Wilson Creek Formation (Mono Lake, California) and Laschamp event using
238
U-230Th SIMS dating of accessory mineral rims. Earth and Planetary
Science Letters, v. 357-358, 54-67.
Vazquez, J., Calvert, A., Marcaida, M., Mangan, M., Lidzbarski, M., and Stelton,
M. (2013) Resolving the early chronology of Mono Craters volcanism with
combined 238U-230Th and 40Ar/39Ar dating. American Geophysical Union Fall
Meeting 2013. V13G-2698.
Walter, T.R. (2007) How a tectonic earthquake may wake up volcanoes: Stress
transfer during the 1996 earthquake-eruption sequence at the Karymsky
Volcanic Group, Kamchatka. Earth and Planetary Science Letters, 264(3),
347-359.
Wood, S.H. (1983) Chronology of late Pleistocene and Holocene volcanics, Long
Valley and Mono Basin geothermal areas, eastern California, 76 p. U.S.
Geological Survey, Open File Report 83-747.
Zimmerman, S.H., Hemming, S.R., Kent, D.V., and Searle, S.Y. (2006) Revised
chronology for late Pleistocene Mono Lake sediments based on
paleointensity correlation to the global reference curve: Earth and Planetary
Science Letters, 252(1-2), 94-106.
APPENDIX: SUPPLEMENTAL TABLES
54
Table A1: Whole rock geochemistry of the Mono Lake Islands (MLI), Mono
Craters (MC), and June Lake Basalts (JLB).
Numbers may be rounded up.
Sample
MLI-NI-1
MLI-NI-2
MLI-PI-1
MLI-PI-2
MLI-PI-3
MLI-PI-4
MLI-PI-5
MLI-PI-6
MLI-PI-7
MC-D3F
MC-D3G
MC-D4A
MC-D4B
MC-D5A
MC-D6A
MC-D6B
MC-D6D
MC-D7A
MC-D8A
MC-D8B
MC-D8C
MC-D9A
MC-D10A
MC-D10B
MC-D10c
MC-D10D
SiO
TiO
2
2
64.
7
64.
6
64.
1
71.
1
64.
5
70.
3
69.
6
69.
4
63.
5
76.
5
76.
8
76.
7
77.
0
76.
2
76.
7
76.
8
76.
8
77.
1
77.
1
76.
4
76.
8
76.
4
77.
0
60.
5
76.
9
77.
1
0.8
0
0.8
8
0.9
2
0.2
0
0.9
2
0.2
2
0.2
7
0.3
0
1.0
5
0.1
8
0.1
2
0.0
4
0.0
5
0.0
7
0.1
0
0.1
5
0.1
1
0.1
1
0.1
2
0.1
1
0.1
0
0.1
2
0.1
0
1.5
0
0.0
6
0.0
5
Al2
O3
16.5
Fe2
O3
4.6
Mn
O
0.08
Mg
O
1.28
Ca
O
3.2
Na2
O
4.6
K2
O
3.6
16.6
4.9
0.08
1.37
3.6
4.6
3.5
16.5
4.6
0.10
1.32
3.8
4.9
3.7
15.2
2.1
0.06
0.30
0.9
4.6
5.3
16.6
4.6
0.09
1.29
3.1
4.9
3.7
15.5
2.5
0.07
0.26
1.2
4.6
4.9
15.4
2.7
0.07
0.36
1.4
4.6
4.7
15.4
2.8
0.07
0.40
1.5
4.6
4.9
16.8
5.4
0.10
1.55
3.6
4.8
3.6
12.8
1.1
0.05
0.5
3.9
4.4
12.9
1.1
0.05
0.0
0.5
4.1
4.7
12.9
1.2
0.05
0.06
0.5
3.9
4.6
13.0
1.2
0.05
0.06
0.6
3.9
4.7
12.7
1.2
0.05
0.01
0.5
4.0
4.7
12.9
1.1
0.05
0.00
0.6
4.0
4.5
12.9
1.1
0.05
0.00
0.5
4.0
4.7
12.8
1.1
0.05
0.00
0.5
3.8
4.8
12.8
1.1
0.04
0.5
4.0
4.6
12.9
1.1
0.05
0.00
0.6
3.8
4.8
12.8
1.2
0.05
0.00
0.5
3.9
4.6
12.9
1.1
0.05
0.00
0.5
4.0
4.6
12.8
1.1
0.05
0.01
0.5
4.1
4.7
13.1
1.1
0.05
0.00
0.5
4.0
4.7
16.2
7.3
0.14
1.86
5.1
4.0
2.8
12.7
1.2
0.05
0.01
0.6
3.9
4.8
13.0
1.2
0.05
0.01
0.5
4.0
4.7
P2O
5
0.2
8
0.3
0
0.3
2
0.0
9
0.3
1
0.0
7
0.0
9
0.0
8
0.4
0
0.0
1
0.0
1
0.0
2
0.0
2
0.0
1
0.0
0
0.0
1
0.0
2
0.0
1
0.0
1
0.0
2
0.0
1
0.0
2
0.0
0
0.2
7
0.0
1
0.0
2
Cr2
O3
0.0
Sum
%
99.6
0.0
100.4
0.0
100.3
0.0
99.8
0.0
100.1
0.0
99.8
0.0
99.2
0.0
99.4
0.0
100.8
0.0
99.5
0.0
100.3
0.0
100.0
0.0
100.4
0.0
99.4
0.0
99.9
0.0
100.1
0.0
99.9
0.0
100.3
0.0
100.5
0.0
99.5
0.0
100.1
0.0
99.7
0.0
100.5
0.0
99.6
0.0
100.1
0.0
100.6
LO
I
0.0
1
0.1
8
0.8
8
3.6
5
0.1
1
0.1
4
0.3
1
0.7
2
0.3
4
0.3
4
0.4
3
0.4
2
1.5
7
2.0
5
1.4
0
1.3
1
2.8
8
1.0
6
0.1
2
1.0
4
0.5
6
0.8
6
2.6
7
0.9
1
2.5
6
0.4
6
55
MC-D10F
MC-D11A
MC-D11B
MC-D11C
MC-D11D
MC-D11E
MC-D11F
MC-D11g
MC-D11L
MC-D11M
MC-D11O
MC-D11O-2
MC-D12B
MC-D12C
MC-D12D
MC-D12E
MC-D12G
MC-D12H
MC-D12i
MC-D12J
MC-D12K
MC-D12L
MC-D12m
MC-D12N-1
MC-D12N-2
MC-D12p
MC-D13A
MC-D13B
MC-D13C
67.
1
76.
5
76.
2
66.
2
66.
7
76.
7
76.
6
76.
8
76.
9
76.
6
77.
0
76.
9
57.
4
57.
5
65.
4
65.
1
76.
3
66.
7
67.
3
52.
7
54.
3
76.
0
75.
6
57.
9
57.
4
77.
3
76.
8
76.
6
76.
9
0.8
7
0.0
7
0.1
3
0.9
4
0.9
4
0.0
4
0.0
4
0.0
7
0.0
4
0.0
4
0.0
2
0.0
4
1.7
7
1.7
3
0.4
9
0.4
9
0.0
8
0.8
3
0.4
5
1.4
6
2.0
4
0.1
2
0.1
9
1.7
7
1.8
4
0.0
6
0.0
7
0.1
3
0.1
7
14.9
4.8
0.09
1.79
3.6
3.8
3.5
12.8
1.1
0.05
0.00
0.6
4.1
4.6
13.0
1.2
0.07
0.00
0.6
3.7
4.5
16.6
3.9
0.06
1.18
4.1
4.1
3.2
15.1
4.9
0.08
1.28
3.3
4.0
3.6
12.9
1.2
0.05
0.01
0.5
3.9
4.7
12.8
1.1
0.05
0.01
0.6
3.8
4.7
12.7
1.2
0.05
0.03
0.6
3.9
4.8
12.8
1.1
0.05
0.02
0.6
3.8
4.6
12.8
1.1
0.05
0.01
0.6
3.8
4.6
13.0
1.2
0.05
0.01
0.6
3.9
4.7
12.8
1.2
0.05
0.01
0.6
3.8
4.6
16.0
8.4
0.13
3.28
5.6
4.0
2.4
16.4
8.2
0.13
3.67
5.9
3.9
2.1
15.4
4.7
0.12
1.65
4.2
3.0
4.0
16.1
4.9
0.14
1.75
4.4
3.0
4.3
12.6
1.1
0.05
0.02
0.6
4.1
4.6
14.7
4.5
0.09
1.88
3.4
3.7
3.7
15.8
4.0
0.11
1.34
4.1
3.1
4.5
17.7
10.9
0.09
3.45
6.2
3.4
2.6
16.8
9.6
0.15
4.33
7.0
4.0
1.8
12.7
1.1
0.05
0.01
0.5
4.1
4.6
13.2
1.3
0.03
0.15
0.8
3.3
5.4
16.6
8.4
0.11
2.92
5.6
3.9
2.4
16.7
8.9
0.11
2.87
5.8
3.9
2.3
12.6
1.1
0.05
0.00
0.6
4.0
4.7
12.8
1.1
0.05
0.00
0.5
4.1
4.7
12.8
1.1
0.05
0.5
4.0
4.5
12.9
1.1
0.05
0.5
4.0
4.5
0.00
0.1
5
0.0
9
0.0
1
0.1
5
0.5
9
0.0
1
0.0
2
0.0
2
0.0
2
0.0
2
0.0
2
0.0
2
0.3
2
0.3
0
0.2
1
0.2
0
0.0
1
0.1
5
0.1
9
0.6
3
0.3
6
0.0
1
0.0
5
0.3
3
0.3
4
0.0
1
0.0
1
0.0
1
0.0
0
0.0
100.7
0.0
99.8
0.0
99.3
0.0
100.4
0.0
100.4
0.0
100.0
0.0
99.9
0.0
100.1
0.0
99.9
0.0
99.6
0.0
100.3
0.0
99.9
0.0
99.5
0.0
99.7
0.0
99.1
0.0
100.3
0.0
99.4
0.0
99.6
0.0
100.9
0.0
99.1
0.0
100.4
0.0
99.2
0.0
100.0
0.0
99.9
0.0
100.2
0.0
100.3
0.0
100.1
0.0
99.7
0.0
100.1
0.4
3
0.1
7
2.7
1
0.6
3
0.6
3
2.2
7
0.1
9
3.1
2
1.0
7
0.4
3
1.0
0
0.9
1
1.4
8
0.9
4
1.4
8
1.5
4
0.5
5
0.5
9
2.6
3
0.0
3
2.1
0
1.8
7
0.6
8
0.4
6
0.0
7
0.3
1
0.7
3
0.4
4
56
MC-D13D
MC-D14A
MC-D14B
MC-D14C
MC-D14D
MC-D14E
MC-D14F-a
MC-D14F-b
MC-D14G host
MC-D14G
inclusion
MC-D14H
MC-D15A
MC-D15B
MC-D16A
MC-D16B
MC-D17A
MC-D17b
MC-D17C
MC-D17D
MC-D17G
MC-D17H
MC-D17I
MC-D17J
MC-D18A
MC-D18B
MC-D19A
MC-D19B
MC-D19C
MC-D19D
77.
0
77.
2
76.
3
76.
0
76.
3
60.
0
76.
1
69.
5
75.
8
60.
3
76.
1
76.
8
76.
6
76.
4
77.
3
74.
0
76.
1
76.
8
76.
7
76.
8
77.
0
77.
2
76.
8
76.
7
78.
4
77.
0
76.
6
76.
8
76.
7
0.1
3
0.0
6
0.0
7
0.0
6
0.0
8
1.3
1
0.0
8
0.6
4
0.0
5
1.3
0
0.0
7
0.0
9
0.0
6
0.1
4
0.1
2
0.2
9
0.6
0
0.1
2
0.1
4
0.1
4
0.1
7
0.1
3
0.1
1
0.1
5
0.1
2
0.1
1
0.1
1
0.1
0
0.1
0
12.9
1.1
0.06
0.5
4.0
4.5
12.5
1.1
0.05
0.00
0.5
3.9
4.7
13.3
1.3
0.05
0.05
0.6
3.9
4.9
13.2
1.3
0.05
0.03
0.6
3.9
4.8
12.9
1.3
0.05
0.01
0.6
4.0
4.9
15.4
7.2
0.11
3.73
5.3
3.8
2.6
12.9
1.3
0.05
0.04
0.6
4.1
4.8
13.7
4.2
0.08
1.32
2.5
3.9
3.9
13.0
1.4
0.05
0.04
0.6
3.9
4.8
15.3
7.2
0.12
3.50
5.3
3.8
2.5
12.8
1.3
0.05
0.01
0.6
4.1
4.8
12.8
1.2
0.05
0.02
0.6
4.3
4.8
12.5
1.2
0.05
0.00
0.5
4.0
4.6
13.1
1.2
0.05
0.00
0.5
4.0
4.7
12.9
1.1
0.05
0.03
0.6
4.2
4.4
13.3
1.8
0.06
0.38
1.0
4.0
4.5
12.7
1.1
0.05
0.02
0.6
4.0
4.7
12.7
1.1
0.05
0.00
0.5
3.9
4.6
13.2
1.2
0.05
0.00
0.5
3.7
4.8
12.7
1.1
0.05
0.00
0.6
3.9
4.5
13.2
1.0
0.03
0.11
1.1
2.9
5.1
12.9
1.1
0.05
0.00
0.5
4.1
4.6
13.0
1.2
0.05
0.02
0.6
4.1
4.7
12.6
1.1
0.06
0.00
0.6
3.9
4.4
12.0
1.0
0.04
0.5
3.6
4.4
12.9
1.1
0.05
0.00
0.5
4.1
4.7
12.9
1.1
0.01
0.6
4.1
4.6
12.6
1.1
0.0.
5
0.05
0.5
3.9
4.6
12.8
1.2
0.06
0.5
4.0
4.5
0.0
0
0.0
1
0.0
2
0.0
2
0.0
1
0.2
7
0.0
1
0.1
3
0.0
1
0.2
8
0.0
1
0.0
2
0.0
8
0.0
2
0.0
2
0.0
4
0.0
3
0.0
1
0.0
1
0.0
1
0.0
2
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
0
0.0
100.2
0.0
100.0
0.0
100.4
0.0
99.9
0.0
100.0
0.0
99.7
0.0
100.0
0.0
100.0
0.0
99.7
0.0
99.6
0.0
99.9
0.0
100.5
0.0
99.6
0.0
100.2
0.0
100.6
0.0
99.4
0.0
100.0
0.0
99.8
0.0
100.2
0.0
99.8
0.0
100.6
0.0
100.5
0.0
100.5
0.0
99.5
0.0
100.0
0.0
100.5
0.0
100.1
0.0
99.6
0.0
99.9
0.2
6
0.9
7
1.3
1
1.0
2
1.9
9
0.6
7
0.9
6
1.0
3
1.1
3
0.9
1
0.4
1
1.4
2
0.6
2
0.3
3
1.1
7
0.1
4
1.2
2
3.7
6
1.6
3
1.5
8
0.6
0
0.2
7
0.4
1
1.8
7
2.5
8
0.8
0
1.5
8
1.3
2
0.5
4
57
MC-D20A
MC-D20B
MC-D20C
MC-D20D
MC-D22A
MC-D22B-1
MC-D22B-2
MC-D22C
MC-D22D
MC-D22E
MC-D22G
MC-D22H
MC-D22I
MC-D22J
MC-D22K
MC-D22L-ROCK
MC-D22LPEBBLES
MC-D23A
MC-D23B
MC-D23B(2)
MC-D23C
MC-D24AA
MC-D25A
MC-D25C
MC-D26A
MC-D26B
MC-D27A
MC-D27B-CSUF
MC-D27B-WSU
77.
