The Auk 113(3):655-663, 1996 MITOCHONDRIAL DNA SEQUENCE VARIATION AMONG SUBSPECIES OF SARUS CRANE (GRUS ANTIGONE) THE TIMOTHY C. WOOD 1 AND CAREY KRAIEWSKI2 Department of Zoology, Southern IllinoisUniversity, Carbondale, Illinois62901,USA ABSTRACT.--We examined DNA sequencevariation in an 1,831 base-pairsegmentof the mitochondrialDNA genomefrom representativesof the three subspecies of SarusCrane (Grusantigone).The sequencesinclude the entire cytochrome-b,tRNA TM,tRNA Prø,and ND6 genes,as well as three short intergenic spacerregions.Nine distinct haplotypeswere identified in a sampleof nine individuals,three eachfrom the Indian (G. a. antigone), Burmese (G. a. sharpei),and Australian (G. a. gillae) subspecies.Phylogenetic analysisrevealed that although SarusCrane haplotypesform a monophyleticassemblagerelative to Brolga (G. rubicunda) and White-napedCrane (G. vipio)outgroups,they cannotbe resolvedonto a dichotomouslybranchingtree. A minimum-length network for the SarusCrane haplotypes revealsat least one instanceof direct ancestryand one hard polytomy, but showsno phylogeographicpartitioningof haplotypesamongsubspecies. Net sequencedivergenceamong subspeciesis not significantly different from zero. Estimatedsequencedivergence times, neutral coalescenttimes, and data on the Quaternarygeologyof Australasiasuggestthat SarusCranescolonizedAustraliaduring the late Pleistocene.Received 25 October1995,accepted 10 December 1995. $ARUSCRANES (Grusantigone)are among the largestmembersin the cranefamily (Gruidae), sometimesreaching an adult height of 1.8 m. They are nonmigratoryand currently found in matically reducedby human activity during the pastcentury. Once widely distributed acrossIndia, Nepal, Bangladesh,and western Burma,the Indian SarusCrane is now restrictedto portions isolated areas of northwestern India, Southeast of northwestern Asia,and Australia.Blyth and Tegetmeier(1881) of Nepal (Johnsgard1983).Until the late 1940s, classified the Indian and Burmese Sarus Cranes Burmese as distinct specieson the basisof plumage and body-sizecharacteristics (the larger Indian Sarus Crane has a bright white neck ring and white tertials), and this distinction persisted through the classificationof Sharpe (1894). China, eastern Burma, Philippines, the Malay Blanford (1895), however, reduced the Indian and BurmeseSarus Cranes to subspecies(G. a. antigoneand G. a. sharpeLrespectively),and this convention endured through all subsequentrevisions. Sarus Cranes were first observed in Australia in 1966, and were then considered membersof G. a. sharpei(Gill 1969, Archibald 1981). Schodde (1988) designated the Australian SarusCrane as a distinct subspecies(G. a. gillae)on the basisof its darker plumage and larger ear patch. The range of the Sarus Crane has been dra- India and the Terai lowlands Sarus Cranes were found in southern Peninsula, Thailand, Cambodia, Laos, and Vi- etnam (Delacour and Mayr 1946, Walkinshaw 1973, Meine and Archibald unpubl. report) but have now been extirpated from all but the latter three areas(Medway and Wells 1976, Madsen 1981, Yang 1991). The Australian Sarusis currently found in northern Queensland from Normanton north to Aurukun, east to the Atherton Tableland, and west to Kunnunurra in Western Australia. Although confidence in the anatomical and geographicdistinctnessof SarusCrane subspecies has increased in recent years (Meine and Archibald unpubl. report), questionshave arisen regarding their geneticdistinctnessand evolutionary history. Dessaueret al. (1992) documented a relatively low allozyme heterozygosity (H = 0.024) in a sample of nine Australian • Presentaddress:Laboratoryof Medical Genetics, SarusCranes,but they did not assaythe other University of Alabama,Birmingham,Alabama35294, subspecies.In contrast, Krajewski and Wood USA. (1995) identified a distinct mitochondrial hap2Addresscorrespondence to this author. E-mail: lotype in eachof three individuals representing [email protected] each SarusCrane subspecies,with sequencedi655 656 wood ANDKRAJEWSKI TABLEl. Specimeninformationfor DNA samples. Sample no.' Donor institution b Donor no. c Grus vipio 1 ICF ICF 10-2 G. rubicunda 8 247 a ICF Museum 77 222 252 ICF St. Louis Zoo Miami Metro Zoo of Victoria ICF 9-8 MV 790 G. antigone antigone ICF ICF ICF 5 17 103 ICF ICF ICF 1' 2e 12 • G. antigonegillae ICF 8-28 ICF 8-39 ICF 8-31 ' DNA sample catalognumbers used by Krajewski laboratoryat Southern Illinois University. b