DATE NAME 13-2 Student Edition Pages 719–725 Study Guide Simplifying Radical Expressions The product property of square roots and prime factorization can be used to simplify irrational square roots. When you simplify radical expressions with variables, use absolute values to ensure nonnegative results. Example 1: Simplify Ï180 . Ï180 5 5 5 5 Example 2: Simplify Ï100a2 . Ï2 ? 2 ? 3 ? 3 ? 5 Ï2 ? 2 ? Ï3 ? 3 ? Ï 5 2 ? 3 ? Ï5 6Ï5 Ï100a2 5 Ï100 ? Ïa2 5 10)a) Use the quotient property of square roots and a method called rationalizing the denominator when simplifying radical expressions involving division. Study the example below. ! 56 Example 3: Simplify 45. !45 5 Ï45 Ï56 56 5 2 ? Ï14 3 ? Ï5 5 2Ï14 3Ï5 ? Ï5 Ï5 5 2Ï70 15 Simplify. Leave in radical form and use absolute value symbols when necessary. 1. Ï18 2. Ï68 3. Ï60 4. Ï75 5. Ï162 6. Ï4a2 7. Ï9x4 8. Ï300a4 9. Ï128c6 13. – Ï9 — Ï18 17. — Ï75 – Ï3 © Glencoe/McGraw-Hill 10. Ï5 ? Ï10 14. – Ï8 — Ï24 18. – 8Ï2 – 2Ï8 11. Ï3x2 ? 3Ï3x4 15. 19. 89 – Ïx6 – Ïy4 – Ï4 – 3 2 Ï5 12. 4Ï10 ? 3Ï6 16. 20. – Ï100 – Ï8 – — 2Ï7 1 4Ï10 Algebra 1
© Copyright 2026 Paperzz