3
75.
4
76.
6
77.
0
76.
8
76.
5
76.
9
76.
8
76.
5
76.
6
76.
4
76.
6
76.
7
76.
9
76.
3
76.
8
76.
8
76.
7
76.
3
76.
8
77.
1
77.
2
76.
9
77.
1
76.
6
77.
0
77.
0
77.
1
76.
5
0.1
3
0.2
3
0.1
2
0.1
3
0.0
8
0.1
0
0.0
8
0.1
5
0.1
0
0.0
6
0.1
7
0.1
1
0.0
6
0.1
1
0.0
7
0.1
3
0.1
1
0.0
7
0.0
8
0.0
9
0.1
3
0.1
7
0.1
2
0.1
6
0.0
9
0.1
2
0.1
1
0.1
1
0.0
6
13.0
1.0
0.05
0.00
0.6
3.9
4.8
13.3
1.6
0.06
0.31
1.0
4.1
4.5
12.8
1.0
0.04
0.00
0.6
3.9
4.5
12.8
1.1
0.05
0.00
0.5
4.0
4.6
12.9
1.1
0.05
0.5
4.1
4.7
12.8
1.2
0.05
0.5
3.9
4.7
12.7
0.9
0.02
0.5
4.0
4.7
12.9
1.1
0.05
0.00
0.5
4.0
4.6
12.8
1.2
0.06
0.00
0.6
4.0
4.6
12.8
1.1
0.05
0.00
0.5
4.0
4.7
12.8
1.1
0.05
0.00
0.5
4.1
4.6
12.8
1.2
0.06
0.6
4.0
4.5
12.8
1.2
0.06
0.5
4.1
4.7
12.8
1.1
0.05
0.5
4.0
4.7
12.7
1.2
0.06
0.5
4.0
4.7
12.9
1.1
0.06
0.00
0.6
4.0
4.5
12.9
1.2
0.06
0.00
0.6
3.9
4.6
13.1
1.2
0.05
0.02
0.6
3.7
4.9
12.8
1.1
0.05
0.6
3.8
4.8
13.0
1.2
0.06
0.6
3.8
4.9
12.9
1.1
0.05
0.5
3.9
4.5
12.9
1.1
0.05
0.5
4.0
4.4
12.9
1.1
0.04
0.5
4.1
4.6
12.9
1.1
0.05
0.00
0.5
4.0
4.6
12.6
1.1
0.05
0.03
0.6
3.9
4.7
12.8
1.1
0.06
0.5
4.0
4.6
13.0
1.1
0.05
0.5
4.1
4.6
12.9
1.1
0.05
0.00
0.5
4.1
4.7
12.5
1.2
0.05
0.00
0.5
4.0
4.7
0.00
0.00
0.0
1
0.0
3
0.0
1
0.0
8
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
0
0.0
0
0.0
1
0.0
0
0.0
1
0.0
1
0.0
5
0.0
3
0.0
1
0.0
2
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.0
100.7
0.0
100.4
0.0
99.5
0.0
100.4
0.0
100.2
0.0
99.6
0.0
99.6
0.0
100.1
0.0
99.8
0.0
99.9
0.0
99.5
0.0
99.7
0.0
100.1
0.0
100.1
0.0
99.5
0.0
100.1
0.0
100.1
0.0
100.4
0.0
99.6
0.0
100.3
0.0
100.3
0.0
100.3
0.0
100.3
0.0
100.3
0.0
99.6
0.0
100.2
0.0
100.4
0.0
100.6
0.0
99.6
0.1
5
0.3
5
0.2
0
1.4
0
0.2
8
0.9
9
0.2
1
0.6
6
0.4
4
1.3
1
0.4
4
0.5
1
0.4
6
0.3
4
0.4
7
1.6
7
1.7
6
3.5
0
3.2
0
1.7
0
1.1
1
0.1
5
0.0
7
1.8
2
1.2
7
0.9
9
0.2
6
58
MC-D27C
MC-D27D
MC-D28A
MC-D28D
MC-D28E
MC-D29A
MC-D30A
MC-D30B
MC-D30C
JLB 1
JLB 2
JLB 3
JLB 4
JLB 10A
JLB 10B
JLB 11
76.
6
76.
8
76.
5
76.
7
76.
7
76.
3
76.
5
76.
3
76.
9
54.
7
54.
3
54.
1
54.
4
54.
3
53.
7
54.
3
0.1
0
0.0
5
0.0
7
0.0
7
0.1
0
0.1
0
0.1
1
0.1
0
0.0
8
1.6
6
1.7
1
1.5
4
1.4
7
1.5
3
1.5
3
1.4
5
12.9
1.1
0.05
0.5
4.2
4.6
12.9
1.1
0.04
0.03
0.6
3.9
4.8
12.6
1.1
0.05
0.02
0.6
4.2
4.8
12.9
1.1
0.05
0.00
0.6
4.1
4.7
12.9
1.2
0.06
0.6
3.9
4.6
12.4
1.1
0.05
0.05
0.8
3.9
4.4
12.8
1.2
0.05
0.00
0.5
4.1
4.6
12.7
1.2
0.05
0.01
0.5
4.0
4.3
12.9
1.2
0.05
0.00
0.5
4.0
4.6
17.5
9.2
0.12
3.90
7.4
3.8
1.7
17.5
9.0
0.12
3.91
7.5
3.9
1.7
18.3
8.5
0.11
4.14
7.8
3.5
1.5
18.3
8.5
0.11
3.97
8.0
3.6
1.5
18.5
8.7
0.11
4.16
8.2
3.2
1.3
18.2
8.6
0.11
4.32
8.1
3.7
1.6
18.4
8.3
0.11
3.98
7.9
3.6
1.5
0.0
1
0.0
2
0.0
1
0.2
3
0.0
1
0.0
1
0.0
1
0.0
1
0.0
1
0.4
7
0.4
7
0.4
2
0.4
9
0.4
1
0.4
1
0.4
3
0.0
100.1
0.0
100.2
0.0
100.0
0.0
100.4
0.0
100.0
0.0
99.0
0.0
99.9
0.0
99.2
0.0
100.3
0.0
100.4
0.0
100.2
0.0
99.9
0.0
100.4
0.0
100.4
0.0
100.3
0.0
99.9
0.5
4
0.3
6
2.6
7
0.7
8
2.1
9
2.9
4
1.1
7
2.4
9
2.3
9
0.3
1
4.2
6
1.5
8
0.6
9
0.1
9
2.2
1
1.9
6
59
Table A2: Comparison of minerals and their major elements analyzed at UC
Davis.
Plagioclase Sanidine
Olivine
Pyroxene
Biotite
SiO2
X
X
X
X
X
TiO2
X
X
X
Al2O3
X
X
X
X
X
FeOt
X
X
X
X
X
MnO
X
X
X
MgO
X
X
X
CaO
X
X
X
X
X
Na2O
X
X
X
X
K2O
X
X
X
BaO
X
Cl
X
Peak Times 10-20
10-60
10-20
10
10
(s)
Accelerating 15
15
15
15
15
Voltage
(kV)
Raster
10
10
1
1
5
Length (µm)
Beam
10
10
20
20
10
Current
(nA)
Beam
1
1
1
1
1
Diameter
(µm)
60
Table A3: Comparison of minerals and their major elements analyzed at the
USGS, Menlo Park, CA.
Abbreviations: Pyx=Pyroxene; Bt=Biotite; Hbl=Hornblende
SiO2
TiO2
Al2O3
FeOt
MnO
MgO
CaO
Na2O
K2O
Cr2O3
Ni
Peak Times
(s)
Accelerating
Voltage (kV)
Raster
Length (µm)
Beam
Current (nA)
Beam
Diameter
(µm)
Plagioclase
X
Sanidine
X
X
X
X
X
X
X
X
X
X
X
X
X
Olivine
X
X
X
X
X
Pyx/Bt/Hbl
X
X
X
X
X
X
X
X
X
X
10-20
10-20
X
10-20
15
15
15
15
10
10
10
10
5
5
15
15
1
1
1
1
10-20
61
Table A4: Clinopyroxene compositions (wt %)
Rounded up when needed
Mineral
Name
X
tl
#
MLINI2cpx2(1-2)
MLINI2cpx4(2;46;813;16)
MLI_NI2
cpx4(Rim
2)
MC2D10bcp
x1(2-4)
MC2D10bcp
x1(1)
MC2D10fcpx
1(1-2;4)
MC2D10fcpx
1(3;5)
MC2D10fcpx
2(7)
MC2D10fcpx
2(1;5-6)
MC2D10fcpx
2(2-4)
MC2D10fcpx
2a(2)
MC2D10fcpx
2a(1)
MC2D10fcpx
3(1-3;56)
MC2D10fcpx
3(4)
MC2D10fcpx
4(6)
MC2D10fcpx
1
Cor
e/Ri
m
Hig
h/L
ow
Mg
Si
O2
Ti
O2
Al2
O3
Fe
O
Mn
O
Mg
O
Ca
O
Na2
O
K2
O
Cr2
O3
Su
m
T(o
C)
P(kb
ar)
52.
0
0.
26
2.0
9.7
0.34
15.
28
19.4
0.4
0.
00
0.00
99
.3
990.
95
3.0
2
Cor
e
51.
6
0.
32
2.5
9.7
0.33
14.
45
20.1
0.4
0.
00
0.01
99
.3
991.
05
3.2
2
Rim
51.
5
0.
33
2.5
9.6
0.27
14.
65
20.2
0.5
0.
01
0.04
99
.6
995.
15
3.8
3
Lo
w
49.
5
1.
52
4.3
9.8
0.28
14.
21
19.7
0.4
0.
03
0.02
99
.7
103
7.8
1.5
3
Hig
h
51.
2
1.
23
3.3
9.5
0.22
15.
03
19.3
0.3
0.
03
0.04
102
9.2
0.3
4
Lo
w
48.
8
1.
90
5.5
10.
2
0.3
13.
46
19.5
0.5
0.
02
0.01
105
3.7
5.9
4
Hig
h
51.
8
1.
00
2.7
9.2
0.3
15.
14
19.5
0.3
0.
02
0.0
10
0.
2
10
0.
1
99
.9
103
2.8
3.6
5
Lo
w
47.
2
2.
65
6.6
11.
0
0.3
12.
18
19.4
0.6
0.
04
0.0
106
1.5
6.7
5
Int.
49.
0
1.
91
5.3
9.5
0.26
13.
51
19.9
0.5
0.
03
0.06
105
1.8
5.8
5
Hig
h
51.
7
0.
92
2.6
9.5
0.34
14.
78
19.3
0.4
0.
02
0.07
10
0.
0
10
0.
0
99
.6
103
6.9
4.1
6
Hig
h
46.
7
2.
86
6.2
11.
1
0.26
11.
86
19.4
0.5
0.
03
0.03
98
.9
105
5.2
6.0
6
Lo
w
49.
6
1.
24
4.5
10.
5
0.36
13.
15
19.3
0.5
0.
06
0.03
99
.4
105
1.9
5.9
7
Lo
w
50.
1
1.
54
4.2
9.3
0.24
13.
42
20.2
0.4
0.
03
0.01
99
.6
104
1.8
4.9
7
Hig
h
52.
3
0.
85
2.5
9.3
0.29
15.
01
18.8
0.4
0.
02
0.01
99
.5
104
1.7
4.6
8
Lo
w
47.
1
2.
66
7.0
9.5
0.22
12.
18
19.9
0.6
0.
01
0.00
99
.2
106
0.6
6.8
8
Int.
49.
6
1.
74
5.1
9.4
0.26
13.
10
19.7
0.4
0.
02
0.02
99
.4
104
6.3
5.1
62
4(4-5)
MC2D10fcpx
4(1-3;7)
MC2D10fcpx
5(3)
MC2D10fcpx
5(1)
MC2D10fcpx
6(1-2;68;10)
MC2D10fcpx
6(3-5;9)
MC2D10fcpx
7(1-4)
MCD11ccpx2(6;9;
11)
MCD11dpyx1(2)
MCD12bcpx1(3-4)
MCD12bc-x1(1;5)
MCD12bcpx1(2)
MCD12cplag2-f
MCD12cplag2-h
MCD12cplag2-i
MCD12cplag2-j
MCD12cplag3(I,j)
MCD12cplag3-k
MCD12cplag4-(gk)
8
Hig
h
51.
5
1.
12
3.0
9.1
0.25
14.
62
19.3
0.4
0.
02
0.01
99
.3
103
7.7
4.1
9
Lo
w
50.
7
1.
43
3.8
8.7
0.21
13.
52
20.2
0.4
0.
03
0.00
99
.0
103
8.9
4.6
9
Hig
h
52.
3
0.
84
2.3
10.
8
0.37
14.
72
17.5
0.4
0.
03
0.01
99
.3
104
4.3
4.4
1
0
Lo
w
50.
1
1.
51
4.4
9.2
0.27
13.
72
20.2
0.5
0.
03
0.01
99
.9
104
5.3
5.3
1
0
Hig
h
51.
3
1.
11
3.3
9.5
0.31
14.
91
18.5
0.4
0.
03
0.02
99
.4
104
3.8
4.5
1
1
51.
7
0.
96
2.7
9.7
0.33
14.
69
19.6
0.3
0.
02
0.02
99
.9
103
3.5
3.8
1
2
51.
1
0.
48
2.7
9.5
0.26
14.
91
19.7
0.4
0.
00
0.03
99
.1
998.
5
1.6
1
3
50.
3
1.
31
3.6
9.0
0.26
13.
73
20.5
0.4
0.
01
0.00
99
.1
992.
4
3.1
1
4
Hig
h
51.
5
1.
00
2.4
9.7
0.28
15.
08
19.4
0.3
0.
00
0.00
99
.6
109
1.4
4.4
1
4
Int.
49.
5
1.
43
4.3
9.7
0.25
13.
61
20.4
0.4
0.
00
0.00
99
.6
109
3.6
3.8
1
4
Lo
w
46.
5
2.
87
6.1
10.
3
0.23
11.
91
20.7
0.3
0.
00
0.00
99
.0
109
1.4
4.4
1
5
48.
9
1.
66
5.0
10.
2
0.23
13.
32
19.9
0.5
0.
00
0.00
99
.7
112
0.3
5.9
1
6
51.
3
0.
88
2.3
9.6
0.29
15.
51
19.9
0.3
0.
00
0.00
107
6.0
0.5
1
7
50.
0
1.
36
3.8
9.6
0.30
14.
38
20.3
0.4
0.
00
0.00
111
1.2
5.1
1
8
50.
4
1.
05
3.0
10.
8
0.37
14.
35
19.3
0.4
0.
00
0.00
10
0.
2
10
0.