ICF, International Crane Foundation, Baraboo,Wisconsin; Museum of Victoria, Melbourne, Australia; St. Louis Zoo, St. Louis, Missouri; Miami Metro Zoo, Miami, Florida. • Specimenidentification numbersemployedby donorinstitutions. a Partialcytochrome-b sequencefrom this specimenwasreportedby Leeton et al. (1995). ' Arbitrary numbersassignedto bloodsamplesfrom captivebirdsin Thailand. each subspecies.We employed sequencefrom two Brolgas(G. rubicunda) and one White-napedCrane(G. vipio)as outgroups;previoussystematicstudies(Archibald 1976,Krajewski 1989, Krajewskiand Fetzner 1994) have shown that these speciesare the closest relativesof the SarusCranes.Table 1 providesspecimen informationfor the sampleswe employed. Technical protocols.--DNAwasextractedfrom blood samplesfollowing the methodoutlined by Sambrook et al. (1989). Blood cells were diluted 1:10 with lysis buffer (10 mM Tris, 100 mM NaC1, 100 mM EDTA, ICF 8-45 A09023 A00225 antigone sharpei 55 56 66 [Auk, Vol. 113 0.5%SDS), digestedwith proteinaseK, and extracted with phenol, phenol-chloroform,and chloroformisoamylalcohol.Eachsamplewasdigestedwith RNAse A, redigestedwith proteinase,and re-extractedwith phenol-chloroformand chloroform-isoamyl alcohol. Purified DNA wasprecipitatedwith cold, 95%ethanol, washedwith 70%ethanol, and rehydratedin a storagebuffer (10 mM Tris, 0.1 mM EDTA). Portionsof the cytochrome-b/ND6regionwere amplified via the polymerasechainreaction(PCR;Innis and Gelfand1990)usingcombinations of the primers shownin Figure1. PCR reactionswere performedin 100 •L volumes using 1.5 mM MgC12,5 •M concentrationsof eachprimer, 200 •M dNTPs, one unit of Taq polymerase,and 10-100 ng of template DNA. Thermalcyclingbeganwith a three-minutedenaturation at 94øC,followed by 35 cyclesof denaturation (94øC,1 min), annealing(50-55øC,1 min), and primer extension (72øC, 1 min). A final extension for 7 min No voucher data. at 72øCwasincludedto minimize the numberof partial PCR products. Most PCR products were sequenced directly following asymmetricre-amplifivergencesof 0.7 to 1.5%.In this study, we ex- cationas describedby Krajewskiand Fetzner (1994). amine mitochondrial DNA (mtDNA) sequence The 5' portion of ND6, however,includesregionsof variation in a larger sampleof individualsto secondarystructurethat prevented extensionby the assessthe genetic and phylogeographicdis- T7 polymerase.For these areas, we employed the tinctness of the Sarus Crane subspecies. CircumVentcyclesequencingsystem(New England Biolabs). Data analysis.--Sequences were aligned manually usingthe chickenmitochondrialgenome(Desjardins Experimental design.--Ourprevious study of se- and Morals 1990) as a reference.Basicsequencemaquence variation in cytochrome-b,tRNA TM, and nipulations (reverse complementation,conceptual tRNAP'øgenesof SarusCranesrevealedlow levelsof translation,secondarystructureanalysis)were perhaplotypedivergence (KrajewskiandWood1995).We formedwith Hitachi'sDNASIS software.Coding sethereforeextendedour datasetto includethe adjacent quencesof cytochromeband tRNA TMareon the heavy and ND6 are on the light NADH dehydrogenase subunit6 (ND6) locus,sug- (H) strand,thoseof tRNAPrø gestedto be appropriatefor recentdivergencesby (L) strand. Moum and Johansen (1992). Our intention was to To explore relative ratesof changeamong genes, identify variablesitesin the sequences from two in- divergencesamong haplotypeswere computedsepdividuals of each subspecies,then assayas many of arately for cytochrome-b, spacerregionsand tRNAs, thosesitesaspossiblewith restrictionendonucleases and ND6, using the proportion of mismatchedbases for a largersampleof individuals.Preliminaryanal- (the p-valueof Nei 1987)as a metric. We alsotallied ysis revealed,however, that divergencesremained the numbers of transitions and transversions for each low even acrossthe four-gene alignment, and that region using the MEGA 1.0 package(Kumar et al. evenan extensiverestriction-sitesurveywould detect 1993). To estimatemultilocusdivergences,we desless than one-half of the variable sites and fail to ignated seven rate categoriesof sites:first, second, diagnosehaplotypes. We thereforeobtainedthe com- and third codon-positionsin each of cytochrome-b plete,four-locussequencefroma third individualof and ND6 sequences,and tRNA sites(including spacMETHODS Sarus Crane rntDNA Variation July 1996] L 1 H ND5 3 4 2 10 5 11 6 12 Cytochromeb 7 657 8 13 14 Thr Pro 9 15 16 ND6 17 Glu Fig. 