chemical sites of rare gas atoms in amorphous silicon

CHEMICAL SITES OF RARE GAS ATOMS IN
AMORPHOUS SILICON
Y. Katayama, T. Shimada, K. Usami, E. Maruyama
To cite this version:
Y. Katayama, T. Shimada, K. Usami, E. Maruyama. CHEMICAL SITES OF RARE GAS
ATOMS IN AMORPHOUS SILICON. Journal de Physique Colloques, 1981, 42 (C4), pp.C4787-C4-790. <10.1051/jphyscol:19814172>. <jpa-00220797>
HAL Id: jpa-00220797
https://hal.archives-ouvertes.fr/jpa-00220797
Submitted on 1 Jan 1981
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
Co1Zoqv.e C4, suppldment au nO1O, Tome 4 2 , octobrae 1981
page
C4-787
C H E M I C A L S I T E S OF RARE G 4 S ATOMS I N ANORPHOUS S I L I C O N
Y . Katayama, T . Shimada, K. Usami and E . Maruyama
Cenfrul H e s e ~ r c hLaboratory, Hitachi, J,td.,
Kokubunji, Tokyo 185, Japan
A b s t r a c t . - The c h e m i c a l s i t e s o f t h e neon a t o m s imbedded i n h y d r o a e n a t e d
amorphous s i l i c o n a-Si:H r h a t i s p r o d u c e d u s i n g Ne a s a s ~ u t t e r i n ga g e n t
a r e examined u s i n g X-ray p h o t o e l e c t r o n s p e c t r o s c o p y (XPS). From t h e beh a v j o u r o f t h e XPS s p e c t r a i n t h e Ne KLL Auger e n e r a y r e g i o n , it i s r e v e a l cc: t h a t t h e Ne a t o m s i n c o r p o r a t e d i n a-Si:II a r e ir:?bedded, i n t h r e e k i n d s o f
s i t c s , i . e . . i n s i t e s c l o s e l y s u r r o u n d e d by S i a t o m s , i n s i t e s a d l a c e n t
t o i n c o r p o r a t e d hydrogen atoms, and i n microvoids.
I n t r o d u c t i o n . - I t i s well-known t h a t h y d r o g c n a t e d amoruhous s i l i c o n a-Si:H p r o C u c e d
o f t c r : c e n t a i n s a c o n s i d e r a b l e amount o f rare g a s a t o m s u s e J a s s p u t t e r The amount s o m e t i m e s r e a c h e s s e v e r a l a t o m i c 8 [ 2 , 3 ] . T h i s means
ing a a c n t s [l-31.
t h a t , on t h e a v e r a g e , o n e o i t h e n e x t - n e a r e s t n e i g h b o u r s o f e a c h S i atom i s a r a r e
I t i s w r o b a b l e t h a t t h e n r e s e n c e o f s u c h a l a r a e amount o f r a r e g a s a t o m s
aas aton.
a f f e c t s b o t h s t r u c t u r a l a n d e l e c t r o n i c p r o p e r t i e s o f a-Si:H.
However, a l n o s t n o t h i n g
i s known c o n c e r n i n g t h e s i t c s i n w h i c h t h e r a r e Gas a t o m s a r e i n c o r p o r a t e d .
by s : , u t t c r i n g
To e x a m i n e ho;; much a n d i n w h i c h s i t e s t h e r a r e g a s a t o m s a r e imbcdde-l i n a-Si:H
m e a s u r e m e n t s w e r e made w i t h a-Si:II pr:>duce"y
X-rav p h o t o e l e c t r o n s ~ e c t r o s c o w (XPSJ
~
r e a c t i v e s p u t t e r i n g u s i n a Ne, A r a n d Xe a s s p u t t e r i n g a a e n t s .
Neon, t h e l i g h t e s t
e l e m e n t amonc: t h e s e a a s e s , was i n c o r p o r a t e d i n t o t h e d c w o s i t e d a-Si::; t o t h e a r e a t e s t
amount.
I n a p r e v i o u s r e p o r t , t h e amount o f i n c o r p o r a t e d Ne a t o m s was a i v e n t o b e a
f u n c t i o n o f t h e p r e p a r a t i o n c o n d i t i o n s , a s d e t e r m i n e d by XPS m e a s u r e r . e n t s [ 3 1 .