1
99
.6
110
5.1
4.1
1
9
51.
5
0.
88
2.5
9.6
0.32
15.
60
19.2
0.3
0.
00
0.00
10
0.
0
110
4.1
3.9
2
0
50.
3
1.
09
3.2
9.1
0.30
14.
99
19.9
0.4
0.
00
0.00
99
.4
110
8.6
4.7
50.
4
1.
26
3.6
9.2
0.22
14.
39
20.6
0.4
0.
00
0.00
10
0.
1
110
7.5
4.8
2
1
Cor
e
63
MCD12cplag4-j
2
1
MCD12cplag4-l
MCD12colv7-p
MCD12colv7-(q,r)
MCD12cplag8-f
MCD12cplag9(a;c)
MCD12cplag9-b
MCD12cplag9-d
MCD12cplag9(e,f)
MC2D12ccpx5(2)
MC2D12ccpx7(4)
MCD12h1plag_py
x2-e
MCD12h1plag_py
x2-(f,g)
MCD12h1plag_py
x2-h
MCD12h1plag3-e
2
2
MCD12h1plag3-f
MCD12h1plag4(f,g)
MCD12h-
Rim
49.
5
1.
43
4.3
9.8
0.28
14.
01
20.2
0.4
0.
00
0.00
99
.9
111
0.5
4.8
49.
9
1.
28
3.8
9.3
0.29
14.
42
20.4
0.4
0.
00
0.00
99
.7
110
9.0
4.9
2
3
Lo
w
45.
4
3.
16
7.5
11.
4
0.25
12.
07
19.2
0.6
0.
00
0.00
99
.5
113
7.0
7.0
2
3
Hig
h
47.
7
2.
19
5.8
10.
8
0.28
12.
94
19.7
0.5
0.
00
0.00
99
.8
112
4.3
6.1
51.
6
1.
02
2.6
10.
5
0.34
15.
88
18.3
0.3
0.
00
0.00
10
0.
5
99
.4
110
3.5
3.2
110
4.2
4.0
10
0.
2
10
0.
2
99
.7
111
1.5
4.9
111
1.1
4.8
110
5.9
4.2
2
4
2
5
Int
51.
1
0.
89
2.7
9.3
0.26
15.
38
19.4
0.4
0.
00
0.00
2
5
Cor
e
49.
5
1.
47
4.4
9.9
0.25
14.
05
20.2
0.4
0.
00
0.00
2
5
Rim
51.
9
0.
84
2.4
9.8
0.27
15.
48
19.1
0.4
0.
00
0.00
2
6
50.
5
1.
11
3.5
9.4
0.27
14.
73
19.9
0.4
0.
00
0.00
2
7
47.
9
1.
40
4.2
10.
6
0.27
13.
57
20.5
0.4
0.
04
0.00
98
.9
109
5.2
3.0
2
8
48.
6
1.
34
3.7
10.
1
0.32
14.
58
20.0
0.4
0.
03
0.00
99
.0
107
9.8
3.0
2
9
Cor
e
47.
9
1.
93
5.4
10.
2
0.33
13.
51
20.1
0.4
0.
00
0.00
99
.8
105
0.7
6.0
2
9
Int
48.
8
1.
68
4.7
10.
3
0.25
13.
91
20.0
0.5
0.
00
0.00
10
0.
1
105
2.9
6.4
2
9
Rim
50.
9
0.
92
2.7
9.2
0.29
15.
17
20.8
0.4
0.
00
0.00
10
0.
4
101
8.1
2.3
3
0
Cor
e
45.
4
2.
65
7.6
9.8
0.22
12.
75
20.6
0.6
0.
00
0.00
99
.6
106
3.8
7.6
3
0
Rim
47.
9
1.
94
5.8
10.
5
0.28
13.
48
19.7
0.5
0.
00
0.00
106
0.3
7.0
3
1
Cor
e
49.
8
1.
32
3.8
9.9
0.34
14.
35
20.2
0.4
0.
00
0.00
10
0.
2
10
0.
1
104
5.5
5.7
3
1
Rim
51.
0
0.
87
2.5
10.
1
0.33
14.
78
19.7
0.4
0.
00
0.00
99
.5
103
6.3
4.5
64
1plag4(h-j)
MC2D12h1cpx1(3)
MC2D12h1cpx1(5)
MC2D12h1cpx1(5b
)
MC2D12h1cpx1(3b
-4b)
MC2D12h1cpx1(6b
)
MC2D12h-1cpx2(1-8)
MC2D12h-1cpx3(2;5)
MC2D12h-1cpx3(1;34)
MC2D12h-1cpx4(2-4)
MC2D12h-1cpx4(1;6)
MCD12h-2cpx1(2-6)
MC2D12h-2cpx2(2-4)
MC2D12h-2cpx3(1)
MC2D12h-2cpx3(2)
MCD12h-2olv3-c
MCD12h-2olv4-(b,c)
MCD12h-2olv4-e
MCD12h-2-
3
2
Cor
e
48.
0
1.
87
5.8
10.
5
0.25
13.
23
18.9
0.5
0.
03
0.01
99
.0
105
9.1
6.5
3
2
Cor
e
51.
4
0.
92
3.0
10.
7
0.41
14.
35
17.6
0.4
0.
17
0.00
99
.0
105
2.5
5.6
3
3
Rim
48.
3
2.
01
5.5
10.
0
0.25
13.
26
19.2
0.5
0.
07
0.00
99
.1
105
8.9
6.7
3
3
Rim
50.
8
1.
21
3.5
10.
1
0.33
14.
08
19.1
0.4
0.
04
0.01
99
.6
104
7.7
5.5
3
3
Rim
52.
3
0.
48
1.5
16.
0
0.80
13.
85
15.2
0.2
0.
07
0.01
10
0.
4
103
8.1
2.6
51.
3
1.
13
3.4
9.3
0.29
14.
33
19.9
0.4
0.
03
0.01
10
0.
1
99
.9
104
5.6
5.6
105
1.5
6.1
3
4
3
5
Lo
w
50.
6
1.
35
4.2
9.8
0.27
13.
66
19.5
0.4
0.
02
0.04
3
5
Hig
h
52.
3
0.
94
2.5
8.9
0.28
14.
78
19.7
0.3
0.
02
0.03
99
.8
103
9.0
4.8
3
6
Hig
h
52.
7
0.
93
2.4
9.0
0.32
14.
15
19.9
0.4
0.
02
0.01
99
.7
103
8.3
4.9
3
6
Lo
w
51.
8
1.
23
3.3
9.1
0.31
13.
55
20.2
0.4
0.
02
0.00
99
.9
104
2.0
5.3
3
7
50.
2
1.
31
3.4
9.6
0.28
14.
57
19.9
0.4
0.
02
0.01
99
.6
104
0.7
4.9
3
8
50.
7
1.
04
3.0
9.6
0.29
14.
38
19.7
0.4
0.
02
0.02
99
.2
104
3.8
5.5
3
9
50.
0
1.
29
3.9
9.7
0.24
14.
27
20.0
0.3
0.
02
0.05
99
.7
103
9.3
4.7
4
0
48.
2
1.
75
5.3
10.
4
0.29
13.
59
19.5
0.4
0.
03
0.01
99
.4
105
2.8
6.0
4
1
49.
3
1.
09
3.7
10.
3
0.30
14.
30
19.7
0.4
0.
00
0.00
99
.0
104
6.7
5.7
4
2
51.
84
0.
4
2.64
18.
24
0.52
24.
27
1.52
0.03
0
0
99
.5
146
8.7
3.4
4
3
50.
4
1.
08
3.1
11.
8
0.27
16.
68
15.7
0.3
0.
00
0.00
99
.3
105
5.1
4.8
4
4
50.
4
0.
55
2.2
11.
0
0.48
14.
55
19.6
0.3
0.
00
0.00
99
.1
101
4.4
1.5
65
olv4f(2)
MCD12h-2olv4-i
MCD12h-2olv4-k
JLB3cpx1(2)
JLB3cpx2(5)
JLB3cpx2(2-3)
JLB10apyx1(1)
JLB10apyx1(6)
JLB10apyx2(2;45)
JLB10apyx2(1;3;
6-7)
JLB10apyx3(2;6)
JLB10apyx3(3)
JLB11cpx2(46;14)
JLB11cpx2(2;1
5-18;20)
JLB11cpx4
4
5
Cor
e
49.
3
1.
28
3.9
9.1
0.24
14.
27
20.6
0.4
0.
00
0.00
99
.1
104
5.5
6.0
4
5
Rim
49.
3
0.
79
3.4
11.
3
0.42
13.
09
20.4
0.4
0.
00
0.00
99
.0
104
1.9
5.5
0.
53
0.
45
0.
87
0.
84
1.
50
0.
84
3.6
7.7
0.15
21.1
0.4
0.19
20.4
0.3
5.0
9.4
0.18
21.0
0.4
2.1
8.4
0.24
20.4
0.3
4.4
8.5
0.16
21.7
0.3
2.0
8.7
0.29
20.2
0.3
99
.0
99
.3
99
.2
99
.8
99
.7
99
.8
111
7.3
111
1.0
112
5.0
110
8.4
111
7.6
111
4.0
3.3
8.8
0.
01
0.
00
0.
01
0.
01
0.
00
0.
00
0.27
2.5
14.
88
15.
28
13.
53
15.
24
13.
33
15.
24
4
6
4
7
4
7
4
8
4
8
4
9
Hig
h
Lo
w
Hig
h
Lo
w
Hig
h
50.
4
51.
3
48.
7
52.
4
49.
8
52.
2
4
9
Lo
w
49.
1
1.
67
4.8
8.7
0.19
13.
45
21.2
0.4
0.
00
0.07
99
.6
112
3.2
3.1
5
0
5
0
5
1
Hig
h
Lo
w
Hig
h
51.
7
47.
8
51.
5
0.
86
1.
94
0.
92
2.4
8.5
0.27
20.1
0.3
0.26
20.7
0.5
2.5
8.1
0.23
20.5
0.3
99
.2
99
.0
99
.2
139
0.9
113
9.5
110
9.0
2.4
9.5
0.
00
0.
00
0.
00
0.01
5.4
14.
99
12.
85
14.
95
5
1
Lo
w
48.
8
1.
6
4.9
9.0
0.19
13.
2
21.1
0.4
0.
00
0.03
99
.2
112
2.1
3.8
51.
6
0.
72
2.7
8.0
0.25
14.
74
20.8
0.4
0.
00
0.05
99
.3
111
6.9
3.5
5
2
0.03
0.05
0.03
0.01
0.02
0.00
0.04
2.4
4.0
1.3
2.6
2.0
5.0
2.3
66
Table A5: Orthopyroxene compositions (wt %)
Rounded up when needed.
Mineral Name
MLI-NI2opx1(1-4;9)
MLI-NI2opx1(5;8)
MLI-NI2opx1(6)
MLI-NI2cpx4(Rim1;3-15)
MLI-PI7-opx1(26)
MC-D12b(b)opx1(1)
MC-D12b(b)opx1(2-3;5-6)
MC-D12b(b)opx2(1-2)
MC-D12b(b)opx2(4)
MC-D12b(b)opx2(3;5)
MC-D12b(b)opx3
MC-D12b(b)opx3
MC-D12b(b)opx4
MC-D12h-2olv4(b,c)
MC-2D12mcpx1(3-5)
MC-2D12mcpx2(2-3)
MC-D15apyx1(1-3;5-8)
MC-D15apyx4b(1;4)
MC-D17b-cpx2(1;4-6)
MC-D17bcpx3(1-4)
MC-D17g-opx1(1-6;8-9;11)
JLB10a-pyx1
Xtl
#
1
High or
Low Mg
High
SiO2
TiO2
Al2O3
FeO
MnO
MgO
CaO
Na2O
K2O
Cr2O3
Total
T (oC)
53.0
0.15
1.60
18.3
0.48
24.4
1.41
0.01
0.00
0
99.3
1112.8
1
Int.
52.8
0.11
1.19
20.6
0.67
23.0
1.34
0.04
0.00
0.00
99.7
1112.8
1
Low
52.5
0.10
1.00
22.1
0.85
21.7
1.21
0.05
0.00
0.03
99.5
1112.8
2
52.9
0.14
0.39
22.1
0.92
19.9
3.19
0.07
0.02
0.01
99.6
1112.9
3
54.1
0.14
1.32
19.0
0.73
23.8
1.39
0.04
0.01
0.00
100.6
1121.1
4
Low
36.6
0.06
0.02
29.9
0.52
33.3
0.18
0.01
0.00
0.00
100.6
1164.2
4
High
37.4
0.04
0.04
25.3
0.38
37.3
0.19
0.01
0.01
0.00
100.6
1164.2
5
High
37.2
0.06
0.01
24.2
0.36
38.0
0.17
0.02
0.00
0.00
100.0
1164.2
5
Int.
36.8
0.06
0.03
26.0
0.40
36.5
0.15
0.02
0.01
0.00
100.0
1164.2
5
Low
36.7
0.04
0.02
27.2
0.46
35.1
0.16
0.01
0.00
0.00
99.7
1164.2
6
High
36.9
0.07
0.02
29.5
0.53
33.2
0.17
0.02
0.00
0.00
100.3
1164.2
6
Low
36.4
0.14
0.02
31.6
0.48
32.0
0.14
0.01
0.01
0.00
100.8
1164.2
7
37.7
0.03
0.03
25.5
0.40
37.1
0.17
0.00
0.00
0.00
100.9
1164.2
8
51.8
0.4
2.64
18.2
0.52
24.3
1.52
0.03
0.00
0.00
99.4
1184.9
9
51.5
0.08
0.29
28.0
1.24
18.4
0.96
0.02
0.03
0.00
100.5
1068.0
10
51.6
0.12
0.32
27.8
1.24
18.1
1.01
0.02
0.02
0.00
100.2
1068.0
11
30.2
0.01
0.00
63.8
3.71
2.7
0.11
0.01
0.00
0.01
100.5
1013.9
12
42.4
1.84
7.94
29.4
0.86
4.0
9.73
2.07
0.94
0.00
99.1
1013.9
13
43.3
1.83
8.07
28.7
0.90
3.9
9.90
2.08
0.95
0.00
99.6
1008.1
14
43.1
1.95
8.07
28.1
0.86
4.4
9.93
2.07
0.94
0.00
99.3
1008.1
15
30.7
0.00
0.00
63.5
3.68
2.8
0.11
0.02
0.00
0.01
100.7
992.8
16
38.8
0.03
0.01
23.6
0.37
37.2
0.20
0.01
0.00
0.02
100.1
1137.5
JLB10bopx1(2;4-5)
JLB10b-opx1(1)
17
High
39.2
0.01
0.01
20.0
0.31
39.3
0.18
0.00
0.00
0.01
99.0
1145.8
17
Low
39.0
0.03
0.08
21.4
0.29
38.1
0.25
0.00
0.00
0.03
99.2
1145.8
JLB10bopx2(1;3-5)
JLB10b-opx3(46)
JLB10b-opx3(1)
18
39.3
0.02
0.00
20.0
0.33
39.3
0.21
0.03
0.00
0.02
99.2
1145.8
JLB11-opx1(2-6)
20
19
High
39.7
0.03
0.00
17.3
0.32
42.0
0.18
0.00
0.01
0.01
99.5
1145.8
19
Low
38.9
0.04
0.00
19.0
0.31
40.5
0.18
0.00
0.01
0.00
99.0
1145.8
38.1
0.03
0.01
23.6
0.42
37.0
0.17
0.01
0.00
0.03
99.3
1139.3
67
Table A6: Plagioclase compositions
Rounded up when needed.