1. Map eœgenesand primer locations.Scaleis approximate.L and H refer to light and heavystrands, respectively,of mtDNA molecule.Regionssequencedin this study are shaded.Primersand sourcesare: (1) L14851(Kornegayet al. 1993);(2) L14841(Kocheret al. 1989);(3) L15087(Edwardset al. 1991);(4) L15136 (Krajewskiet al. 1992);(5) L15418 (Krajewskiand Fetzner 1994);(6) L15615 (Krajewskiand Fetzner 1994);(7) L16022(Krajewskiand Wood 1995);(8) L16152(Krajewskiand Wood 1995);(9) L16303(5'-AACCCCACATGAATAAAACA-3',this study);(10) H14954 (Thomaset al. 1989);(11) H15149(Kocheret al. 1989);(12)H15498 (Krajewskiet al. 1992);(13) H15767 (Edwardset al. 1991);(14) H15915 (Edwardset al. 1991);(15) H16208 (5'AGCTTGTACGAGGGTTGT-3', this study);(16) H16621 (5'-ATCCTTCACCGTACTATGGG-3', this study);(17) H16744 (Krajewskiand Wood 1995). ers).Relativeratesfor thesecategorieswere estimated as their relativeproportionsof variablebases,standardized to the lowest value (cytochrome-bsecond positions,seebelow).Pairwisedistances(dMLc) were computedusingFelsenstein's (1992)DNAML model in the DNADIST program of PHYLIP 3.5, with the expectedtransition/transversion ratio set to 6 (the observedmeanvaluefor cytochrome-b and ND6 comparisons)and empirical basefrequenciesemployed. This strategyfor distanceestimationwasprompted by the resultsof Krajewskiand King (1996),who showedthat transitionbias,codon-position rates,and nonuniformbasecompositionwere the majordeparturesfrom randomsubstitutionin cranecytochromeb sequences. Gene trees were estimatedusing additive distance, pling using the DNAPARS programof PHYLIP 3.5. A maximum-likelihoodestimateof haplotype relationshipswasobtainedwith the DNAML programof PHYLIP 3.5, using the transitionand base-composition parametersdescribedabove(site-specificrate categoriescannot be employed in this version of the program).Resolutionon the DNAML tree is approximated by parametricconfidenceintervals on internodal branchlengths.Gene treeswere estimatedfirst separatelyfrom cytochrome-b,tRNA, and ND6 sequencesto check for congruenceof resolved nodes, then from a complete alignment of the multilocus data set. All the phylogeny-estimationmethodsdescribed above assumea strictly bifurcating tree, but such a tree may not apply to recentlydivergedhaplotypes. parsimony,and maximum-likelihoodmethods.Dis- In particular,the persistenceof an ancestralsequence tanceanalysesemployedthe weightedleast-squares along with multiple descendantsequencesderived (Fitch and Margoliash 1967) and neighbor-joining from it will result in an unresolvable (i.e. "hard") (Saitou and Nei 1987) methods on dmc values. Res- polytomy.To assess the influenceof this phenomeolution in distancetrees was assayedby bootstrap non, we manually constructedan unrooted, miniresamplingof sites.Because ratecategories cannotbe mum-lengthnetwork(Lansmanet al. 1983)from parresampledwith currently availablesoftware,boot- simony-informativesitesfor SarusCrane haplotypes. strappeddistanceanalysesused DNAML distances On sucha network, haplotypesmay occupyinternal computedwithoutratecategories (dML). Krajewskiand nodes,and polytomousbranchesmay occur. We estimated the net number of nucleotide differKing (1996)showedthat inclusionof rate categories did not alter the precisionof distancetreesfor crane ences(dA)between subspeciesas cytochrome-bsequences.Distance trees were obaA= axr - (ax + at)/2 (1) tainedwith the FITCH and NEIGHBOR programsof PHYLIP 3.5. Parsimonyanalysisemployedequally where dx, dr, and dxr are the average numbers of weightedsitesandsubstitutions with the branch-and- nucleotidesubstitutions for a randomlychosenpair boundsearchalgorithmDNAPENNY in PHYLIP 3.5. of haplotypesfrom subspecies X, Y, and X and Y, Given the small divergencesamong haplotypes,we respectively(Nei 1987:276-279).Variancesof each did not employdifferentialweightingof positionsor d-value were computedfrom Nei's (1987) equations d^valueswithinonestandard deviation transversions(Krajewskiand King 1996).Resolution 10.23210.26; in parsimonytreeswas assayedby bootstrapresam- of zero were considerednonsignificant. 658 woor• ANDKRAJEWSKI vipio-1 rubicunda-8 rubicunda-247 [Auk, Vol. 113 spacerpositions;and 4.6, 2.3, and 18.4 for ND6 codon positions. Haplotypevariation.