I n t h i s p a p e r , t h e c h e m i c a l s i t e s o f t h e Ne a t o m s i n c o r r 7 o r a t c d i n a-Si:H a r c
examined u s i n a t h e XPS s p e c t r a v a r i a t i o n s f o r a - S i : H i n t h e Ne KLL A u c e r t r a n s i t - i o n
energv r e c i o n t h a t r e s u l t from a s e r i e s o f s u c c e s s i v e h c a t t r e a t m e n t , and with t h e
sic: o f t h e r m a l e f f u s i o n m e a s u r e m e n t s 141.
E x w c r l m e n t a l . - Hydroc:enated amorphous s i l i c o n a - S i : H f i l m s w e r e d e p o s i t e d o n c r v s t a l l i n e s i l i c o n s u b s t r a t e s h y a d i o d e - t y p e r e a c t i v e s p u t t e r i n a method.
The s n u t t e r i n g
amb.i.ent was a g a s m i x t u r e o f 9 3 rb Ne a n d 7 % H . The t o t a l g a s p r e s s u r e was c h o s e n
t o b e 0 . 2 5 P a . , s o t h a t a s u b s t a n t i a l amount o$ Ne a t o m s micrht b e i n c o r : > o r a t e d i n t h e
a - S i : H [ 3 ] . To e l u c i d a t e t h e i n f l u e n c e o f h y d r o g e n g a s on t h e i n c o r n o r a t i o n o' Ne
atoms, specimens w i t h o u t hydroaen were a l s o prepared.
Thc XPS s , e c t r a w e r e t a k e n w i t h a Vacuum G e n e r a t p f s ADES 400 s y s t e m .
The b a s e
p r e s s u r e o ? t h e a n a l y s e r chamber was l e s s t h a n 3 x 10Torr.
To m i n i m i z e t h c i n f l u e n c e o f n a t i v e o x i d e a t t h e s a m p l e s u r f a c e , t h e s a m p l e was e t c h e d w i t h a 5 P, HF s o l u t i o n f o r 1 5 s j u s t b e f o r c b e i n a s e t i n t h e vacuum chamber.
The r e s o l u t i o n o f t h e
a n a l v s i n g s - , s t e m was c h e c k e d w i t h t h e l i n e - w i d t h o f t h c XPS p e a k from t h e Au-4f
7/2
o f t h i s weak was 1.1 eV.
core level.
The f u l l - w i d t h a t half-maximum (t'WII:'.)
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19814172
JOURNAL DE PHYSIQUE
C4-788
- F i g u r e 1 shows XPS s p e c t r a i n t h e Ne KLL Auger t r a n s i t i o n e n e r a y r e g i o n
f o r amornhous s i l i c o n f i l m s .
I n t h i s f i g u r e , ( a ) i s f o r a-Si:II(Ne) w l t h hvdrogen and
( b ) f o r a - S i ( N e ) w i t h o u t hydroaen.
T h e i r v a r i a t i o n s due t o s u c c e s s i v c i n - s i t u h e a t
t r e a t m e n t a r c a l s o shown.
The XPS s p e c t r u m f o r t h e as-arown f i l m w i t h o u t h y d r o n e n h a s
t w o r w a k s , r>eak A a t 8 1 9 a n d p e a k C a t a b o u t 8 1 4 eV. The s p e c t r u m f o r t h e f i l m w i t h
h v d r n g e n c o n t a i n s a n o t h e r component B, which i s a t a b o u t 8 1 6 eV, i n a d d i t i o n t o t h e
two p e a k s .
The intensities o f A a n d B p e a k s d e c r e a s e w i t h t h e i n c r e a s e i n h e a t i n g
t e m ~ e r a t u r e . The nenk C a t 8 1 4 eV n e r s i s t s e v c n a f t e r h c a t i n g u p t n 7 0 0 ' ~ .
The d i f f e r i n q b e h a v i o u r f o r t h e t h r e e ~ e a k st h a t r e s r l l t s from h e a t t . r e a t m e n t s u g a c s t s t h a t
t h e t h r e e p e a k s art= a t t r i b u t a b l e t o t h e N e a t o m s i n t h r c c d i f f e r e n t k i n d s of s i t e s .