SiO2
Al2O3
FeO
CaO
Na2O
K2O
MgO
Total
T (oC)
Rim
58.4
25.9
0.63
8.9
5.53
0.96
0.01
100.4
1091.7
Core
61.3
24.5
0.20
6.0
7.46
1.04
0.01
100.5
1072.7
57.2
26.8
0.48
9.5
5.55
0.69
0.04
100.2
1090.5
High
55.7
28.1
0.43
10.6
5.31
0.36
0.05
100.5
1091.9
3
Low
57.7
27.0
0.31
9.0
6.09
0.45
0.03
100.6
1083.7
MLI-NI2-plag3(1-2;6-10;16-18)
4
High
55.9
28.0
0.41
10.5
5.42
0.35
0.05
100.6
1090.9
MLI-NI2-plag3(3-5;11-15)
4
Low
57.2
27.1
0.34
9.4
5.89
0.45
0.03
100.5
1086.2
MLI-NI2-plag4(1-10)
5
55.6
28.0
0.45
10.6
5.36
0.33
0.06
100.3
1091.4
MLI-PI1-plag1(2-4;6-7;9-10)
6
62.2
23.7
0.17
4.8
8.05
1.33
0.01
100.2
1073.4
MLI-PI1-plag2(2-5)
7
62.5
23.4
0.18
4.6
7.98
1.39
0.01
100.1
1074.0
MLI-Pi1-plag2a(1-2;5)
8
High
57.8
26.5
0.49
9.0
5.77
0.12
0.01
99.7
1084.7
MLI-Pi1-plag2a(3-4)
8
Low
63.2
21.5
1.41
5.8
5.56
2.25
0.33
99.99
1101.0
MLI-PI2-san1(4-5)
9
64.0
22.9
0.17
4.0
8.16
1.75
0.01
100.9
983.6
MLI-PI2-plag1(1;4;6)
10
63.6
23.0
0.2
4.2
8.17
1.66
0.01
100.9
982.7
MLI-PI2-plag2(2-4)
11
62.3
24.0
0.18
5.1
7.74
1.24
0.00
100.5
980.5
MLI-PI2-plag3(4;6-8)
12
63.0
23.6
0.17
4.7
7.96
1.39
0.01
100.8
980.8
MLI-PI-plag4(1-9)
13
62.0
24.0
0.18
5.0
7.76
1.29
0.01
100.2
981.0
MLI-PI2-plag5(1-3;5)
14
63.1
23.4
0.18
4.4
8.17
1.53
0.00
100.7
981.2
MLI-PI2-plag6(1-7;9)
15
62.5
23.7
0.17
4.9
7.95
1.31
0.01
100.5
980.2
MLI-PI2-plag7(3-5)
16
62.0
24.1
0.21
5.4
7.87
1.18
0.01
100.7
980.2
MLI-PI2-plag8(1-2;5;14)
17
62.8
23.7
0.17
5.1
7.87
1.25
0.01
100.9
980.3
MLI-PI2-plag9(1-2;4)
18
63.2
23.4
0.18
4.4
8.07
1.46
0.00
100.7
980.7
MLI-PI7-plag1(7-8)
19
High
57.1
27.2
0.42
9.4
5.92
0.48
0.04
100.6
1086.8
MLI-PI7-plag1(6)
19
Low
58.3
26.4
0.34
8.4
6.10
0.58
0.03
100.1
1083.8
MC-1D10b-plag1(4)
20
52.4
29.3
0.36
12.8
4.22
0.23
0.07
99.4
1095.9
MC-1D10b-plag2(1-4)
21
52.4
29.3
0.38
12.5
4.17
0.24
0.11
99.1
887.6
MC-1D10b-plag3(1;7)
22
52.3
29.4
0.36
12.6
3.99
0.23
0.10
99.0
888.2
MC-1D10b-plag4(1-4)
23
53.4
29.0
0.59
11.9
4.38
0.30
0.07
99.7
886.3
MC-1D10b-plag5(4)
24
52.8
29.2
0.35
12.0
4.51
0.26
0.09
99.3
885.7
MC-1D10b-plag6(2-4)
25
52.2
30.0
0.34
12.8
4.09
0.25
0.08
99.7
888.2
MC-1D10b-plag7(1-4)
26
52.6
29.5
0.42
12.5
4.27
0.24
0.11
99.6
887.1
MC-D10b-plag1(1-2)
27
52.1
29.7
0.33
12.5
4.08
0.20
0.10
99.1
1129.3
MC-D10b-plag2(2-4)
28
53.0
30.0
0.42
13.0
4.01
0.22
0.08
100.7
1130.5
MC-D10b-plag3(1-4)
29
51.6
30.2
0.40
13.0
4.01
0.22
0.09
99.5
1130.5
MC-D10b-plag4(1-4)
30
52.7
29.7
0.58
12.5
4.31
0.26
0.07
100.1
1128.4
MC-D10b-plag5(1-6;8)
31
52.4
30.2
0.34
13.1
4.03
0.19
0.1
100.3
1130.4
Mineral Name
Xtl #
Core or
Rim
MLI-NI2-san1(4-7)
1
MLI-NI2-plag1(1-13;15-17;19-22)
1
MLI-NI2-plag1a
2
MLI-NI2-plag2(2-5;14)
3
MLI-NI2-plag2(1;6-13;15-16)
High or Low
Al
68
MC-D10b-plag6(1-5)
32
53.2
29.6
0.40
12.3
4.39
0.23
0.07
100.3
1127.5
MC-D10b-plag7(1-2;4-5)
33
51.6
30.1
0.35
13.0
4.12
0.20
MC-D10b-plag8(1-6;8-11)
34
52.5
30.0
0.36
12.8
4.23
0.21
0.11
99.5
1129.8
0.10
100.1
1129.0
MC-D10b-plag-9(1-3;6)
35
52.1
30.1
0.11
13.0
4.05
0.20
0.08
99.8
1130.2
MC-D10c-plag1(3-4)
36
65.3
22.2
0.11
3.1
8.98
1.27
0.00
101.0
746.8
MC-D10f-plag1(1-3;5-6)
37
52.8
30.1
0.50
12.3
4.33
0.30
0.11
100.5
854.6
MC-1D10f-plag3(1-4;6-8)
38
53.7
29.5
0.53
11.9
4.51
0.31
0.08
100.4
853.4
MC-1D10f-plag4(1;3-10;16-22)
40
53.8
29.5
0.49
11.7
4.32
0.30
0.09
100.3
853.9
MC-1D10f-plag4(Line 11)
40
54.0
29.6
0.45
11.8
4.51
0.33
0.07
100.7
853.3
MC-1D10f-plag4(Line 13)
40
55.2
28.9
0.45
10.7
5.06
0.45
0.06
100.8
850.3
MC-1D10f-plag4(Line 14)
40
58.7
26.8
0.22
8.2
6.28
0.63
0.03
100.9
841.8
MC-1D10f-plag4(Line 15)
40
60.3
25.6
0.20
6.9
6.58
0.87
0.04
100.5
839.5
MC-1D10f-plag5(1;3-11)
41
53.7
29.4
0.51
11.7
4.4
0.31
0.08
100.1
853.6
MC-1D10f-plag6(2-3;5-7)
42
53.1
29.5
0.51
11.6
4.47
0.31
0.08
99.5
853.2
MC-1D10f-plag7(8-10)
43
51.2
30.7
0.30
12.9
3.87
0.21
0.09
99.3
856.3
MC-1D10f-plag8(1-5;7)
44
52.5
30.2
0.37
12.2
4.17
0.26
0.07
99.8
821.2
MC-1D10f-plag9(1-8)
45
52.3
30.2
0.40
12.5
4.16
0.25
0.11
99.9
821.4
MC-1D10f-plag10(1)
46
51.9
30.7
0.30
13.2
3.74
0.25
0.09
100.2
823.5
MC-D11c-plag1(3-8)
47
53.5
29.5
0.54
12.4
4.35
0.25
0.10
100.6
1110.1
MC-D11c-plag2(1-10)
48
53.3
29.6
0.53
12.5
4.31
0.26
0.1
100.6
1110.5
MC-D11c-plag3(1-3;5-6;8-11)
49
54.0
29.2
0.55
12.1
4.57
0.27
0.09
100.8
1108.5
MC-D11c-plag4(1-10)
50
53.6
28.9
0.53
12.0
4.59
0.26
0.08
100.0
1108.1
MC-D11c-plag5(1-15;17-19)
51
53.7
29.0
0.52
12.0
4.56
0.27
0.08
100.0
1107.8
MC-D11d-plag1(3;8;10)
52
52.1
29.6
0.36
12.6
4.05
0.21
0.09
99.1
884.1
MC-D11d-plag2(1;3)
53
52.0
30.0
0.34
12.8
3.94
0.20
0.09
99.5
854.7
MC-D11d-plag4(6-8)
54
52.8
29.5
0.40
12.4
4.07
0.23
0.08
99.5
853.9
MC-D11d-plag5(5-12)
55
52.8
30.0
0.37
12.8
3.92
0.20
0.09
100.2
854.7
MC-D11d-plag6(1-11)
56
53.8
29.1
0.54
19.1
4.24
0.24
0.08
100.1
853.1
MC-D11d-plag7(1-6)
57
54.1
28.8
0.56
11.8
4.44
0.27
0.08
100.0
1046.6
MC-D11d-plag8(1-3)
58
53.1
29.2
0.53
12.2
4.24
0.22
0.07
99.6
853.1
MC-D11d-plag9(2-4)
59
52.3
29.8
0.36
12.7
3.89
0.21
0.10
99.4
854.8
MC-D11j-plag1(1)
60
Low
60.5
24.5
0.12
6.3
7.79
0.42
0.00
99.6
1050.5
MC-D11j-plag1(4-5)
60
High
59.1
25.1
0.19
7.0
7.43
0.44
0.01
99.3
1055.5
MC-D11j-plag2(1;3-8)
61
62.9
23.6
0.15
4.7
8.46
0.55
0.01
100.3
1043.3
MC-D12b-plag1(7)
62
High
61.0
24.5
0.10
6.0
8.20
0.45
0.01
100.2
1096.2
MC-D12b-plag1(1-6)
62
Low
62.4
23.7
0.14
4.8
8.62
0.45
0.01
100.1
1089.5
MC-D12b-plag2(1;3-4)
63
53.2
29.5
0.50
12.6
4.25
0.21
0.10
100.4
1137.7
MC-D12b-plag3(1-3;5)
64
52.7
29.6
0.37
12.5
4.29
0.22
0.14
99.8
1137.4
MC-D12b-plag4(1-5)
65
52.1
30.2
0.35
13.2
3.89
0.20
0.10
100.1
1140.6
MC-D12b-plag5(1-5)
66
52.1
30.0
0.38
12.8
4.15
0.21
0.12
99.7
1138.7
69
MC-D12b-plag6(2;4-6)
67
51.5
30.2
0.38
13.0
3.91
0.19
0.13
99.4
1140.2
MC-D12b-plag8(1-2;6-7)
68
53.4
29.1
0.56
11.9
4.51
0.25
MC-D12b-plag9(1-7)
69
52.5
30.0
0.35
13.0
4.05
0.21
0.10
99.7
1135.2
0.11
100.1
1139.5
MC-D12b-plag10(1-7)
70
53.2
29.5
0.51
12.5
4.31
0.22
0.10
100.3
1137.3
MC-D12b-plag11(1-5)
71
52.6
30.2
0.35
12.9
3.99
0.20
0.11
100.3
1139.7
MC-D12b-plag12(1-11)
72
52.7
29.8
0.38
12.8
4.12
0.21
0.12
100.1
1138.9
MC-D12b(b)-plag1(1-3)
73
53.2
29.8
0.59
12.0
4.52
0.22
0.08
100.5
857.1
MC-D12b(b)-plag2(1-2)
74
51.8
31.0
0.36
13.0
4.09
0.20
0.10
100.6
859.6
MC-D12b(b)-plag5(1-2)
75
53.2
29.4
0.67
11.6
4.93
0.27
0.10
100.1
855.2
MC-D12c-plag2(a,b)
76
52.9
29.8
0.55
12.5
4.38
0.28
0.00
100.4
823.4
MC-D12c-plag2(c,d)
77
53.0
29.7
0.55
12.2
4.54
0.26
0.00
100.2
823.6
MC-D12c-plag2-e
78
52.7
29.7
0.58
12.3
4.50
0.24
0.00
99.9
823.3
MC-D12c-plag3(a,f)
79
Core
52.8
29.5
0.60
12.0
4.49
0.29
0.00
99.6
823.9
MC-D12c-plag3(c-e)
79
Int
53.8
28.9
0.51
11.4
4.84
0.33
0.00
99.9
825.7
MC-D12c-plag3(b,g)
79
Rim
54.2
28.8
0.52
11.0
5.02
0.34
0.00
99.9
826.6
MC-D12c-plag3-h
80
53.4
29.6
0.58
11.9
4.74
0.28
0.00
100.5
824.4
MC-D12c-plag4(a-e)
81
51.5
30.7
0.38
13.1
3.98
0.24
0.00
99.9
822.1
MC-D12c-plag6(a-e)
82
53.2
29.3
0.50
11.8
4.68
0.31
0.00
99.8
824.6
MC-D12c-plag6(f,g)
83
53.3
29.2
0.53
11.6
4.68
0.31
0.00
99.6
824.8
MC-D12c-plag9-n
84
Core
52.7
30.0
0.56
12.5
4.44
0.24
0.00
100.5
823.0
MC-D12c-plag9(o,p)
84
Int
54.0
29.3
0.54
11.6
4.81
0.34
0.00
100.6
825.4
MC-D12c-plag9-q
84
Rim
52.7
29.4
0.49
12.0
4.47
0.28
0.00
99.3
823.9
MC-D12c-plag9-r
85
56.0
27.8
0.39
10.3
5.47
0.42
0.00
100.4
829.5
MC-D12c-plag9-s
86
Core
52.6
29.3
0.51
11.9
4.59
0.29
0.00
99.2
824.3
MC-D12c-plag9-(t,u)
86
Rim
52.6
29.9
0.56
12.3
4.34
0.25
0.00
99.9
823.1
MC-D12c-plag9-v
87
51.3
30.6
0.51
13.2
3.95
0.20
0.00
99.7
821.7
MC-D12c-plag9-(Line w)
88
52.8
29.8
0.49
12.4
4.26
0.27
0.00
99.9
823.2