--Eachof the 12 individuals examined in this survey possesseda distinct multilocushaplotype,althoughseveralhad identical single-locussequences.We designate haplotypesby specificor subspecificepithet and individual number (e.g. gillae-5 is the haplotype from G. a. gillaeindividual 5; seeTable 1). Two pairs of haplotypes(sharpei-56and sharpei-66, gillae-17 and gillae-103) are identical at all cytochrome-bsites, several have identical tRNA sequences,and one pair (antigone-222 and antigone-252) is identical for all ND6 sites. Single-locus patterns.--Cytochrome-bdistances (dMLc)among SarusCrane haplotypesare 0 to 0.011, and those among speciesare 0.034 to 0.050; there are 36 informative sites for parsimony analysis.Only two nodes,thoseshowing monophyly of Brolga and SarusCrane haplotypes,arerecoveredwith high resolution(> 90% bootstrap)on cytochrome-btrees (not shown). For tRNA and spacer regions, divergences among SarusCrane haplotypesare 0 to 0.032, and those between speciesare 0.018 to 0.052; there are six parsimony-informativesites.Resolution is extremelylimited on tRNA trees(not shown), but again monophyleticBrolgaand Sarus Crane groups are recovered. ND6 divergencesare 0 to 0.01 among SarusCrane haplotypes,and 0.049 to 0.064 among species;there are 25 parsimony-informativesites.ND6 trees (not shown) again resolve Brolga and Sarus Crane groups, but reveal little structure among SarusCrane haplotypes.There are no discordant patternsamongsingle-locustreesfor wellresolved groups. For weakly resolved groups (50-90% bootstrap),only sharpei-55 and sharpei-66 show different affinities with different antigone-252 sharpei-66 sharpei-56 antigone-222 ginae-10s gi!lae-5 0 I 0.01 I I Fig.2. Treerecoveredby FITCH and NEIGHBOR algorithmsfor dMLcdistancesfrom combinedcytochrome-b,spacer,tRNA, and ND6 sequences. Branch lengthscaleis substitution per sitefromFITCHanalysis.Asterisks belowbranchesindicatebootstrapresolution of >50% (*) and >90% (**), based on 200 resamplings. RESULTS Sequences.--Thecomplete sequence alignment is 1,831nucleotides,with specificregions as follows (5' to 3' order on the L strand): cytochrome b (1,143 bases), spacer (4 bases), tRNATM(70 bases),spacer(15-16 bases),tRNAPtø (70 bases),spacer(6 bases),and ND6 (522bases). The spacerregion betweentRNA loci was not reportedin the chicken(Gallusgallus)sequence genes. Multilocustrees.--All phylogenetic analyses of the 1,831 base-pairalignment show the expected monophyly of SarusCrane and Brolga haplotypes.The multilocus distancetree (Fig. 2; based on dMLcvalues in Table 2) reveals some- of Desjardinsand Morals(1990),but is found what more structure among Sarus Crane hapin all cranesand some other gruiforms (Kra- lotypesthan that from single loci, but suggests jewskiunpubl. data).All sequences have been similar groupings. Gillae-5 appearsas an early depositedin GenBankunderaccession numbers branch, and there are consistentpairings of gilUl1060 to Ul1065, U13622, and U43614 to lae-17 with gillae-103, sharpei-55 with antigone-77, and sharpei-56with sharpei-66. Parthe authors. GenBank files contain corrections simonyanalysisof all 67 informativesites(Tato previouslypublishedsequences. Relativerates ble 3) yields three treesof 84 steps(consistency for site categorieswere 2.6, 1.0, and 14.4 for index = 0.80), the strict consensusof which is U43625;a completealignmentis availablefrom cytochrome-b codonpositions; 6.0for tRNA and concordant with the distance trees at all nodes July1996] Sarus Crane mtDNAVariation 659 TABLE2. Sequencedistancesamong haplotypes.Values above diagonal are mismatchesper site (p-distances); values below diagonal are substitutionsper site (dMLc). 1 1 vipio-1 -- 2 3 5 6 7 8 9 10 11 12 0.037 0.038 0.038 0.040 0.040 0.040 0.040 0.040 0.038 0.042 0.038 2 rubicunda-8 3 rubicunda-247 0.043 0.044 -0.010 0.009 -- 4 5 6 7 gillae-5 gillae-17 gillae-103 sharpei-55 0.045 0.048 0.048 0.048 0.040 0.042 0.042 0.044 sharpei-56 sharpei-66 antigone-77 antigone-222 antigone-252 0.048 0.048 0.045 0.050 0.045 0.045 0.043 0.042 0.046 0.041 8 9 10 11 12 4 0.034 0.035 0.039 0.038 0.035 0.034 0.041 -0.004 0.004 0.007 0.006 0.006 0.006 0.041 0.005 -0.002 0.007 0.004 0.004 0.006 0.040 0.004 0.002 -0.007 0.003 0.003 0.005 0.044 0.008 0.008 0.007 -0.006 0.006 0.006 0.007 0.005 0.004 0.009 0.003 0.002 0.002 0.005 0.040 0.042 0.044 0.044 0.039 0.006 0.006 0.007 -0.004 0.003 0.003 0.003 0.004 -- 0.007 0.007 0.006 0.008 0.004 0.036 0.035 0.036 0.034 0.004 0.004 0.006 0.005 0.002 showing >50% boostrap values (Fig. 3). The DNAML tree (Fig. 4) hasterminal clustersvery similar to thoseon distanceand parsimonytrees, but showsa basalpolytomy among Sarushap1otypes. Parsimonynetwork.