I n o a r t i c u l a r , p e a k B, w h i c h i s s e e n o n l y f o r s ~ e c i m c n sw i t h h y d r o g e n , i s t h o u q h t t o
come f r o n h y d r o a e n - a s s o c i a t e d s i t e s .
R esults.
-
I
840
830
L
I
820
810
KINETIC ENERGY (eV)
1
800
l - l - L l A
840
830
820
810
800
KINETIC ENERGY (eV)
(a)
(b)
V a r i a t i o n o f XPS s p e c t r a i n Ne KLJ. Augcr t r a n s i t i o n
e n e r g y r e g i o n due t o s u c c e s s i v e h e a t t r e a t m e n t o f ( a )
a - S i :H(Ne) w i t h h y d r o g e n a n d ( b ) a - S i (:Je) w i t h o u t hydrogen.
Broken l i n e s i n ( a ) d e n o t e c o r r e s p o n d i n g p e a k p o s i t i o n i n (b).
Fig.1 :
-
XPS s p e c t r a i n t h e N e - l s , - 2 s a n d -2p b i n d i n q e n e r g y r e g i o n s , o n t h e c o n t r a r y ,
h a d s i n g l e p e a k s whose e n e r g y p o s i t i o n s w e r e i d e n t i c a l f o r b o t h s p e c i m e n s w i t h a n d
without hydrogen, w i t h i n t h e accuracy o f t h e p r e s e n t experiment.
The s h a p e s 02 t h e s e
peaks d i d n o t change a p p r e c i a b l y with t h e h e a t treatment.
I t i s i n t e r e s t i n g t h a t t h e i n f l u e n c e o f c n v i r o n m c n t o n t h e imbedded r a r e g a s
a t o m s is s e e n o n l y i n t h e Auger s p e c t r a w h e r e two f i n a l h o l c s a r e i n v o l v e d a s t h c
f i n a l s t a t e s o f Auger t r a n s i t i o n .
I t is h a r d l y s e e n i n t h e s i m p l e c o r e l e v e l p h o t o emission spectra.
To s u p p l e m e n t t h e s e s p e c t r o s c o p i c m e a s u r e m e n t s , a t h e r m a l e v o l u t i o n e x ~ c r i m e n t
was a l s o p e r f o r m e d [ 4 1 .
I n F i g . 2 , t h e number o f Nc ( s o l i d l i n e ) a n d h y d r o q e n ( b r o k e n
l i n e ) a t o m s e v o l v e d f r o m t h e u n i t volume o f a s a m p l e a r e p l o t t e d a s f u n c t i o n s o f h e a t
treatment tempcrature.
Two p e a k s a r c s e e n f o r Ne effusion, o n e a r o u n d 4 0 0 ° c a n d t h e
o t h e r a t a r o u n d 8 0 0 " ~ . The l o w e r t e m p e r a t u r e e v o l u t i o n p e a k c o r r e s p o n d s t o t h e e v o l u t i o n o f hydrogen, and t h e h i g h c r temperature peak corresponds t o t h e c r y s t a l l i z a t i o n
o f amorphous s i l i c o n .
F o r samples w i t h o u t hydrogen, o n l y t h e h i g h e r t e m p c r a t u r e peak
I t i s n o t i c e a b l e t h a t t h e peak B i n Fig.1 d i s a p p e a r s w i t h t h e h e a t
was o b s e r v e d .
t r e a t m e n t above t h i s hydrogen e v o l u t i o n t e m p e r a t u r e , which s u g g e s t s t h a t t h e peak B
i s r e l a t e d w i t h t h e i n c o r p o r a t i o n o f hydrogen.
f 1
'
\+
1 8 eV
!
45.v
1
K I N E T I C ENERGY
VACUUM LEVEL
,
I
PHOTON ENERGY
hv
F i g . 2 : Number o f Ne and
atoms e v o l v e d from
H
a-Si:H(Ne) f i l m by
successive heat t r e a t ments
.
?p
L2,3
P P L I
-,
K I N E T I C ENERGY
T-
B I N D I N G ENERGY
F i g . 3 : Schematic i l l u s t r a t i o n of
-
( a ) p h o t o e m i s s i o n a n d ( b ) Auger
t r a n s i t i o n p r o c e s s e s i n a Ne
atom imbedded i n a-Si:H.