MC-D12c-plag9-(Line x)
88
59.9
25.3
0.60
8.9
4.44
1.40
0.00
100.5
840.0
MC-D12c-plag9-(Line y)
88
64.3
22.7
0.69
6.9
4.02
2.31
100.9
854.8
MC-D12c-plag9-(Line aa)
88
72.1
16.8
0.78
2.6
3.53
3.67
0.01
99.4
889.9
MC-D12c-plag9-(Line cc)
88
54.1
29.2
0.59
11.7
4.80
0.33
0.00
100.8
825.2
MC-1D12c-plag6(1)
89
Rim
61.2
24.9
0.32
6.5
6.77
0.75
0.04
100.5
844.5
MC-1D12c-plag6(2-7)
89
Core
55.6
28.7
0.46
10.4
4.56
0.29
0.09
100.1
859.0
MC-1D12c-plag7(1-6)
90
54.1
30.0
0.32
11.3
4.03
0.23
0.10
100.1
862.3
MC-D12g-plag4(b-c;e-f)
91
63.0
23.5
0.20
4.6
8.20
1.3
0.00
100.8
791.9
MC-D12g-plag4(g)
92
62.8
23.5
0.18
4.5
8.14
1.31
0.00
100.4
792.2
MC-D12g-plag5(a,d)
93
Rim
58.9
26.2
0.12
7.4
7.22
0.19
0.00
100.1
772.5
MC-D12g-plag5(b,e)
93
Int
56.9
27.6
0.17
9.2
6.35
0.15
0.00
100.4
765.6
MC-D12g-plag5-c
93
Core
51.7
31.0
0.27
13.4
4.15
0.08
0.00
100.6
755.8
MC-1D12gplag1(1-6)
94
63.3
23.4
0.22
4.6
7.87
1.20
0.00
100.6
791.0
70
MC-D12h-1-plag1(a-e)
95
51.6
30.9
0.37
13.2
3.92
0.22
0.00
100.3
810.6
MC-D12h-1-plag_pyx2(a-c;e)
96
MC-D12h-1-plag_pyx2(d)
96
Core
52.8
29.8
0.58
12.2
4.41
0.27
0.00
100.1
812.2
Rim
52.1
30.5
0.54
13.2
4.11
0.25
0.00
100.6
811.1
MC-D12h-1-plag3(b,d)
97
Rim
52.4
30.4
0.60
12.8
4.15
0.25
0.00
100.6
811.3
MC-D12h-1-plag3-c
97
Core
53.3
30.0
0.56
12.3
4.55
0.25
0.00
100.9
812.2
MC-D12h-1-plag3-l
98
52.5
29.9
0.58
12.4
4.35
0.27
0.00
99.99
812.0
MC-D12h-1-plag4-(a,b)
99
53.4
29.7
0.53
12.0
4.65
0.28
0.00
100.5
812.9
MC-D12h-1-plag4-(c,d)
100
53.5
29.5
0.55
11.9
4.69
0.31
0.00
100.3
813.3
MC-D12h-1-plag4-e
101
53.3
29.2
0.61
12.0
4.49
0.29
0.00
99.9
812.7
MC-D12h-1-plag5-(a,b)
102
52.4
30.6
0.36
12.9
4.16
0.24
0.00
100.6
811.1
MC-1D12h-1-plag1(2;4)
103
Rim
52.9
29.9
0.44
11.8
4.28
0.24
0.04
99.5
849.9
MC-1D12h-1-plag1(3)
103
Core
54.6
28.7
0.48
10.5
4.96
0.30
0.00
99.5
845.6
MC-1D12h-1-plag2(3-6)
104
53.0
29.3
0.57
11.3
4.60
0.31
0.09
99.2
848.3
MC-1D12h-1-plag5(1-3;6)
105
51.8
30.0
0.53
12.3
4.07
0.26
0.09
99.1
851.3
MC-1D12h-1-plag6(2-3;5)
106
52.6
30.3
0.34
12.2
4.18
0.23
0.11
99.9
850.6
MC-D12h-2-plag1(a,b)
107
52.1
30.1
0.40
12.8
4.17
0.24
0.00
99.8
851.4
MC-D12h-2-plag1(c,d)
108
51.8
30.4
0.37
12.9
4.10
0.24
0.00
99.7
851.7
MC-D12h-2-plag1-f
109
52.8
29.1
0.53
11.8
4.53
0.30
0.00
99.0
849.3
MC-D12h-2-olv2-f
110
53.0
29.0
0.54
11.5
4.71
0.31
0.00
99.1
848.2
MC-D12h-2-olv2-(h,i)
111
52.9
29.4
0.55
12.2
4.51
0.30
0.00
99.8
849.7
MC-D12h-2-olv3-h
112
52.9
29.0
0.53
11.7
4.51
0.29
0.00
99.0
849.2
MC-D12h-2-olv4-m
113
Core
53.8
28.5
0.70
10.9
5.09
0.37
0.00
99.3
846.1
MC-D12h-2-olv4-n
113
Rim
55.5
27.2
0.62
9.3
5.80
0.54
0.00
99.0
841.6
MC-1D12h-2-plag3(2-7)
114
54.9
28.9
0.42
11.2
4.14
0.26
0.10
99.9
849.7
MC-1D12h-2-plag4(1-5)
114
55.2
29.0
0.44
11.2
4.19
0.28
0.09
100.4
849.6
MC-1D12h-2-plag5(1-2;4)
115
56.3
27.8
0.48
10.1
4.69
0.31
0.07
99.7
846.1
MC-1D12m-plag1(1)
116
64.7
22.1
0.17
3.3
8.69
1.30
0.00
100.1
787.2
MC-D12m-plag1(1-5)
117
62.5
23.0
0.20
4.7
8.12
1.17
0.01
99.8
788.9
MC-D12m-plag2(1-3)
118
64.3
21.9
0.11
3.4
8.81
1.53
0.01
100.0
789.5
MC-D12m-plag3(1-4)
119
64.6
21.6
0.15
3.4
9.02
1.36
0.00
100.1
787.3
MC-D12m-plag4(1-6)
120
63.4
22.7
0.19
4.6
8.20
1.27
0.01
100.2
789.3
MC-D12p-plag2(1)
121
63.3
22.1
0.14
3.3
8.87
1.20
0.00
99.0
770.3
MC-D12p-plag16(1-8)
122
64.9
22.0
0.09
3.1
8.87
1.15
0.00
100.1
769.7
MC-D14e-plag1(1;3-7)
123
52.8
29.7
0.49
12.7
4.22
0.21
0.13
100.2
1119.6
MC-D14e-plag2(1-4;6-8)
124
52.9
29.6
0.50
12.7
4.27
0.24
0.10
100.3
1119.6
MC-D14e-plag4(2-3;5-6)
125
53.0
29.5
0.54
12.6
4.26
0.23
0.09
100.2
1119.3
MC-D14e-plag5(1-5)
126
54.9
28.3
0.55
11.0
5.12
0.31
0.08
100.3
1111.9
MC-D14e-plag6(1-10)
127
52.7
29.7
0.44
12.7
4.19
0.22
0.11
100.1
1119.8
MC-D14e-plag7(1-9)
128
51.5
30.4
0.35
13.6
3.74
0.14
0.14
99.8
1122.8
MC-D14f1-plag1(2-5;7-15)
129
64.4
22.4
0.14
3.3
8.71
1.38
0.01
100.4
936.2
71
MC-D14f1-plag2(1-16)
130
53.5
28.8
0.54
11.7
4.72
0.29
0.10
99.6
1041.6
MC-D14f1-plag3(1-2;4-14;16)
131
MC-D14f1-plag3(3;15)
131
High
52.4
30.0
0.50
13.0
4.06
0.19
0.10
100.2
1046.3
Low
55.0
28.2
0.52
11.1
5.09
0.32
0.09
100.3
1038.6
MC-D14f1-plag4(1-12)
132
53.0
29.5
0.49
12.6
4.31
0.22
0.12
100.2
1044.6
MC-D14f2-plag1(1-3)
133
64.2
22.2
0.10
3.2
8.76
1.37
0.07
99.9
935.9
MC-D14f2-plag2(1-4)
134
52.0
29.9
0.54
13.1
4.05
0.21
0.08
99.9
1046.6
MC-D14f2-plag3(1-6;8)
135
High
53.3
29.5
0.52
12.4
4.37
0.26
0.11
100.4
1044.3
MC-D14f2-plag4(1;3-4;6;8-11)
136
High
53.3
29.5
0.48
12.4
4.46
0.24
0.10
100.4
1043.8
MC-D14f2-plag4(2;5;7;12-14)
136
Low
54.3
28.5
0.45
11.4
5.00
0.31
0.10
100.0
1039.6
MC-D14f2-plag5(1-5)
137
55.6
27.8
0.49
10.2
5.61
0.41
0.05
100.1
1034.5
MC-D14f2-plag6(1-4)
138
54.2
29.0
0.54
11.7
4.91
0.31
0.09
100.7
1040.7
MC-D14f2-plag7(1-2)
139
65.2
22.2
0.13
3.1
8.88
1.39
0.00
100.8
936.0
MC-D14f2-plag8(1-13)
140
56.2
27.4
0.44
9.9
5.70
0.48
0.04
100.2
1034.0
MC-D15a-plag10(1-10)
141
64.7
22.4
0.15
3.4
8.93
1.12
0.00
100.7
769.2
MC-D15a-plag13(1-6;8)
142
64.1
22.1
0.12
3.2
9.55
1.21
0.00
100.2
769.2
MC-D15a-plag14(1-4)
143
65.1
22.1
0.14
3.1
8.99
1.24
0.00
100.6
770.3
MC-D15a-plag16(1-3)
144
65.5
22.0
0.12
3.0
8.93
1.30
0.00
100.9
771.1
MC-D17b-plag1(1-6)
145
64.5
22.1
0.10
2.9
8.93
1.37
0.00
99.8
932.6
MC-D17b-plag2(2-3;5;7)
146
64.3
22.3
0.14
3.1
8.91
1.28
0.01
100.1
931.2
MC-D17b-plag3(1;3;5)
147
63.9
22.4
0.10
3.2
9.02
1.24
0.01
99.9
930.4
MC-D17g-plag1(1-2;4-7;9)
148
64.4
22.0
0.13
3.0
9.06
1.25
0.00
99.8
928.3
MC-D17g-plag2(1-10)
149
64.9
21.8
0.13
2.9
9.07
1.24
0.00
100.1
928.2
MC-D18b-plag8(1-5;7)
150
64.5
21.8
0.11
3.0
9.10
1.30
0.00
99.8
760.8
MC-D18b-plag10(1-6;8-11)
151
64.4
22.0
0.12
3.2
9.64
1.26
0.00
100.6
759.6
MC-D25a-plag1(1-5)
152
65.0
21.8
0.10
2.8
9.12
1.27
0.01
100.1
768.3
MC-D25a-plag3(1-5)
153
65.2
22.0
0.09
2.7
9.12
1.37
0.00
100.5
769.5
MC-D25a-plag8(1;3-4)
154
65.1
21.7
0.11
2.6
9.20
1.37
0.00
100.0
769.5
MC-D25c-plag3(1-3)
155
64.6
22.1
0.14
3.1
9.02
1.21
0.00
100.2
766.8
MC-D25c-plag6(1-6)
156
65.2
21.8
0.12
2.9
9.08
1.33
0.00
100.4
768.1
MC-D25c-plag20(1-2;4-6)
157
64.9
22.1
0.12
2.8
8.98
1.42
0.00
100.2
769.3
MC-D25c-plag21(1-4)
158
64.6
22.2
0.10
2.9
9.05
1.33
0.00
100.1
768.1
MC-D28a-plag1(a-b;g-h)
159
Core
64.8
22.1
0.10
2.9
9.01
1.38
0.00
100.3
802.0
MC-D28a-plag1(c-d)
159
Int
64.1
22.3
0.10
3.1
8.87
1.26
0.00
99.8
800.4
MC-D28a-plag1-(e-f)
159
Rim
64.3
22.3
0.13
3.0
9.03
1.33
0.00
100.2
801.1
MC-D28a-plag1-n
160
64.7
22.4
0.14
3.1
8.93
1.29
0.00
100.6
800.5
MC-D28a-san3-(h-j)
161
64.9
22.1
0.10
2.7
9.07
1.42
0.00
100.2
802.7
MC-D28a-san4-(a-d)
162
64.6
22.1
0.12
3.0
8.93
1.28
0.00
100.1
800.8
MC-D28a-san6-g
163
65.1
21.9
0.13
2.9
8.93
1.28
0.00
100.3
801.1
MC-D28a-san6-(i-l)
164
64.8
22.3
0.13
2.9
9.0
1.30
0.00
100.4
801.3
MC-1D28a-plag1(1-5)
165
66.4
21.3
0.11
2.7
8.9
1.20
0.00
100.6
771.9
72
MC-1D28aplag2(1-4)
166
66.2
20.9
0.07
2.6
8.91
1.26
0.00
99.9
772.7
MC-1D28d-plag2(2-5)
167
65.0
22.4
0.11
3.0
8.73
1.36
0.01
100.6
772.3
MC-1D28d-plag3(4)
168
64.1
22.2
0.13
3.1
8.77
1.13
0.00
99.4
772.3
MC-1D28d-plag4(1-4)
169
63.4
22.5
0.16
3.3
8.59
1.29
0.00
99.3
774.5
MC-D28e-plag1(a-c)
170
63.7
22.5
0.14
3.4
8.80
1.25
0.00
99.8
772.6
MC-D28e-plag3(c,e)
171
Core
65.0
22.1
0.14
2.8
9.10
1.35
0.00
100.5
773.2
MC-D28e-plag3(d)
171
Rim
64.4
22.4
0.09
3.2
8.80
1.32
0.00
100.2
773.3
MC-D28e-san6(h)
172
Core
64.9
22.2
0.13
3.0
8.98
1.39
0.00
100.5
773.8
MC-D28e-san6(j,k)
172
Int
64.4
22.4
0.11
3.1
8.90
1.28
0.00
100.1
772.7
MC-D28e-san6(I,l)
172
Rim
64.2
22.1
0.14
3.0
8.99
1.30
0.00
99.7
772.8
MC-D28e-plag7-(a-h)
173
64.2
22.3