--Only 7 of the 31 variable sites among Sarus Crane haplotypes are informative for parsimonyanalysis.These sitescan be placedon a haplotype network with a minimum of 11 steps(Fig. 5). This network reveals a potential hard polytomy corresponding to nodesnot resolvableby phylogeneticanalysis. Moreover, antigone-252is placedon an internal node directly ancestralto at leastone other lineage.If this network reflectsthe actualmutation history of SarusCrane haplotypes,it suggests an almostcompleteabsenceof phylogeographic structure.None of the possiblerootingswould result in all haplotypes from any subspecies forming a single lineage. However, a network on which all Australian or Burmesehaplotypes are proximal to one another requires only one additional step (12 total), and a network with 0.004 0.004 0.005 0.005 0.002 0.038 0.038 0.006 0.006 0.006 0.010 0.005 0.038 0.034 -0.002 0.006 0.006 0.003 0.037 0.036 0.002 -0.005 0.006 0.003 0.036 0.037 0.006 0.005 -0.008 0.004 all three subspecieshaplotypes in proximal groupsrequiresonly three additional steps(14 total). These topologies are not significantly longer than the minimum-length network according to Templeton's(1983) test. Net divergence.--Because each individual sampledpossessed a unique DNA sequence,we used one third as the within-population frequencyof all haplotypes(Nei 1987:276).All estimated values of net divergences (d^) among subspecies(Table 4) are lessthan one standard deviation from zero. Thus, assumingthat the nine haplotypesare representativeof eachsubspeciesand that they occur in roughly equal frequencies, there is no evidence for genetic differentiation of subspeciesat these loci. DISCUSSION Divergencerates of cytochrome b and ND6.-Few studies since that of Moum and Johansen (1992) have examined divergence of the ND6 sequencein birds, in contrastto the increasing T^BLE3. Parsimony-informativesitesfor haplotypesexamined.Dots indicate a match to vipio-1 sequence. Asterisksindicate sites occurring in spacerregions. Haplotype vipio-1 rubicunda-8 rubicunda-247 gillae-5 gillae-17 gillae-103 sharpei-55 sharpei-56 sharpei-66 antigone-77 antigone-222 antigone-252 Cytochrome b ACCATTCAGATCCTTGCATTTTACACTCTTGCTTTT ...... TG...TT..ATG .... GT..C.C.AA..C. ...TC.TG...TT..ATG .... G...C.C.AAC.C. .TT.C...AGC..CC...CCCC.TGT.T.CAACC.C CTTTCC..AGC..CC...CCCC.TGT.T.CAACC.C CTTTCC..AGC..CC...CCCC.TGT.T.CAACC.C .TT.CC..AGC..CC...CCCC..GT.T.C.ACC.C CTTTCC..AGC..CC...CCCC..GT.T.C.ACC.C CTTTCC..AGC..CC...CCCC..GT.T.C.ACC.C .TT.CC..AGC..CC...CCCC.TGT.T.C..CC.C CTTTCC..AGC..CC...CCCC.TGT.T.C.ACC.C .TTTCC..AGC..CC...CCCC.TGT.T.C.ACC.C tRNA ND6 CTGCAG .G..G. .G..G. T.AT.. T.AT.. T.AT.. T.AT.. T.AT.T T.AT.T T.AT.. T.AT.. T.AT.. CCCAAATCCTGGCACACACCCATAC T.T...CTT.AATG.G..T...CGG T..G..CTT.AATG.G..T...CGG .T..C .... C.A..T.TG.TTG..A .T..C .... C.A..T.TG.TTGC.A .T..C .... C.A..T.TG.TTGC.A .TT.CC...C.A..T.TG.TTGC.A .T.GCC...C.A..T.TG.TTGC.A .TT.C .... C.A..T.TG.TTGC.A .TT.CT...C .... T.TG.TTGC.A .T..C .... C.A..T.TG.TTGC.A .T..C .... C.A..T.TG.TTGC.A 660 woor•ANDKRAJEWSKI [Auk,Vol. 113 vipio-1 vipio-1 rubicunda-8 rubicunda-8 **• rubicunda-247 rubicunda-247 antigone-252 antigone-252 antigone-222 sharpei-66 sharpei-66 sharpei-56 • sharpei- gi!lae-103 illae-17 iltae-103 antigone-222 e-l? antigone-77 ** • antigone-77 •-- sharpei sharpei-55 -- gi!!ae-5 Fig. 3. Strict consensusof three equally parsimonious trees for combined cytochrome-b,spacer, tRNA, and ND6 sequences.Eachrequires84 stepsfor 67 characters.Labeling conventionsas for Figure 2. popularity of cytochromeb among molecular systematists.Mourn and Johansen(1992) suggestedthat ND6 incorporatessubstitutionsat a sufficientlyrapid rate to be useful for intraspe- 0 I gi!!ae-5 0.01 I I Fig. 4. Tree recoveredby DNAML for combined cytochrome-b,spacer, tRNA, and ND6 sequences. Branchlength scaleis substitutionsper site. tion in cytochromeb.Severalauthors(e.g.Irwin 1991,Krajewskiand King 1996)haveidentified but also reveal an interesting pattern relative constraintson cytochromeb evolution, but no to cytochromeb. Within species,divergence comparableanalysisis availablefor ND6. Our levels are comparablefor both genes(approx- resultssuggestthat ND6 and cytochromeb are imately 0-1%). Among species,however, ND6 of similar utility for assayingintraspecificvariis distinctlymore divergent(4.9-6.4%)than cy- ation. tochrome b (3.4-5.0%). This pattern might reSarus Crane phylogeography.