-
Discussion.
I n a n Auger t r a n s i t i o n i l l u s t r a t e d i n F i g . 3 , where a n i n i t i a l h o l e i n
shell,
t h e K - s h e l l d e c a y s by a n n i h i l a t i o n w i t h a l e s s e r bound e l e c t r o n s from t h e L2
s h e l l i s s i m u l t a n e o u s l y e j e c t e d i n t o t h e Gacuum,
a n d a n o t h e r e l e c t r o n from t h e L
2,3
t h e Augcr e n e r g y i s g i v e n by
, observed i n t h e photoemission
L2
p r o c e s s e s [8-101.
Hcre, EHH i s t h e t o t a l i n t e r a ~ g i o nenergy o f t h e L
L
double
2.3 2 , 3
is t h e a d d i t i o n a l p o l a r i z a hole s t a t e i n a particular multiplet configuration, E
u s i n g o n e e l e c t r o n b i n d i n g e n e r g i e s , Els
and E
POI,
t i o n e n e r g y o f t h e l a t t i c e t h a t i s due t o t h e p r e s e n c e o f t h e two f i n a l h o l e s , and
W i s t h e work f u n c t i o n o f t h e f i l m .
Energy s e p a r a t i o n between p e a k s A and C i n F i g . 1 is c l o s e t o e n e r g y s p l i t t i n g
3.7 cV between m u l t i p l e t s t r u c t u r e s due t o t h e i n t c r a c t i o n o f two f i n a l h o l e s i n a
However, t h i s a s s i g n m e n t
s i n g l e Ne atom, which was o b s e r v e d f o r g a s e o u s Ne [5-71.
c a n be e x c l u d e d b e c a u s e t h e i n t e n s i t y r a t i o o f t h e two p e a k s c h a n g e s w i t h h e a t t r e a t ment. Moreover, t h e r a t i o of peak i n t e n s i t i e s f o r m u l t i p l e t i n g a s e o u s Ne is much
l a r g e r t h a n t h o s e s e e n i n F i g . 1 [5,61. I t is, t h e r e f o r e , p r o b a b l e t h a t t h c t h r e e
p e a k s a r e a t t r i b u t a b l e t o t h r e e d i f f e r e n t k i n d s of Ne s i t e s i n amorphous s i l i c o n .
I n t h e Auger e n e r g y g i v e n by E q . ( l ) , t h e t e r m which p r o v i d e s a different c o n t z i b u t i o n , depending o n t h e d i f f e r i n g c h e m i c a l environment, i s t h e 2 o l a r i z a t i o n e n c r g y
o f t h e l a t t i c e , EpOL.
A c t u a l l y , t h e p o l a r i z a t i o n e n e r s y , E POL, o f s e v e r a l e l e c t r o n
On t h e
v o l t s depending upon t h e d i f f e r i n g c h e m i c a l environment was r e p o r t e c [8-101.
o t h e r hand t h e c h e m i c a l s h i f t of o n l y a f r a c t i o n o f one e l e c t r o n v o l t was s e e n i n
These amount become s m a l l e r a s t h e h o s t
o n e e l e c t r o n p h o t o e m i s s i o n s p e c t r a [8,91.
environment becomes l e s s p l a r i z a b l e .
Thus, t h e e n e r g y s h i f t due t o p o l a r i z a t i o n i s o f t h e same o r d e r a s t h e energy
I t would n o t be t o o nuch t o assume
s e p a r a t i o n s among t h e o b s e r v e d A , B and C p e a k s .
t h a t t h e o b s e r v e d t h r e e p e a k s a r e c a u s e d by d i f f e r e n t c o n t r i b u t i o n s o f =he term E
POL
o f t h e Ne a t o m s , imbedded i n d i f f e r e n t c h e m i c a l s i t e s . A s l i k e l y c a n d i d a t e s , o n e may
e a s i l y t h i n k o f t h e t h r e e k i n d s o f Ne s i t e s i l l u s t r a t e d i n F i g . 4 .