0.12
3.1
8.85
1.35
0.00
100.0
773.6
MC-1D28e-plag1(1-4)
174
65.2
21.3
0.11
2.9
9.16
1.35
0.01
100.0
773.1
MC-1D28e-plag2(1-8)
175
65.1
21.5
0.08
2.9
9.08
1.36
0.00
100.0
773.3
MC-1D28e-plag3(1-10)
176
64.7
22.0
0.10
3.1
9.20
1.32
0.00
100.4
772.7
MC-D29a-plag1(2-5)
177
64.8
21.7
0.09
3.6
9.27
1.29
0.00
100.7
778.5
MC-D29a-plag4-b
178
65.0
22.3
0.10
3.1
9.03
1.26
0.00
100.7
807.2
MC-D29a-plag4-(c,d)
179
65.3
22.1
0.13
2.7
9.15
1.44
0.00
100.8
809.5
MC-D29a-san5-j
180
64.6
22.2
0.15
3.0
8.97
1.27
0.00
100.1
807.6
MC-D29a-plag6-(a,b)
181
Core
65.3
22.0
0.11
2.7
9.13
1.44
0.00
100.6
809.4
MC-D29a-plag6-(c-d;g)
181
Int
64.7
22.4
0.02
3.1
9.04
1.30
0.00
100.6
807.1
MC-D29a-plag6-e
181
Rim
64.2
22.7
0.12
3.3
8.94
1.24
0.00
100.4
806.3
MC-D30a-plag1(a-i)
182
64.6
22.0
0.12
2.8
8.91
1.40
0.00
99.8
800.6
MC-D30a-plag2(a-c)
183
64.6
22.1
0.14
3.0
8.82
1.39
0.00
100.1
799.7
MC-D30a-plag2-d
184
63.5
22.5
0.13
3.2
8.72
1.26
0.00
99.3
798.2
JLB3-plag1(1;3-5)
185
High
49.1
32.3
0.54
15.8
2.59
0.11
0.10
100.5
1210.8
JLB3-plag1(2;6)
185
Low
53.1
29.4
0.68
12.5
4.44
0.23
0.10
100.4
1198.5
JLB3-plag2(3-5;9-10)
186
High
47.9
33.0
0.53
16.6
2.22
0.08
0.1
100.4
1212.0
JLB3-plag2(1-2;7-8;11)
186
Low
49.6
31.6
0.53
15.0
3.01
0.13
0.11
100.1
1208.9
JLB3-plag3(2-6)
187
High
48.4
32.5
0.53
16.1
2.34
0.09
0.10
100.1
1211.6
JLB3-plag3(1)
187
Low
52.1
29.4
0.66
12.7
4.14
0.22
0.10
99.3
1200.7
JLB3-plag4(1-5)
188
Core
48.4
32.8
0.55
16.3
2.34
0.09
0.09
100.6
1211.7
JLB3-plag4(1-4)
188
Rim
51.5
30.4
0.72
13.5
3.80
0.19
0.11
100.3
1203.8
JLB3-plag5(2-4)
189
High
47.8
32.9
0.48
16.6
2.11
0.08
0.09
100.0
1212.3
JLB3-plag5(5)
189
Low
51.4
30.6
0.57
13.9
3.66
0.16
0.12
100.5
1204.9
JLB3-plag6(1-4)
190
48.9
32.0
0.58
15.7
2.58
0.11
0.10
100.1
1210.8
JLB3-plag7(1-4)
191
48.9
31.8
0.51
15.4
2.73
0.11
0.10
99.5
1210.1
JLB3-plag8(1-5)
192
48.2
32.8
0.44
16.2
2.27
0.09
0.10
100.1
1211.8
JLB3-plag9(1-5)
193
53.2
29.2
0.76
12.4
4.50
0.20
0.11
100.3
1197.8
JLB3-plag10(1-5)
194
49.4
32.2
0.44
15.5
2.74
0.11
0.11
100.5
1210.1
JLB10a-plag1(1)
195
47.9
32.9
0.42
16.1
2.22
0.09
0.08
99.7
949.4
73
JLB10a-plag2(2;4-12)
196
Core
47.6
32.8
0.49
16.1
2.18
0.08
0.09
99.3
949.4
JLB10a-plag2(13-20)
196
Rim
51.2
30.2
0.63
13.1
3.79
0.18
0.10
99.3
1174.3
JLB10b-plag1(a-f;j)
197
48.0
32.9
0.45
16.2
2.15
0.09
0.10
99.8
1213.6
JLB10b-plag2(2-12)
198
47.7
32.8
0.46
16.2
2.17
0.08
0.10
99.5
1213.5
JLB10b-plag3(1-4;6-10)
199
48.2
32.8
0.46
16.0
2.32
0.09
0.10
99.9
1213.1
JLB10b-plag4(2-4;6;9-10)
200
53.5
28.4
0.76
11.6
4.59
0.31
0.13
99.3
1197.8
JLB10b-plag5(1-2;4-8)
201
53.3
29.1
0.77
12.3
4.28
0.25
0.14
100.1
1200.7
JLB10b-plag6(4;6-7)
202
High
53.3
29.2
0.51
12.2
4.39
0.23
0.09
99.9
1199.8
JLB10b-plag6(1-3;5;8)
202
Low
54.7
28.1
0.49
10.9
4.98
0.29
0.09
99.5
1193.5
JLB10b-plag7(1-8)
203
52.5
29.4
0.54
12.2
4.33
0.22
0.09
99.3
1200.1
JLB10b-plag8(1-11)
204
52.1
29.7
0.74
12.8
4.02
0.21
0.13
99.7
1203.0
JLB10b-plag9(1-11)
205
49.1
32.3
0.52
15.7
2.56
0.11
0.12
100.3
1212.3
JLB10b-plag10(1-5;7-9;11-15)
206
48.8
32.2
0.43
15.5
2.57
0.11
0.11
99.8
1212.2
JLB10b-plag11(9;11-12)
207
High
47.6
32.9
0.47
15.5
2.57
0.09
0.10
99.3
1212.1
JLB10b-plag11(1-8)
207
Intermediate
49.0
32.2
0.49
15.4
2.59
0.11
0.11
100.0
1212.1
JLB10b-plag11(10;13)
207
Low
51.0
30.6
0.59
13.7
3.43
0.16
0.11
99.5
1207.2
JLB10b-plag12(1-8)
208
48.7
32.3
0.46
15.8
2.46
0.10
0.11
100.0
1212.6
JLB10b-plag13(1-2;4-5)
209
High
49.0
32.3
0.43
15.7
2.51
0.11
0.11
100.1
1212.5
JLB10b-plag13(3)
209
Low
50.7
31.0
0.46
14.2
3.18
0.16
0.14
99.8
1209.0
JLB10b-plag14(1-5)
210
48.7
32.3
0.54
15.8
2.50
0.10
0.11
100.0
1212.5
JLB10b-plag15(1-15)
211
48.3
32.5
0.43
15.9
2.34
0.09
0.09
99.7
1213.0
JLB11-plag1(4-7;9-14;16;18-19)
212
High
48.8
31.9
0.49
15.4
2.60
0.12
0.09
99.5
1212.9
JLB11-plag1(1-3;8;17)
212
Low
51.9
29.7
0.65
13.0
3.97
0.25
0.09
99.6
1204.6
JLB11-plag2(6)
213
High
48.9
31.7
0.46
15.4
2.70
0.11
0.13
99.3
1212.5
JLB11-plag2(1-5;7-11)
214
Low
51.4
30.2
0.64
13.5
3.62
0.21
0.12
99.8
1207.1
JLB11-plag3(1-2;4-5;7;10-11;13;19-20)
215
High
48.5
32.2
0.54
15.7
2.50
0.11
0.07
99.6
1213.3
JLB11-plag3(3;6;9;12;14-18)
215
Low
50.6
30.8
0.59
14.0
3.35
0.18
0.08
99.5
1208.8
JLB11-plag4(3;5;8-9)
216
High
48.7
32.4
0.61
15.6
2.52
0.11
0.04
100.0
1213.2
JLB11-plag4(1-2;6-7)
216
Intermediate
49.8
31.4
0.59
14.6
3.05
0.16
0.08
99.7
1210.7
JLB11-plag4(4)
216
Low
53.2
29.5
0.8
12.4
4.18
0.24
0.05
100.4
1202.3
JLB11-plag6(1-2;5-7;11-15;19-20)
217
High
47.8
32.6
0.43
16.2
2.15
0.09
0.09
99.4
1214.4
JLB11-plag6(3-4;21)
217
Intermediate
49.3
31.5
0.41
15.2
2.75
0.13
0.11
99.4
1212.3
JLB11-plag6(8-10;16-18)
217
Low
51.3
30.0
0.61
13.5
3.59
0.19
0.12
99.3
1207.1
JLB11-plag7(2-5;8-10)
218
Rim
51.1
30.6
0.61
13.8
3.36
0.22
0.09
99.8
1208.9
JLB11-plag7(11-12;14-15;17)
218
Core
48.5
32.0
0.46
15.6
2.40
0.10
0.10
99.1
1213.5
JLB11-plag7b(2-3;4-6;8-9)
219
48.2
32.2
0.45
15.9
2.21
0.09
0.11
99.2
1214.2
JLB11-plag9(1-3)
220
Rim
51.5
30.0
0.58
13.2
3.87
0.19
0.11
99.5
1205.1
JLB11-plag9(1-2)
220
Core
48.3
32.4
0.44
15.6
2.40
0.11
0.09
99.4
1213.6
74
Table A7: Sanidine compositions
Rounded up when necessary.
Mineral Name
Xtl #
MLI-NI2-san1a
1
MLI-PI2-san1(4-5)
Rim or
Core
High or
Low K
Core
SiO2
Al2O3
FeO
CaO
Na2O
K2O
MgO
BaO
Total
73.7
13.9
2.19
0.58
2.9
5.7
0.27
0.00
99.2
2
66.2
19.3
0.14
0.48
4.5
9.7
0.01
0.00
100.3
MLI-PI2-san2(1-4)
3
65.6
19.0
0.16
0.37
4.3
10.0
0.00
0.00
99.5
MC-D10b-san1(1-3;9-12)
4
65.9
18.9
0.12
0.35
4.5
9.7
0.00
0.00
99.4
MC-D12b-san1(5)
5
High
65.9
18.7
0.02
0.00
3.2
12.2
0.00
0.00
99.9
MC-D12b-san1(1-4)
5
Low
66.6
18.8
0.08
0.35
4.5
9.8
0.01
0.00
100.2
MC-D12b-san2(1-4)
6
66.9
18.9
0.07
0.32
4.7
9.8
0.00
0.00
100.7
MC-D12b-san3(1-2;4-5)
7
66.6
18.8
0.05
0.21
4.5
10.2
0.00
0.00
100.4
MC-1D12g-san1(2-3)
8
66.4
19.1
0.07
0.26
3.7
11.0
0.00
0.00
100.5
MC-1D12gsan2(8)
9
67.2
18.8
0.05
0.19
3.4
11.4
0.00
0.00
100.9
MC-1D12gsan3(5)
10
66.4
19.0
0.04
0.21
3.6
11.5
0.00
0.00
100.7
MC-D12gsan3-c
11
66.0
19.8
0.06
0.22
3.5
11.3
0.00
0.01
101.0
MC-D12m-san1(1-5)
12
66.2
18.5
0.09
0.19
3.8
11.5
0.00
0.00
100.3
MC-D12m-san2(1-4)
13
65.7
18.3
0.07
0.18
3.9
11.3
0.00
0.00
99.3
MC-D12m-san3(4)
14
66.7
18.5
0.04
0.22
3.8
11.4
0.00
0.00
100.7
MC-D12m-san3(1-3;5-6)
15
66.2
18.7
0.10
0.23
3.6
11.2
0.00
0.00
100.0
MC-D12m-san4(2)
16
66.7
18.4
0.14
0.22
3.9
11.4
0.00
0.00
100.8
MC-D12m-san5(1-4)
17
66.5
18.3
0.11
0.21
3.8
11.4
0.00
0.00
100.3
MC-D12p-san5(1-12)
18
65.9
18.6
0.04
0.16
3.9
11.1
0.00
0.00
99.7
MC-D12p-san6(1-7)
19
65.7
18.7
0.07
0.14
3.6
11.6
0.00
0.00
99.7
MC-D12p-san7(1-3)
20
65.5
18.6
0.07
0.12
3.6
11.6
0.00
0.00
99.5
MC-D12p-san8(1-3)
21
65.9
18.8
0.09
0.13
3.9
11.3
0.00
0.00
100.1
MC-D12p-san10(1-7)
22
65.7
18.7
0.08
0.15
3.8
11.2
0.00
0.00
99.6
MC-D12p-san11a(1-2)
23
65.9
18.9
0.06
0.00
3.9
11.1
0.00
0.00
100.0
MC-D12p-san11b(2-3)
24
High
65.9
18.7
0.07
0.12
4.0
11.3
0.00
0.00
100.0
MC-D12p-san11b(1)
24
Low
66.1
18.9
0.09
0.14
4.8
9.8
0.00
0.00
99.9
MC-D12p-san13(1-5)
25
66.2
18.5
0.06
0.14
3.7
11.4
0.00
0.00
100.0
MC-D12p-san15a(1-2)
26
65.6
18.8
0.14
0.16
4.0
11.2
0.00
0.00
99.9
MC-D14f1-san1(1-8)
27
66.3
18.8
0.08
0.22
4.1
10.6
0.03
0.00
100.1
MC-D14f1-san2(1-7)
28
66.1
18.9
0.05
0.22
4.0
10.7
0.00
0.00
100.0
MC-D14f1-san3(1-3)
29
66.3
19.0
0.09
0.23
4.1
10.6
0.00
0.00
100.3
MC-D14f1-san4(1-15)
30
66.1
18.9
0.08
0.26
4.1
10.6
0.00
0.00
100.1
MC-D14f2-san1(1-4)
31
66.1
18.9
0.09
0.24
4.1
10.6
0.00
0.00
100.1
MC-D14f2-san2(1;3-8)
32
66.2
18.9
0.09
0.25
4.1
10.5
0.00
0.00
100.0
MC-D14f2-san3(1-2)