--Theapparent flectdifferentevolutionarydynamicsin the two absenceof phylogeographicstructurein Sarus genes,with extremely labile sitesmutating at Crane haplotype trees implies that there has roughly equal rates early in divergence, fol- been no long-term geographicisolationof sublowed by a more constrainedrate of substitu- species.Several caveatsare attachedto this concific studies. Our results are consistent with this, TABLE4. Within-population (dx,diagonal) and net between-population(d,, below diagonal)divergences (+SD) among SarusCrane subspecies basedon mtDNA haplotypes. G. a. antigone G. a. sharpei G. a. gillae G. a. antigone G. a. sharpei G. a. gillae 0.00236 + 0.00155 0.00159 + 0.00510 0.00098 + 0.00398 0.00220 + 0.00200 0.00330 + 0.00377 0.00162 + 0.00106 July1996] SarusCranemtDNAVariation G17 S56 G103 2 1 A77 1 A252 /3 S66 661 1 4 16 G5 A222 Fig. 5. Minimum-length network for Sarushaplotypes.Haplotypes are indicated by single-letter codes correspondingto subspeciesof origin (A = G. a. antigone;G = G. a. gillae;S = G. a. sharpei).Numbers along branchesrepresentnucleotidesubstitutions.Network requires11 stepsfor 7 informative sites;autapomorphic changesare alsoshown to distinguishhaplotypes. clusion.Foremostis the problem of resolution. Given the smalldivergencesand relatively high levels of homoplasyamong SarusCrane hapiotypes,the gene tree cannotbe estimatedwith high precision.Nevertheless,subspecies monophyly is not the best estimateof relationships for any optimality criterion employed(additive distance,parsimony, and maximum likelihood) or for any single-locuspartition of the data. Another issueis sample size. It is unlikely that we have identified all SarusCrane haplotypes from a sampleof nine birds. Unsampled haplotypes might provide more structure to the mtDNA genetree, perhapseven revealing clusters of closelyrelated geneswithin one or more subspecies. Nonetheless,the relationshipsof the nine haplotypesassayedhere, to the extentthat they are accurate,preclude a pattern of reciprocalmonophylyor paraphyly(Avise 1994)for subspeciesmtDNAs. Unless new haplotypes substantiallyalter the topology of Figure 5, at leastone haplotypewithin eachsubspecies will remain mostcloselyrelatedto one or morehapiotypesfrom a different subspecies. A third caveat is that mtDNA is a single linkage group that revealsonly matrilineal relationships.It is possiblethat other loci (e.g. from the nuclear genome) would reveal a stronger geographic pattern. Although the genetic basis for morphologicaldifferencesamong SarusCrane subspeciesis unknown, variation in genes influencing thesetraits may have a geographiccomponent. Thus, our conclusion is not that the subspecies are "invalid," but only that they are not distinct on the basis of mtDNA variation. Lack of long-term isolationis consistentwith the historical distributions mese Sarus Cranes. Until of Indian and Bur- the mid-1900s, these subspecieshad parapatric distributions bounded by the Godavari River in Bangladesh(Johnsgard 1983). Although nothing is known about the extent of gene flow acrossthis boundary, allopatry is a very recentphenomenon.The duration of Sarus Crane isolation much less clear. There of Australian Sarus in Australia are no described Cranes and is fossils no recorded sightingsprior to 1966.Archibald (1981) speculated that Sarus Cranes arrived in Australia as recently asthe 1960s,a view seeminglyat odds with the evolution of diagnosticmorphological features. An estimate of the time frame of Sarus Crane haplotype differentiation may be derived from estimates of coalescent times and times to re- ciprocal monophyly. There are currently no more than about 23,000 Sarus Cranes in the wild (Meine and Archibald unpubl. report). Applying demographicdata from Whooping Cranes (Mirande et al. 1991) to Sarus Cranes, approximately 30% of all birds are breeding females (Nf), so Nf = 6,900.The mean coalescenttime for neutral mtDNA haplotypesis 2N• generations (Birky 1991), that is 2 x 6,900, or 13,800 generationsin SarusCranes. The average generation time in gruine cranesis 12.5 years (Krajewski and Wood 1995),giving a coalescenttime for SarusCrane haplotypesof 13,800 x 12.5,or 172,500 years. The largest uncertainty in this calculation involves using the current Sarus Crane censusas an estimate of long-term population size. An alternative approachto dating the coalescentis to root the network in Figure 662 WOODANDKRAJEWSKI 5 