There, t h e A peak
i s a s s i g n e d t o t h e Ne a t o m s c l o s c l y s u r r o u n d c d by Sj. a t o m s w h e r e t h e p o l a r i z a t i o n
e n e r g y is t h e l a r g e s t , t h e p e a k C t o t h e N e a t o m s i n t h e m i c r o v o j . d s w h e r e n o p o l a r i z a t i o n e n e r g y i s c x y e c t e d , a n d t h e p e a k B t o t h e Ne a t o m s a d j a c e n t t o t h e i n c o r p o r a t e d
h y d r o g e n a t o m s w h e r e t h e p o l a r i z a t i o n e n e r g y is i n t e r m e d i a t e b e c a u s e t h e p o l a r i z a b i l i t y o f t h e h y d r o g e n a t o m is s m a l l e r t h a n t h a t f o r t h e S i a t o m , a n d is l a r y c r t h a n
t h a t f o r t h e vacuum.
T h i s a s s i g n e m e n t is s u p p o r t e d b y t h e f a c t t h a t t h e A a n d C p e a k s a r e o b s e r v e d
i n t h e b o t h specimens w i t h and w i t h o u t hydrogen a n d t h a t t h e B peak i s o b s e r v e d o n l y
i n t h e specimens with hydrogen.
Fig.4
: S c h e m a t i c i l l u s t r a t i o n o f t h e s i t e s o f inbedded Nc a t o m ,
( a ) Ne atom c l o s e l y s u r r o u n d e d b y Si a t o m s
( b ) N e atom a d j a c e n t t o i n c o r p o r a t e d h y d r o g e n a t o m s
( c ) NC a t o m s i n m i c r o v o i d s .
C o n c l u s i o n . - The c h e m i c a l sites o f N e a t o m s i n c o r p o r a t e d i n h y d r o g e n a t e d amorphous
s i l i c o n h a s b e e n e x a m i n e d u s i n g XPS s p e c t r a i n t h e Ne KLL Auger e n e r g y r e g i o n .
Acknowledgement. - The a u t h o r s arc g r c a t f u l t o D r s . Yoshimasa Murayama, Y a s u h i r o
S h i r a k i , a n d K e i s u k e L. I . K o b a y a s h i f o r e n l i g h t e n i n g d i s c u s s i o n .
References
Tanaka K . , Yamasaki S . , Nakagawa K . , Matsuda A., O k u s h i H . , Matsumura M . , a n d
I i j i m a S . , J. Non-Cryst. S o l i d s 2 &
( 1 9 8 0 ) 475.
I m u r a S . , U s h i t a K . , a n d H i r a k i A . , J p n . J . Appl. Phys. 12 ( 1 9 8 0 ) ~ 6 5 .
U s a n i K . , Katayama Y . , a n d S h i n a d a T., J p n . J . Appl. P h y s . 19 (19GO) 2065.
Shimada T., Katayama Y . , a n d K o m a t s u b a r a K. F . , J. Api)l. P h y s . 50 ( 1 9 7 9 ) 5530.
S i e g b a h n K., N o r d l i n g C . , J o h a n s s o n G . , H e l d n a n J . , Heden P. F . , Harmin K . ,
G e l i u s U . , Bergmark T . , Herme L. O., Manne R . , a n d B a e r Y . , ESCA A p p l i e d
F r e e M o l e c u l e s ( N o r t h - ~ o l l a n d P u b l i s h i n g Co., Amsterdar.1-London 1 3 6 9 ) p . 1 5 6 .
Mathews D. L., J o h n s o n B. M . , Mackey J. J . , S m i t h L. E., Hodge W . , a n d F r e d
( 1 9 7 4 ) 1177.
Moore C . , Phys. Rev.
( 1 9 7 3 ) 1520.
S h i r l e y D. A . , P h y s . Rev. 5
Wagner C. D., a n d B i l o e n P . , S u r f a c e S c i e n c e 35 ( 1 9 7 3 ) 02.
Kowalczyk S. P . , Ley L., McFeely F. R . , P o l l a k R. A . , a n d S h i r l e y D. A . ,
P h y s . Rev. B 9 ( 1 9 7 4 ) 381.
C i t r i n P. H., J . E l e c t r o n S p e c t r o s c o p y & R e l a t e d Phenomena 2 ( 1 3 7 4 ) 273.
36
A s