33
65.9
19.1
0.07
0.24
4.1
10.6
0.00
0.00
100.0
MC-D14f2-san4(1-6)
34
66.1
18.8
0.08
0.24
4.1
10.4
0.00
0.00
99.8
MC-D14f2-san5(1-2)
35
66.1
18.6
0.05
0.22
4.0
10.7
0.00
0.00
99.6
75
MC-D15a-san1(1-12)
36
66.1
18.7
0.07
0.16
3.8
11.2
0.00
0.00
100.0
MC-D15a-san2(1-04;6-8)
37
65.7
18.6
0.07
0.19
3.8
11.1
0.00
0.00
99.4
MC-D15a-san4(3-6)
38
65.5
18.5
0.06
0.18
3.8
11.2
0.00
0.00
99.2
MC-D15a-san5(1-10)
39
66.4
18.4
0.05
0.17
3.9
11.2
0.00
0.00
100.0
MC-D15a-san7(1-2;4-7)
40
66.7
18.6
0.08
0.17
3.9
11.1
0.00
0.00
100.6
MC-D15a-san11(1-5;7)
41
66.4
18.8
0.06
0.17
4.0
10.9
0.00
0.00
100.4
MC-D15a-san12(1-4)
42
66.2
18.9
0.05
0.16
3.9
11.0
0.00
0.00
100.2
MC-D15a-san15(1-6)
43
66.5
18.8
0.06
0.18
4.0
10.8
0.00
0.00
100.4
MC-D15a-san17b(1-5;7)
44
65.8
18.9
0.07
0.18
4.2
11.0
0.00
0.00
100.1
MC-D17g-san1(1-8;10;12)
45
65.8
18.9
0.05
0.2
3.9
10.7
0.00
0.00
99.6
MC-D17g-san2(4-8;10)
46
66.2
18.8
0.10
0.17
3.9
10.7
0.00
0.00
99.8
MC-D17g-san3(1-5)
47
65.9
18.8
0.06
0.18
3.9
10.7
0.00
0.00
99.5
MC-D17g-san4(1-2;5-9)
48
65.7
18.8
0.08
0.19
3.9
10.6
0.00
0.00
99.27
MC-D17g-san5(1)
49
65.6
18.7
0.06
0.21
3.9
10.7
0.00
0.00
99.1
MC-D17g-san6(1-3;5;7)
50
65.9
18.7
0.09
0.17
3.9
10.8
0.00
0.00
99.5
MC-D18b-san4(1-3;6-7;9-10;12-19)
51
66.3
19.0
0.07
0.22
4.2
10.8
0.00
0.00
100.6
MC-D18b-san5(1;5-6;8)
52
66.9
18.9
0.05
0.17
4.0
10.9
0.00
0.00
100.8
MC-D18b-san6(1-5)
53
65.7
18.9
0.07
0.17
4.1
11.0
0.00
0.00
99.9
MC-D18b-san9(1-5)
54
65.9
18.9
0.07
0.16
4.2
10.8
0.00
0.00
99.9
MC-D18b-san11(1-5)
55
66.1
19.0
0.07
0.19
4.3
10.8
0.00
0.00
100.4
MC-D25a-san2(1-4;6)
56
65.8
18.8
0.07
0.15
3.9
10.8
0.00
0.00
99.5
MC-D25a-san4(1-6)
57
66.1
18.9
0.06
0.16
3.9
11.0
0.00
0.00
100.1
MC-D25a-san6(1-5)
58
65.8
19.0
0.06
0.17
4.0
10.8
0.00
0.00
99.7
MC-D25a-san7(1-6)
59
65.8
18.9
0.08
0.14
3.9
11.0
0.00
0.00
99.7
MC-D25a-san9(1-12)
60
65.5
18.7
0.06
0.16
3.9
11.1
0.00
0.00
99.5
MC-D25a-san10(1-4)
61
66.0
18.9
0.08
0.16
4.0
11.0
0.00
0.00
100.1
MC-D25a-san11(1-9)
62
65.9
18.8
0.05
0.17
3.9
11.0
0.00
0.00
99.8
MC-D25c-san1(1)
63
65.2
18.8
0.02
0.18
4.3
10.6
0.00
0.00
99.0
MC-D25c-san2(1-8)
64
65.8
18.8
0.08
0.18
4.1
10.8
0.00
0.00
99.8
MC-D25c-san5(1-5)
65
66.2
18.5
0.07
0.15
4.1
11.0
0.00
0.00
100.0
MC-D25c-san7(1-9)
66
66.0
18.5
0.07
0.20
4.0
11.0
0.00
0.00
99.8
MC-D25c-san8(1-8)
67
65.9
18.6
0.08
0.23
4.2
10.6
0.00
0.00
99.6
MC-D25c-san9(1-5)
68
66.2
18.5
0.07
0.16
4.0
11.1
0.00
0.00
100.0
MC-D25c-san10(1-2;5-9)
69
66.0
18.3
0.05
0.17
4.2
10.8
0.00
0.00
99.5
MC-D25c-san11(1-2)
70
65.7
18.7
0.06
0.17
3.9
11.0
0.00
0.00
99.5
MC-D25c-san13(2)
71
65.1
18.5
0.07
0.16
4.1
11.0
0.00
0.00
99.0
MC-D25c-san14(1)
72
65.4
18.7
0.04
0.14
4.2
10.9
0.00
0.00
99.3
MC-D25c-san15(1-2;6-7)
73
65.5
18.6
0.06
0.13
3.9
11.2
0.00
0.00
99.4
MC-D25c-san19(2;4-6;9)
74
65.5
18.6
0.08
0.18
4.0
11.0
0.00
0.00
99.4
MC-D25c-san22(1-4)
75
66.0
19.1
0.06
0.16
4.16
10.8
0.00
0.00
100.3
76
MC-D25c-san22b(1;4)
76
66.7
18.7
0.06
0.18
4.3
10.8
0.00
0.00
100.7
MC-D25c-san24b(4;8)
MC-D25c-san11b(1-4)
77
66.8
19.0
0.04
0.22
4.4
10.5
0.00
0.00
100.9
78
66.34
19.0
0.07
0.18
4.3
10.7
0.00
0.00
100.6
MC-D25c-plag(san)13b(3;5-7)
79
66.7
18.9
0.09
0.16
4.2
10.8
0.00
0.00
100.8
MC-D27b-san1(2-3;5-9;11)
80
66.6
18.9
0.06
0.19
3.9
11.0
0.00
0.00
100.7
MC-D27b-san2(1-5)
81
66.7
18.9
0.04
0.18
4.0
11.0
0.00
0.00
100.8
MC-D27b-san3(1-8)
82
66.7
18.9
0.07
0.17
3.9
11.1
0.00
0.00
100.8
MC-D27b-san4(1,5,7,9,12)
83
65.8
18.8
0.07
0.19
4.0
11.0
0.00
0.00
99.9
MC-D27b-san5(4-8)
84
65.9
18.9
0.07
0.19
4.0
11.0
0.00
0.00
100.1
MC-D27b-san6(1-5;7)
85
65.7
18.9
0.08
0.18
4.0
11.1
0.01
0.00
100.0
MC-D28a-plag1(I,k,m)
86
76.1
13.3
0.94
0.55
3.8
4.6
0.00
0.00
99.3
MC-D28a-san2(a-f)
87
65.0
19.7
0.10
0.18
3.8
11.0
0.00
0.02
99.8
MC-D28a-san3(a-g)
88
65.5
19.7
0.08
0.15
3.8
11.2
0.00
0.01
100.4
MC-D28a-san4(e-n)
89
65.2
19.9
0.08
0.18
3.8
11.1
0.00
0.02
100.3
MC-D28a-san5(a-i)
90
65.4
19.8
0.07
0.18
3.9
11.0
0.00
0.02
100.3
MC-D28a-san6(a,b)
91
65.6
19.8
0.07
0.19
3.7
11.0
0.00
0.00
100.4
MC-D28a-san6(c-f)
92
65.4
19.9
0.06
0.17
3.8
11.2
0.00
0.00
100.4
MC-1D28a-san1(1-4)
93
66.8
18.0
0.05
0.14
3.9
11.1
0.00
0.00
100.0
MC-1D28a-san2(1-2;4-5)
94
67.1
17.9
0.07
0.14
3.8
10.9
0.00
0.00
100.0
MC-1D28a-san3(2-5)
95
67.6
18.2
0.09
0.15
3.9
11.0
0.00
0.00
100.9
MC-1D28a-san4(1-3)
96
67.2
17.5
0.06
0.13
3.8
10.7
0.00
0.00
99.3
MC-1D28d-san3(1-5)
97
65.9
19.0
0.08
0.16
3.7
11.4
0.00
0.00
100.3
MC-1D28d-san4(1-3)
98
65.4
19.2
0.05
0.16
3.8
11.3
0.00
0.00
99.9
MC-1D28d-san5(1-2)
99
65.7
19.3
0.06
0.23
3.8
11.1
0.00
0.00
100.1
MC-1D28e-san1(1-3)
100
66.1
18.4
0.04
0.18
4.0
11.2
0.00
0.00
99.9
MC-1D28e-san2(1-4)
101
66.3
18.2
0.07
0.18
4.0
11.1
0.00
0.00
99.9
MC-1D28e-san4(1-4)
102
66.3
18.6
0.09
0.18
4.0
11.2
0.01
0.00
100.4
MC-1D28e-san5(1-2;4)
103
66.1
19.1
0.05
0.16
4.0
11.3
0.00
0.00
100.7
MC-1D28e-san7(4;6-8)
104
66.2
19.2
0.08
0.2
4.0
11.2
0.00
0.00
100.9
MC-D28e-san2(a-b;d-g)
105
65.6
19.8
0.07
0.18
3.8
11.2
0.00
0.02
100.6
MC-D28e-plag3-(a,b)
106
65.8
19.8
0.06
0.2
3.9
11.0
0.00
0.01
100.9
MC-D28e-san4(a;e-g)
107
65.7
19.8
0.08
0.19
3.8
11.2
0.00
0.01
100.7
MC-D28e-san5(a-j)
108
65.3
19.8
0.07
0.18
3.8
11.1
0.00
0.01
100.3
MC-D28e-san6(a-c;e-g)
109
65.4
19.9
0.10
0.19
3.8
11.2
0.00
0.03
100.7
MC-D28e-plag7-(I,j)
110
64.9
19.9
0.08
0.3
4.0
11.0
0.00
0.09
100.3
MC-D28e-san8(b;d-f)
111
65.4
19.9
0.10
0.19
3.8
11.1
0.00
0.03
100.6
MC-D28e-san9(a-i)
112
65.2
19.8
0.07
0.21
3.9
11.04
0.00
0.05
100.3
MC-D29a-san1(2)
113
66.8
18.9
0.03
0.14
3.9
11.2
0.00
0.00
100.9
MC-D29a-san2(1-3)
114
66.5
18.6
0.04
0.19
4.0
11.2
0.00
0.00
100.6
MC-D29a-san3(2-3)
115
66.9
18.6
0.08
0.18
3.9
11.3
0.00
0.00
100.9
77
MC-D29a-san4(1;5-10)
116
66.5
18.7
0.09
0.17
4.0
11.3
0.00
0.00
100.8
MC-D29a-san5(1-2)
117
66.1
18.7
0.06
0.15
3.9
11.5
0.00
0.00
100.3
MC-D29a-san1(c,d)
118
65.4
20.0
0.08
0.18
3.8
11.2
0.00
0.00
100.7
MC-D29a-san2(a-c)
119
65.7
19.8
0.08
0.18
3.8
11.1
0.00
0.00
100.7
MC-D29a-san2-d
120
65.3
19.9
0.11
0.21
4.0
10.9
0.00
0.02
100.5
MC-D29a-san3(a;e)
121
65.5
19.9
0.10
0.17
3.8
11.3
0.00
0.00
100.8
MC-D29a-san5(f-h)
122
65.6
20.0
0.09
0.18
3.8
11.1
0.00
0.05
100.7
MC-D30a-san3(a,b)
123
65.5
19.8
0.07
0.2
3.8
11.0
0.00
0.03
100.4
MC-D30a-san3-c
124
65.3
19.6
0.07
0.2
3.8
10.8
0.00
0.02
99.8
JLB11-san1(1-3;5;12;15;18-19;21)
125
65.6
18.7
0.13
0.11
4.5
10.2
0.01
0.00
99.2
JLb11-plag3(8)
126
65.2
17.9
1.71
0.34
4.8
9.5
0.01
0.00
99.4
78
Table A8: Olivine crystal compositions
Rounded up when needed.
Mineral Name
MC-1D12b-olv1(3-4)
Xtl #
1
Rim or
Core
High or
Low Mg
High
MC-1D12b-olv1(5-6)
1
MC-D12b-olv2(4)
SiO2
TiO2
Al2O3
FeO
MnO
MgO
CaO
Cr2O3
NiO2
Total
T (oC)
36.5
0.00
0.00
27.4
0.40
34.5
0.17
0.00
0.01
99.4
1080.7
Low
36.2
0.00
0.00
28.6
0.45
33.9
0.19
0.00
0.03
99.5
1080.7
2
Low
35.8
0.00
0.00
30.8
0.48
32.0
0.21
0.00
0.02
99.4
1080.7
MC-D12b-olv2(1-3)
2
High
36.3
0.00
0.00
28.6
0.45
33.9
0.19
0.00
0.04
99.5
1080.7
MC-D12b-olv3(1-5)
3
37.8
0.00
0.00
25.5
0.35
36.3
0.21
0.00
0.05
100.2
1080.7
MC-D12b-olv-4
4
36.8
0.00
0.00
26.3
0.39
35.6
0.19
0.00
0.03
99.4
1080.7
MC-D12b-olv5
5
Low
36.4
0.00
0.00
28.2
0.42
34.1
0.20
0.00
0.02
99.2
1080.7
MC-D12b-olv5
5
High
37.0
0.00
0.00
25.9
0.38
36.1
0.21
0.00
0.04
99.7
1080.7
MC-D12b(b)-olv1(1;4-5)
6
Low
36.8
0.00
0.00
27.7
0.41
35.0
0.18
0.00
0.05
100.2
1080.7
MC-D12b(b)-olv1(2-3)
6
High
37.2
0.00
0.00
25.4
0.38
36.4
0.20
0.00
0.04
99.7
1080.7
MC-D12b(b)-olv2(2)
7
Low
36.8
0.00
0.00
29.9
0.49
32.8
0.16
0.00
0.04
100.2
1080.7
MC-D12b(b)-olv2(1,3)
7
Int.