at its midpoint (i.e. either the node occupied by antigone-252or the node at which gillae-5 joins the network) and compute the mean genetic distancebetween all pairs of haplotypes at tips on oppositesidesof the root. This value is 0.007 + 0.002 (dMLc,n = 15). Krajewskiand King (1996) suggestedthat the maximum rate of cytochrome-bdivergence in cranes is about 1.7% per million years (my). BecauseND6 appearsto evolve slightly fasterthan cytochrome b, this rate may be applied to the SarusCrane divergences.Thus, the elapsed time since the commonancestorof all SarusCranehaplotypes would be 0.7%divided by 1.7%/my, or 411,765 years.This suggeststhat the population size in the coalescentcalculationis too smallby a factor of 2.4. A similar approachmay be usedestimatethe duration of Sarus Crane isolation in Australia. Avise et al. (1984)showedthat populationshave polyphyletic mtDNA haplotypes when they have been isolatedfor fewer than Nf generations (assumingneutral haplotypesand a Poissonfemalefecunditymodelwith mean 1.0).The current census size of Australian Sarus Cranes is no more than 10,000 birds and is possibly increasing (Meine and Archibald unpubl. report). Avise et al. (1984) demonstratedthat in expandingpopulationsthe final value of N• is a strongerdeterminant of lineage survivorship than the number of founders. It follows Sarus Cranes have been isolated in Australia fewer than that for N• = (0.3)(10,000)= 3,000generations, [Auk,Vol. 113 various phasesof this research,as well as the donor institutions in Table 1. Our study was supported by NSF grants BSR~9102482and DEB-9419907to C.K. LITERATURE CITED ARCHIBALD, G.W. 1976. Crane taxonomyasrevealed by the unison call. Pages225-251 in Crane research around the world (J. C. Lewis and H. Masatomi, Eds.). International Crane Foundation, Baraboo, Wisconsin. ARCHIBALD, G. W. 1981. Introducing the Sarloga. Pages213-215in Craneresearcharoundthe world (J.C. Lewis and H. Masatomi, Eds.).International Crane Foundation, Baraboo, Wisconsin. AVISE,J.C. 1994. Molecular markers,naturalhistory, and evolution. Chapman and Hall, New York. AVISE,J. C., J. C. NEIGEL,AND J. ARNOLD. 1984. De- mographic influences on mitochondrial DNA lineage survivorshipin animal populations.Journal of Molecular Evolution 20:99-105. BIRKY,C. W., JR. 1991. Evolution and population genetics of organelle genes: Mechanisms and models. Pages112-134 in Evolution at the molecular level (R. K. Selander, A. G. Clark, and T. S. Whittam, Eds). Sinauer, Sunderland, Massachusetts. BLANFORD, W. 1895. Grus(antigone)sharpei.Bulletin of the British Ornithologists'Club 5:7. BLYTH, E., AND W. G. TEGETMEIER.1881. The natural history of the cranes.Horace Cox, London. DELACOUR, J., ANDE. MAYR. 1946. Birds of the Philippines. Macmillan, New York. DESJARDINS, P., ANDR. MORAIS. 1990. Sequenceand gene order of the chicken mitochondrial genome:A novel geneorder in higher vertebrates. Journalof Molecular Biology 212:599-634. DESSAUER, H.C., G. F. GEE, AND J. S. ROGERS. 1992. Allozyme evidence for crane systematicsand or 37,500 years. This time frame is consistent polymorphismswithin populationsof Sandhill, with Mayr's (1944) scenariofor the origin of Sarus,Siberian, and Whooping cranes.Molecular Australian-endemic avian subspecies.Mayr Phylogeneticsand Evolution 1:279-288. (1944) postulatedthat lowered sea levels cre- EDWARDS,S. V., P. ARCTANDER, AND A. C. WILSON. ated grasslandsand marshy areasbetween is1991. Mitochondrial resolutionof a deepbranch in the genealogicaltree for perching birds. Prolands of the Malay Archipelagoand provided ceedingsof the Royal Societyof London Series a dispersalroute for SoutheastAsian birds into B 243:99-107. Australia via Timor. Morley and Flenley (1987) FELESENSTEIN, J. 1992. PHYLIP(phylogenyinference provided geologicalevidence that lowered sea package),version3.5. Distributedby the author. levels associatedwith worldwide glaciation Department of Genetics,University of Washingduring the last 100,000 years allowed land ton, Seattle. bridges to form between the Malay Peninsula FITCH, W. M., AND E. MARGOLIASH. 1967. Construcand Borneo, with the last such disappearing tion of phylogenetictrees.Science155:279-284. some 18,000 years ago. GILL, H. B. 1969. First record of the Sarus Crane in Australia. ACKI•OWLEDGMENTS We thank George Archibald, Larry Buckley, Jim Fetzner, and Claire Mirande for their assistance in Emu 69:49-52. INNIS,M. A., ANDD. H. GELFAND.1990. Optimization of PCRs. Pages3-12 in PCR protocols:A guide to methods and applications (M. A. Innis, D. H. Gelland, J. J. Sninsky,and T. J. White, Eds.).Academic Press,San Diego. July1996] Sarus Crane mtDNAVariation IRWIN, D. M., T. D. KOCHER,AND A. C. WILSON. 