Mathematics for Engineers and Scientists (MATH1551) Partial Differentiation 1. Calculate ∂f /∂x and ∂f /∂y when f (x, y) is given by: p a) x2 + y 2 sin(xy), b) (x + y)/(x − y), c) e) xy , f) log(x2 + y 2 ), g) xy + x3 cos(xy), x2 + y 2 , d) p −1 x2 + y 2 , h) xy/(x + y). Solution: (a) ∂f /∂x = 2x + y 3 cos(xy), ∂f /∂y = 2y sin(xy) + xy 2 cos(xy). (b) ∂f /∂x = (x − y)−2 ((x − y) − (x + y)) = −2y(x − y)−2 , ∂f /∂y = (x − y)−2 ((x − y) + (x + y)) = 2x(x − y)−2 . −1 (c) ∂f /∂x = x (x2 + y 2 ) 2 , −1 ∂f /∂y = y (x2 + y 2 ) 2 . −3 (d) ∂f /∂x = −x (x2 + y 2 ) 2 , −3 ∂f /∂y = −y (x2 + y 2 ) 2 . (e) ∂f /∂x = yxy−1 , ∂f /∂y = xy log x, (to see this, use f (x, y) = xy = ey log x ). 2 2 (f) ∂f /∂x = 2x/ (x + y ), ∂f /∂y = 2y/ (x2 + y 2 ). (g) ∂f /∂x = y + 3x2 cos(xy) − x3 y sin(xy), ∂f /∂y = x − x4 sin(xy). (h) ∂f /∂x = y/(x + y) − xy/(x + y)2 , ∂f /∂y = x/(x + y) − xy/(x + y)2 . 3. Calculate ∂f /∂x, ∂f /∂y, ∂ 2 f /∂x∂y and ∂ 2 f /∂y∂x when f (x, y) is given by a) x2 y 3 + ex + log y, b) x2 cos y + x2 + cos y, d) tan−1 (y/x), e) (x2 + y 2 )−1/2 . c) x tan (y 2 ), Solution: (a) ∂f /∂x = 2xy 3 + ex , ∂f /∂y = 3x2 y 2 + y1 , ∂ 2 f /∂x∂y = 6xy 2 = ∂ 2 f /∂y∂x. (b) ∂f /∂x = 2x cos y + 2x, ∂f /∂y = −x2 sin y − sin y, ∂ 2 f /∂x∂y = −2x sin y = ∂ 2 f /∂y∂x. (c) ∂f /∂x = tan (y 2 ), ∂f /∂y = 2xy sec2 y 2 , ∂ 2f ∂ ∂f ∂ = = 2xy sec2 y 2 = 2y sec2 y 2 , ∂x∂y ∂x ∂y ∂x ∂ 2f ∂ ∂f ∂ = = tan y 2 = 2y sec2 y 2 . ∂y∂x ∂y ∂x ∂y −1 −1 y 2 −2 (d) ∂f /∂x = −yx 1+ x = −y (x2 + y 2 ) , −1 −1 y 2 −1 ∂f /∂y = x 1+ x = x (x2 + y 2 ) , 1 −2 ∂ 2 f /∂x∂y = (x2 + y 2 ) −2 ((x2 + y 2 ) (−1) + 2y 2 ) = (y 2 − x2 ) (x2 + y 2 ) −3 − 23 (e) ∂f /∂x = −x (x2 + y 2 ) 2 , ∂f /∂y = −y (x2 + y 2 ) −5 ∂ 2 f /∂x∂y = 3xy (x2 + y 2 ) 2 = ∂ 2 f /∂y∂x. = ∂ 2 f /∂y∂x. , 6. The two-dimensional Laplace equation is ∂ 2 f /∂x2 + ∂ 2 f /∂y 2 = 0. Find all solutions of the form ax3 + bx2 y + cxy 2 + dy 3 , with a, b, c and d constant. Solution: If f (x, y) = ax3 + bx2 y + cxy 2 + dy 3 , then ∂f = 3ax2 + 2bxy + cy 2 , ∂x ∂ 2f = 6ax + 2by, ∂x2 and so ∂f = bx2 + 2cxy + 3dy 2 , ∂y ∂ 2f = 2cx + 6dy ∂y 2 ∂ 2f ∂ 2f + = (6a + 2c)x + (2b + 6d)y. ∂x2 ∂y 2 Notice that this is true for all x and y. Hence we need 6a + 2c = 0, 2b + 6d = 0 which gives c = −3a, b = −3d. The most general solution of the required form is f (x, y) = ax3 − 3dx2 y − 3axy 2 + dy 3 . 7. For the following functions, find df /dt by (i) using the chain rule, and (ii) substituting for x, y (and z in (c)) to find f (t) explicitly and then differentiating with respect to t: (a) f (x, y) = x2 + y 2 and x(t) = cos t, y(t) = sin t. (b) f (x, y) = x2 − y 2 and x(t) = cos t + sin t, y(t) = cos t − sin t. (c) f (x, y, z) = x/z + y/z and x(t) = cos2 t, y(t) = sin2 t, z(t) = 1/t. Solution: (a) (i) We have df ∂f dx ∂f dy = + dt ∂x dt ∂y dt = −2x sin t + 2y cos t = 0. (ii) Now f (t) = cos2 t + sin2 t = 1, so df = −2 sin t cos t + 2 cos t sin t = 0. dt (b) (i) We have df ∂f dx ∂f dy = + dt ∂x dt ∂y dt = 2x (cos t − sin t) − 2y (− sin t − cos t) = 4 cos2 t − sin2 t = 4 cos 2t (ii) Now f (t) = (cos t + sin t)2 − (cos t − sin t)2 = 4 cos t sin t, so df = −4 sin2 t + 4 cos2 t = 4 cos 2t. dt Page 2 (c) (i) We have ∂f dx ∂f dy ∂f dz df = + + dt ∂x dt ∂y dt ∂z dt 2 2 = − cos t sin t + sin t cos t + (x + y)z −2 t−2 = 1. z z (ii) Now f (t) = t cos2 t + t sin2 t = t, so df = 1. dt Page 3
© Copyright 2026 Paperzz