37.1
0.00
0.00
28.0
0.44
34.3
0.18
0.00
0.02
100.0
1080.7
MC-D12b(b)-olv2(4-5)
7
High
37.7
0.00
0.00
25.4
0.36
36.7
0.18
0.00
0.09
100.4
1080.7
MC-D12b(b)-olv3(2)
8
35.9
0.00
0.00
29.7
0.43
33.3
0.17
0.00
0.04
99.6
1080.7
MC-D12b(b)-olv4(1)
9
36.6
0.00
0.00
25.4
0.38
36.5
0.19
0.00
0.03
99.1
1080.7
MC-D12c-bio1(d)
10
Rim
36.9
0.05
0.02
28.6
0.50
33.4
0.15
0.00
0.00
99.5
1090.9
MC-D12c-bio1(e)
10
Core
36.2
0.03
0.05
30.9
0.61
31.2
0.15
0.00
0.00
99.1
1090.9
MC-D12c-bio1(f)
11
36.6
0.06
0.06
29.3
0.52
32.5
0.14
0.00
0.00
99.2
1090.9
MC-D12c-plag2(k-m)
12
36.7
0.03
0.03
28.5
0.49
33.2
0.14
0.00
0.00
99.2
1090.9
MC-D12c-plag2(o)
13
36.5
0.08
0.12
29.0
0.46
33.4
0.13
0.00
0.00
99.6
1090.9
MC-D12c-plag2(p)
14
36.0
0.03
0.02
32.3
0.54
30.1
0.13
0.00
0.00
99.0
1090.9
MC-D12c-plag3(l,m)
15
36.4
0.03
0.05
29.2
0.53
32.7
0.12
0.00
0.00
99.0
1090.9
MC-D12c-plag3(n,o)
16
36.8
0.05
0.03
28.6
0.48
33.5
0.14
0.00
0.00
99.6
1090.9
MC-D12c-plag4(f)
17
36.6
0.04
0.02
29.6
0.51
32.7
0.14
0.00
0.00
99.6
1090.9
MC-D12c-plag6(l)
18
37.4
0.05
0.01
29.1
0.51
33.4
0.13
0.00
0.00
100.5
1090.9
MC-D12c-plag6(j,k)
19
36.6
0.06
0.03
30.3
0.61
31.9
0.16
0.00
0.00
99.6
1090.9
MC-D12c-plag6(m)
20
36.0
0.07
0.03
32.9
0.71
30.2
0.12
0.00
0.00
100.0
1090.9
MC-D12c-olv7(a-c)
21
36.9
0.03
0.02
28.5
0.46
33.7
0.15
0.00
0.00
99.8
1090.9
MC-D12c-olv7(e)
22
36.6
0.07
0.03
28.9
0.51
33.7
0.16
0.00
0.00
99.9
1090.9
MC-D12c-olv7(g,h)
23
37.0
0.03
0.03
28.8
0.49
33.5
0.14
0.00
0.00
99.9
1090.9
MC-D12c-olv7(j,k)
24
36.9
0.12
0.04
28.4
0.46
33.8
0.14
0.00
0.00
99.9
1090.9
MC-D12cplag9(g-i)
25
36.9
0.09
0.02
28.8
0.48
33.2
0.15
0.00
0.00
99.6
1090.9
MC-D12c-plag9(j)
26
Core
36.5
0.02
0.02
30.0
0.53
32.5
0.13
0.00
0.00
99.7
1090.9
MC-D12c-plag9(k,m)
26
Rim
36.6
0.05
0.05
29.0
0.47
33.1
0.12
0.00
0.00
99.4
1090.9
MC-3D12c-olv3(4-5)
27
36.3
0.04
0.07
30.1
0.50
33.7
0.15
0.01
0.03
100.8
1090.9
MC-3D12c-olv4(4)
28
37.7
0.04
0.11
28.1
0.41
34.0
0.16
0.00
0.04
100.5
1090.9
MC-3D12c-olv6(3)
29
36.4
0.06
0.01
30.0
0.55
33.3
0.16
0.06
0.02
100.6
1090.9
MC-D12h-1plag_pyx2(I,j)
30
Core
37.0
0.03
0.04
28.9
0.46
33.6
0.14
0.00
0.00
100.1
1043.8
MC-D12h-1plag_pyx2(k)
30
Rim
36.1
0.11
0.01
33.1
0.67
29.9
0.08
0.00
0.00
100.0
1043.8
MC-D12h-1plag_pyx2(l,m)
31
Core
38.3
0.01
0.05
22.5
0.37
38.7
0.17
0.00
0.00
100.2
1043.8
MC-D12h-1plag_pyx2(n)
31
Rim
37.8
0.01
0.02
23.7
0.33
37.5
0.17
0.00
0.00
99.5
1043.8
MC-D12h-1plag3(g,h)
32
38.1
0.03
0.04
23.8
0.34
37.8
0.17
0.00
0.00
100.3
1043.8
MC-D12h-1plag3(I,j)
33
38.0
0.03
0.03
23.6
0.39
37.6
0.17
0.00
0.00
99.8
1043.8
MC-D12h-1plag3(k)
34
38.0
0.03
0.03
23.6
0.37
38.0
0.20
0.00
0.00
100.2
1043.8
MC-D12h-1-olv1(1-4)
35
38.3
0.05
0.05
22.9
0.37
37.3
0.29
0.02
0.04
99.4
1043.8
MC-D12h-1-olv2(1-4)
36
38.5
0.01
0.04
23.4
0.40
37.0
0.23
0.03
0.03
99.6
1043.8
MC-D12h-1-olv3(1-3;6)
37
38.1
0.01
0.03
22.8
0.36
37.7
0.24
0.00
0.04
99.2
1043.8
MC-D12h-2-olv2(a-d)
38
37.0
0.03
0.03
26.4
0.42
35.0
0.14
0.00
0.00
99.0
1043.8
MC-D12h-2-olv3(e,f)
39
37.1
0.02
0.03
26.9
0.44
34.4
0.17
0.00
0.00
99.1
1043.8
79
MC-D12h-2-olv3(j)
40
37.6
0.05
0.04
23.8
0.33
37.1
0.16
0.00
0.00
99.1
1043.8
MC-2D12h-2-olv1(1;3-4)
41
37.3
0.03
0.04
24.0
0.39
38.0
0.18
0.02
0.05
100.0
1043.8
MC-2D12h-2-olv2(1-3)
42
37.0
0.03
0.07
25.1
0.39
37.0
0.17
0.02
0.03
99.8
1043.8
MC-2D12h-2-olv4(1-5;7-8)
43
37.3
0.03
0.09
24.3
0.37
37.8
0.18
0.01
0.05
100.0
1043.8
MC-D14e-olv1(1-6;8-9)
44
39.5
0.00
0.00
17.1
0.22
42.9
0.23
0.00
0.08
99.9
1092.5
MC-D14e-olv2(1;3-5)
45
39.7
0.00
0.00
17.1
0.23
42.9
0.24
0.00
0.07
100.2
1092.5
MC-D14e-olv3(1-8)
46
39.6
0.00
0.00
17.3
0.22
42.9
0.24
0.00
0.06
100.3
1092.5
MC-D14e-olv4(1-7)
47
39.7
0.00
0.00
17.2
0.23
43.0
0.26
0.00
0.07
100.4
1092.5
MC-D14e-olv5(1-6)
48
39.2
0.00
0.00
19.3
0.27
40.8
0.22
0.00
0.10
99.9
1092.5
MC-D14e-olv6(1-5)
49
39.1
0.00
0.00
20.0
0.28
40.6
0.25
0.00
0.09
100.2
1092.5
MC-D14e-olv7(1;3;5-7;9)
50
High
38.9
0.00
0.00
20.9
0.31
39.6
0.23
0.00
0.09
100.1
1092.5
MC-D14e-olv7(2,8)
50
Low
38.5
0.00
0.00
23.2
0.37
38.0
0.22
0.00
0.04
100.2
1092.5
MC-D14e-olv8(4,6)
51
High
39.4
0.00
0.00
17.5
0.23
42.7
0.22
0.00
0.14
100.2
1092.5
MC-D14e-olv8(1-3;5)
51
Low
39.0
0.00
0.00
19.5
0.27
40.9
0.21
0.00
0.11
100.0
1092.5
MC-D14e-olv9(1;5-7)
52
Low
39.3
0.00
0.00
18.0
0.25
42.3
0.21
0.00
0.15
100.2
1092.5
MC-D14e-olv9(2-4)
52
High
39.7
0.00
0.00
16.0
0.20
43.6
0.23
0.00
0.18
99.9
1092.5
MC-D14f1-olv1(7,12,1619;25-26)
MC-D14f1-olv1(1-5;811;13-15;20-24)
MC-D14f1-olv2(1-6)
53
High
38.6
0.00
0.00
22.0
0.31
38.6
0.23
0.00
0.05
99.8
1029.3
53
Low
38.2
0.00
0.00
23.9
0.35
37.1
0.23
0.00
0.05
99.9
1029.3
54
38.5
0.00
0.00
22.1
0.31
38.7
0.24
0.00
0.08
100.0
1029.3
MC-D14f1-olv3(1-4)
55
38.6
0.00
0.00
21.9
0.30
38.8
0.25
0.00
0.09
99.8
1029.3
MC-D14f2-olv1
56
38.5
0.00
0.00
22.5
0.32
38.5
0.24
0.00
0.04
100.1
1029.3
MC-D14f2-olv2
57
38.2
0.00
0.00
23.3
0.33
38.0
0.26
0.00
0.05
100.1
1029.3
MC-D14f2-olv3
58
39.0
0.00
0.00
20.7
0.29
40.0
0.22
0.00
0.08
100.3
1029.3
MC-D14f2-olv4(2,4)
59
Low
38.6
0.00
0.00
30.9
0.28
39.7
0.24
0.00
0.10
99.9
1029.3
MC-D14f2-olv4(1)
59
Int
39.1
0.00
0.00
19.1
0.25
41.4
0.23
0.00
0.08
100.2
1029.3
MC-D14f2-olv4(3)
59
High
39.2
0.00
0.00
17.7
0.19
42.3
0.24
0.00
0.09
99.7
1029.3
MC-D14f2-olv5(1-6)
60
39.0
0.00
0.00
18.9
0.26
41.4
0.22
0.00
0.12
100.0
1029.3
MC-D14f2-olv6(1-8)
61
39.0
0.00
0.00
18.5
0.27
41.6
0.22
0.00
0.08
99.6
1029.3
MC-D27b-olv1(2-13)
62
30.6
0.00
0.00
63.2
3.36
2.8
0.15
0.00
0.00
100.1
994.5
JLB3-olv1(1-5)
63
39.0
0.00
0.00
19.7
0.25
41.2
0.17
0.00
0.07
100.5
1103.3
JLB10b-olv1(14;16)
64
High
39.1
0.00
0.00
19.1
0.33
40.5
0.21
0.00
0.01
99.2
1108.0
JLB10b-olv1(2-3;5-8)
64
Low
39.1
0.00
0.00
20.8
0.30
38.8
0.21
0.00
0.03
99.3
1108.0
80
Table A9: Petrology analysis
Analysis of thin sections from the Mono Craters, Mono Lake Islands (NI=Negit Island;
PI=Paoha Island), and June Lake Basalts. Abbreviations: Sam=Sample; Xtl=Crystals;
Bt=Biotite; Cpx=Clinopyroxene; Hbl=Hornblende; Ilm=Ilmenite; Mag=Magnetite;
Ol=Olivine; Opx=Orthopyroxene; Pl=Plagioclase; Sa=Sanidine; Gl=Glassy Matrix;
Mic=Microcrystalline Matrix; TD=Trachydacite; R=Rhyolite; TA=Trachyandesite;
D=Dacite; A=Andesite; TBT=Tholeiitic Basaltic Trachyandesite; TBA=Tholeiitic
Basaltic Andesite.
Dom
e
Sa
m#
SiO
MLINI
MLIPI
MLIPI
MLIPI
MLIPI
MC-3
2
F
MC-3
G
MC-5
A
MC10
MC10
MC10
MC11
MC11
MC11
MC12
MC12
MC12
MC12
MC12
MC12
MC12
B
64.
7
64.
1
71.
1
69.
6
63.
5
76.
5
76.
8
76.
2
60.
5
75.
3
67.
1
66.
2
66.
7
76.
7
57.
4
57.
4
57.
5
76.
3
66.
7
66.
7
74
1
2
5
7
C
F
C
D
F
B
B
B
C
G
H1
H2
M
2
Roc
k
Typ
e
TD
%
xtl
%
Bt
%
Cpx
%
Hbl
%
Ilm
%
Mag
%
Ol
%
Opx
%
Pl
%
Sa
% Gl
%
Mic
Su
m
7.6
0
0.4
0.1
0
0
0
0
6.5
0.6
62.4
30
100
TD
1.7
0
0
0.1
0
0
0
0
1.6
0
97.3
1
100
R
4.0
0.1
0
0
0
0
0
2.5
0.8
76.0
20
100
R
1.0
0
0.2
0
0
0
0
0.4
0
79.0
20
100
TD
0.2
0.
6
0.
4
0
0
0
0
0
0
0.1
0.1
0
98.8
1
100
R
0.0
0
0
0
0
0
0
0
0
0
0
100
R
0.2
0
0.06
0.05
0.05
0
0
0
0
0
100
R
0.2
0
0.05
0.05
0.05
0
0
0
0
99.8
0
100
TA
12.
4
0.3
0.
1
0.
1
0
100.
0
99.8
0.05
0
0
0.1
0.1
0
12
0.6
57.7
30
100
0
0.2
0
0
0.1
0
0
0
0
99.7
0
100
14.
3
4.6
0
1
0
0.1
0.1
0
0.1
13
0
65.7
20
100
0
0.6
0
0
0
0
0
4
0
90.4
5
100
10.
3
3.4
0
0.2
0
0.05
0.05
0
0
10
0
86.7
3
100
0.
1
0
0
0.1
0
0.1
0
0
3
0.1
96.6
0
100
2.6
0
0.05
0.05
0.3
0.1
14
1.4
61.5
20
100
0
0.6
0
0
0
0.2
0.2
6
2
71.0
20
100
R
D
D
D
R
TA
TA
18.
5
9.0
A
6.1
0
1.4
0.4
0
0
0.7
0
3.6
0
73.9
20
100
R
18.
3
8.4
0
4
0.3
0
0
0
0
7
7
81.7
0
100
0
0.7
0
0
0
0.2
0
7.5
0
51.6
40
100
11.
0
17.
8
0
0.6
0
0
0
0.8
0
6.6
3
49.0
40
100
0
0.3
1.4
0.05
0.05
0
0
13
3
80.2
2
100
D
D
R
81
MC12
MC13
MC13
MC14
MC14
MC14
MC14
MC15
MC17
MC17
MC17
MC18
MC20
MC25
MC25
MC27
MC28
MC28
MC28
MC29
MC30
MC30
MC30
JLB
P
A
B
A
E
F1
F2
A
B
G
H
B
A
A
C
B
A
D
E
A
A
B
C
2
JLB
3
JLB
10
A
10
B
11
JLB
JLB
77.
3
76.
8
76.
6
76.
0
60
74.
2
68.
5
76.
8
74.
8
76.
8
77
78.
4
77.
3
76.
9
77.
1
76.
5
76.
5
76.
7
76.
3
76.
3
76.
5
76.
3
76.
9
54.
3
54.
1
54.
3
53.
7
54.
3
R
5.7
0.
2
0
0
0
0
0.05
0
0
2.5
3
93.3
1
100
R
R
0.0
2
0.3
0
0
0.01
0.01
0
0
0
0
0
100
0
0
0.05
0.01
0.01
0
0
0.2
0
99.9
8
99.7
0
100
R
0.2
0
0
0.1
0
0
0
0
0
99.9
0
100
A
3.9
0
0
0
0
0.1
0.6
0
3
66.2
30
100
R
2.6
0
0
0.05
0
0
0.14
1.6
96.4
1
100
D
4.0
0
0.07
0.03
0.03
0
0.0
5
0.4
0.0
5
0.1
5
0.8
0
2
1.5
93.0
3
100
R
4.7
0
0.3
0.1
0
0.05
0
0
0.9
3.3
95.4
0
100
R
7.0
0
0.2
1
0
0
0
0
5.8
0
92.0
1
100
R
4.2
0
0
0.4
0.1
0.05
0
0.8
0.6
2.2
95.9
0
100
R
0.0
0
0
0
0
0
0
0
0
0
0
100
R
3.9
0
0.25
0.15
0
0.02
0
0
1.5
2
100.
0
96.1
0
100
R
0.2
0
0
0
0
0.1
0
0
0.1
0
99.8
0
100
R
6.9
0
0
0.3
0
0
0
0.05
2.5
92.1
1
100
R
8.3
0
0
0
0
0.25
0
0
3.8
71.8
20
100
R
10.
6
3.6
0
0.6
0.4
0
0
0.6
0
1.8
89.4
0
100
0
0
0
0
0
0
0.1
2
4.0
5
4.2
5
7.2
5
1.5
96.4
0
100
0
4
0
0
0
0
0
3
3
90.0
0
100
R
10.
0
3.0
0
0
0
0
0
0
0
2.5
0.5
97.0
0
100
R
3.3
0
0.2
0
0.05
0.05
0
0
0.8
96.7
0
100
R
3.2
0.1
0
0.01
0.01
0
0
2.1
94.8
2
100
R
4.2
0.
3
1
2.2
5
0.7
0.05
0
0.05
0.05
0
0
3
0
95.9
0
100
R
3.0
0
0.35
0
0.05
0.05
0
0
1.8
97.0
0
100
TB
T
TB
A
TB
A
TB
A
TB
A
8.8
0
0.4
0
0.1
0.1
0
0
8.0
0.7
5
0.2
90.2
1
100
10.
7
22.
2
13.
1
19.
7
0
1.1
0.1
0
0
0.2
0
9.3
0
88.3
1
100
0
1.8
0
0
0
0
1.4
19
0
72.8
5
100
0
0.3
0
0
0
0
1.1
0
84.9
2
100
0
1
0
0
0
0
1.2
11.
7
13.
9
3.6
70.3
10
100
R
R