1991. Evolutionof the cytochromeb gene of mammals. Journal of Molecular Evolution 32:128-144. JOrtNSG•.Rr•, P.A. 1983. Cranes of the world. Indiana Crane on Luzon, Philippines. Pages116-118 in Crane researcharound the world (J. C. Lewis and H. Masatomi, Eds.). International Crane Foundation, Baraboo, Wisconsin. MAYR, E. 1944. Timor and the colonization of Aus- University Press,Bloomington. KOCHER,T. D., W. K. THOMAS, A. MEYER, S. V. EDWARDS,S. P'dd•BO,F. X. VILLABLANCA,AND g. C. WILSON.1989. DynamicsofmitochondrialDNA evolution in animals:Amplification and sequencing with conservedprimers. Proceedingsof the NationalAcademyof SciencesUSA 86:6196-6200. KORNEGAY,J. R., T. D. KOCHER,L. A. WILLIAMS, AND A. C. WILSON.1993. Pathwaysof lysozymeevolution inferred from the sequencesof cytochrome b in birds. Journal of Molecular Evolution 37:367-379. KRAJEWSKI, C. 1989. Phylogenetic relationships among cranes (Gruiformes: Gruidae) based on DNA hybridization. Auk 106:603-618. KRAJEWSKI,C., A. C. DRISKELL,P. R. BAYERSTOCK,AND M. J. BRAUN1992. Phylogeneticrelationshipsof the thylacine (Marsupialia:Thylacinidae)among dasyuroid marsupials: Evidence from cytochrome b DNA sequences.Proceedingsof the Royal Societyof London SeriesB 250:19-27. KRAJEWSKI, C., AND J. W. FETZNER, JR. 1994. Phylogeny of cranes(Gruiformes:Gruidae)basedon cytochrome-b DNA sequences.Auk 111:351-365. KRAJEWSKI, C., AND D.G. KING. 1996. Molecular di- vergenceand phylogeny: Ratesand patterns of cytochromeb evolution in cranes.Molecular Biology and Evolution 13:21-30. KRAJEWSKI, C., ANDT. C. Woofs. 1995. Phylogenetic relationships within the Sarus Crane species group (Gruiformes:Gruidae)basedon mitochondrial DNA sequences.Emu 95:99-105. KUMAR, S., K. T•MVRA, ANr• M. NEI. 663 1993. MEGA: Molecular evolutionary genetics analysis, version 1.01. Pennsylvania State University, University Park. LANSMAN,R. A., J. C. AVISE, C. F. AQUADRO,J. F. SHAP- tralia by birds. Emu 46:113-130. MEDWA¾,L., AND D. R. WELLS. 1976. The birds of the Malay Peninsula.H. F. and G. Witherby,London. MIRAhIDE, C., R. LACY, AND U. SEAL (Eds.). 1991. Whooping Crane conservationviability assessment. CaptiveBreedingSpecialistGroup,Apple Valley, Minnesota. MORLEY,R. J., AND J. R. FLENLEY.1987. Late Caino- zoicvegetationaland environmentalchangesin the Malay Archipelago.Pages50-59 in Biogeographicalevolutionof the MalayArchipelago(T. C. Whitmore, Ed. ). Clarendon Press,Oxford. MOUM, T., AND S. JOHANSEN.1992. The mitochon- drial NADH dehydrogenase subunit6 (ND6) gene in tourres:Relevanceto phylogenetic and populationstudiesamongbirds.Genome35:903-906. NFa,M. 1987. Molecular evolutionary genetics. Co- lumbia University Press,New York. S,MTOU, N.,AND M. NEI. 1987. The neighbor-joining method: A new method for reconstructing phy- logenetictrees.MolecularBiologyandEvolution 4:406-425. SAMBROOK, F., E. F. FRITSCH,AND T. MANIATIS. 1989. Molecular cloning: A laboratorymanual. Cold SpringHarbor Press,Cold SpringHarbor, New York. SCHODDE, R. 1988. New subspeciesof Australian birds. Canberra Bird Notes 13:1. SHARPE, R.B. 1894. Catalogueof birds in the British Museum, vol. 23. British Museum of Natural His- tory, London. TEMPLETON, A.R. 1983. Phylogeneticinferencefrom restrictionendonucleasecleavagesite maps with particularreferenceto the evolutionof humans and the apes.Evolution 37:221-244. THOMAS, R. H., W. SCHAFFNER,A. C. WILSON, AND S. IRA,AND S. W. DANIEL. 1983. Extensivegenetic variation in mitochondrial DNA's among geoP'dd•nO.1989. DNA phylogeny of the extinct graphicpopulationsof the deer mouse,Peromysmarsupialwolf. Nature 340:465-467. cus maniculatus. Evolution 37:1-16. LEETON, P. R. J., L. CHRISTIDIS,g. WESTERMAN,AND W. E. BOLES.1995. Molecular phylogenetic affinities of the Night Parrot (Geospittacus occidentalis)and the Ground Parrot (Pezoporus wallicus). Auk 111:833-843. MADSEN, K. K. 1981. WALKINSHAW,L.W. 1973. Cranes of the world. Winchester Press, New York. YANG, L. 1991. The distribution and habitat of the cranesin Yunnan Province.Pages127-129 in Pro- ceedingsof the 1987craneworkshop(J. Harris, Ed.). International Crane Foundation, Baraboo, Search for the Eastern Sarus Wisconsin.
© Copyright 2026 Paperzz