dy ln x 2 . = dx x ln x 2 Solution. y = ∫ dx . There are two cases to consider if the logarithm property ln ab = b ln a is x 2 ln x used. First, if x > 0 , then y = ∫ dx . To carry out the integration, let u = ln x ; then x 1 du = dx . Thus, x 22. Solve y = Second, if x < 0 , then y = ∫ 2 2u du = u 2 + C = ( ln x ) + C . ∫ 2 ln x 2 dx = x ∫ ln ( −x ) x du 1 d 1 dx Then and so du = . = ⋅ ( −x ) = x dx −x dx x Therefore, in both cases, solutions are given by dx = ∫ 2 ln ( −x ) x Thus, y = Now let u = ln ( - x ) . dx . ∫ 2u du = u 2 + C = ( ln ( −x )) 2 +C . y = ( ln x ) 2 + C . ( ) ( ) Note. An alternative substitution is v = ln ( x 2 ) . Then, dv = 2x x 2 dx = 2 x dx and ⎡ ln x 2 ⎤ 2 ⎡ 2 ln x ⎤ 2 1 u2 ⎢⎣ ⎥⎦ ⎦ + C = ( ln x y = ∫ u du = +C = +C = ⎣ 2 4 4 4 ( ) 28. Solve 2 ) +C . dy x . = e2x sin dx 3 ( ) Solution. The integral y = ⎛x ⎞ ∫ e 2x sin ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ dx is found by integrating by parts. From the table d ⎡ ⎤ ⋅ dx ⎣ ⎦ u = sin ∫ ⎡⎣ ⋅ ⎤⎦ dx ( x3 ) 1 x cos 3 3 ( ) - we have ⎛x ⎞ ( ) ⎛x ⎞ e 2x dx = dv –1 1 2x e 2 +1 1 x sin 9 3 1 +1 1 ⎛x ⎞ 1 2x e 4 ⎛x ⎞ 1 ∫ e 2x sin ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ dx = 2 e 2x sin ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ − 12 e 2x cos ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ − 36 ∫ e 2x sin ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ dx . Solving for the integral, we obtain y= ⎛x ⎞ 18 ⎛x ⎞ 3 ⎛x ⎞ ∫ e 2x sin ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ dx = 37 e 2x sin ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ − 37 e 2x cos ⎜⎜⎜⎝ 3 ⎟⎟⎟⎟⎠ + C . 1 2 Error! Reference source not found. 30. Solve dy x . = 2 dx x - 5x + 6 Solution. y= x ∫ x 2 − 5x + 6 dx . Since the substitution method will not work here, we expand the integrand into the sum of two partial fractions: x A B = + ( x − 2 )( x − 3 ) x − 2 x − 3 ⇒ A( x − 3 ) + B ( x − 2 ) = x . Setting x = 2 , we obtain A = - 2 . And x = 3 gives B = 3 . Thus, 1 3 y = −2∫ dx + 3∫ dx . x −2 x −3 From this, we have y = 3 ln x - 3 - 2 ln x - 2 + C . 32. Solve dy 1 . = 3 dx x + 9x Solution. y= 1 ∫ x 3 + 9x dx . Integrating using the method of partial fractions, we have 1 A Bx + C ; = + 2 x x + 9x x +9 A( x 2 + 9 ) + ( Bx + C )x = 1; 3 ⎧ A+B = 0 ⎪ ⎪ ⎪ Thus, ⎪ C =0 ⎨ ⎪ ⎪ 9A = 1 ⎪ ⎪ ⎩ y= ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ 1 ⇒ A= ; 9 1 1 ∫ x 3 + 9x dx = 9 ∫ 1 B = −A = − ; 9 C = 0 . Therefore, dx 1 x dx 1 1 − ∫ = ln x − ln x 2 + 9 + C , or x 9 x2 + 9 9 18 ( y= 34. Solve ( A + B ) x 2 + Cx + 9A = 1 ) 1 ⎛⎜ x 2 ⎞⎟⎟ ln ⎜ ⎟ +C . 18 ⎜⎜⎝ x 2 + 9 ⎟⎠ dy = sec ( 3x ) tan ( 3x ) . dx Solution. Integrating with respect to x , we have y = ∫ sec (3x ) tan (3x ) dx . Let u = 3x . du = 3 dx . Thus, y= 36. Solve 1 1 secu tan u du = sec (3x ) +C . ∫ 3 3 dy = 5x 2 1 + 4x 3 . dx Solution. Integrating, we have y = ∫ 5x 2 1 + 4x 3 dx . Let u = 1 + 4x 3 . Then du = 12x 2dx . y= 38. Solve y = x2 − 5 ∫ x 3 − 3x 2 + 4x − 12 dx . 32 5 (1 + 4x 3 ) + C 18 Then 3 Error! Reference source not found. Solution. The partial fraction expansion of the integrand is x2 + 5 A Bx + C . = + 2 x- 3 ( x - 3 )( x 2 + 4 ) x +4 Clearing the denominators and grouping like terms together gives ( A + B ) x 2 + (C - 3B ) x + 4A - 3C = x 2 - 5 . So, we want to find values for A, B, and C satisfying the equations ⎪⎧⎪ A + B = 1 ⎪⎪ ⎨ C − 3B = 0 ⎪⎪ ⎪⎪⎩ 4A − 3C = −5. Solving, we find A = y= = 41. To solve 4 9 27 . Thus, , B= , C = 13 13 13 x2 − 5 4 dx 9 x dx 27 dx ∫ x 3 − 3x 2 + 4x − 12 dx = 13 ∫ x − 3 + 13 ∫ x 2 + 4 + 13 ∫ x 2 + 4 ⎛x ⎞ 4 9 27 ln x − 3 + ln x 2 + 4 + tan−1 ⎜⎜ ⎟⎟⎟ + K. ⎜⎝ 2 ⎟⎠ 13 26 26 ∂z x , integrate with respect to y: =5+ ∂y 4 + y2 z= ⎛ x ⎞⎟ 1 ⎛y ⎞ ∫ ⎜⎜⎜⎝ 5 + 4 + y 2 ⎟⎟⎟⎠ dy + f ( y ) = 5y + 2 tan−1 ⎜⎜⎜⎝ 2 ⎟⎟⎟⎟⎠ + f ( x ) . where f denotes a differentiable function of x. The solution with Maple 11 is > PDE1 := diff(z(x, y), y) = 5 + x/(4 + y^2); > pdsolve(PDE1); 42. To solve zx = 2y - 5y 3 csc2 x , integrate with respect to x: z= ∫ ( 2y − 5y 3 csc2 x )dx = 2xy + 5y 3 cotx + g ( y ) , where g denotes a differentiable function of y. The solution with Maple 11 is > PDE2 := diff(z(x, y), x) = 2*y - 5*y^3*csc(x)^2; > pdsolve(PDE2);
© Copyright 2025 Paperzz