Lecture Notes

2.8 Implicit Differentiation
Let y fŸx . Then
U
dy
f Ÿx . How can we compute
dx
d ¡hŸy ¢ ?
dx
Why do we need it?
Example Find the equation of the tangent line to the circle x 2 y 2 4 at the point where x 1.
Example Find the equation of the tangent line to the curve x 3 y 3 2xy at the point Ÿ1, 1 .
Observe that
d
dx
hŸy d
dx
hŸfŸx U
U
U
h ŸfŸx f Ÿx h Ÿy dy
dx
Example Suppose that y is a function of x, that is, implicitly y fŸx for some function f. Compute the
following derivatives.
d ¡y¢, d ¡y 2 ¢, d ¡ y ¢, d ¡e xy ¢, d ¡lnŸy 2 x 2 ¢, d ¡yx¢, d ¡x 2 y 3 ¢, d ¡cos 2 Ÿxy ¢
dx
dx
dx
dx
dx
dx
dx
dx
d ¡y¢ dy
dx
dx
d ¡y 2 ¢ 2y dy
dx
dx
d ¡ y ¢ 1 dy
2 y dx
dx
d ¡e xy ¢ e xy Ÿ1 dy dx
dx
dy
dy
1
d ¡lnŸy 2 x 2 ¢ 2y
2x 2 2 2 y
x
2
2
dx
dx
dx
y x
y x
d ¡yx¢ dy Ÿx yŸ1 y x dy
dx
dx
dx
dy
dy
d ¡x 2 y 3 ¢ 2xy 3 x 2 Ÿ3 y 2
2xy 3 3x 2 y 2
dx
dx
dx
dy
dy
d ¡cos 2 Ÿxy ¢ 2 cosŸxy " sinŸxy Ÿ1 y x
" sinŸ2xy y x
dx
dx
dx
dy
Using Implicit Differentiation:
dx
dy
Given an equation in x and y: FŸx, y GŸx, y , the steps for finding
are:
dx
a. Differentiating both sides of the equation with respect to x with considering y fŸx implicitly.
d FŸx, y d GŸx, y dx
dx
dy
in terms of x and y.
b. Solve
dx
Steps for Computing
dy
where x 3 y 3 2xy. Find the equation of the tangent line to the curve x 3 y 3 2xy
dx
at the point Ÿ1, 1 .
Example Find
1
a.
d ¡x 3 y 3 ¢ d ¡2xy¢ ® 3x 2 3y 2 dy 2¡Ÿ1 y x dy ¢ 2y 2x dy
dx
dx
dx
dx
dx
b. Solve for
dy
.
dx
3y 2
2y " 3x 2
dy
dy
dy
dy
" 2x
2y " 3x 2 ® Ÿ3y 2 " 2x Ÿ2y " 3x 2 ®
dx
dx
dx
dx
3y 2 " 2x
c. Let x 1 and y 1. m 2Ÿ1 " 3Ÿ1 2
"1 "1
2
1
3Ÿ1 " 2Ÿ1 y " 1 Ÿ"1 Ÿx " 1 , y "x 2
2
y1
-2
-1
1x
2
-1
-2
Example Find
dy
where y 5 3x 2 y 2 5x 4 12.
dx
a.
d ¡y 5 3x 2 y 2 5x 4 ¢ d ¡12¢ ® 5y 4 dy 3¡2xy 2 x 2 Ÿ2y dy ¢ 20x 3 0
dx
dx
dx
dx
b. Solve for
dy
.
dx
5y 4
dy
dy
dy
6x 2 y
"6xy 2 " 20x 3 ® yŸ5y 4 6x 2 "2xŸ3y 2 10x 2 dx
dx
dx
"2xŸ3y 2 10x 2 dy
dx
yŸ5y 4 6x 2 Example Find the equation of the line tangent to the curve
2
x2 y 1
9
36
at the point Ÿ"1, 4 2 .
The equation of the tangent line at the given point is:
dy
at Ÿ"1, 4 2 .
y " 4 2 1 mŸx 1 where m dx
2
a.
2
2
d ¡ x 2 y ¢ d ¡1¢ ® 2x 2y dy 0 ® 2x y dy 0
36 dx
18 dx
36
9
9
dx
dx 9
dy
.
b. Solve for
dx
y dy
dy
" 2x ®
" 2x 18
" 4x
y
18 dx
9
9 y
dx
c.
4Ÿ"1 1
m " 4x
y at Ÿ"1, 4 2 ® m " 4 2 2
The equation of the tangent line is:
y"4 2 1 Ÿx 1 .
2
Example Find the locations of all horizontal and vertical tangents of the curve: x 2 y 3 " 3y 4.
a. d ¡x 2 y 3 " 3y¢ d ¡4¢
dx
dx
dy
dy
2x 3y 2
"3
0
dx
dx
b.
dy
dy
2x
"2x,
Ÿ3y 2 " 3 dx
dx
3Ÿ1 " y 2 c. Horizontal tangents: m 0
2x
0
3Ÿ1 " y 2 «
2x 0, x 0.
When x 0,
y 3 " 3y 4,
solve it by a calculator: y 2. 195 823 345
The location of the horizontal tangent line is 0, 2. 20
TI-89: F2/1 - solve(
solve(y^3-3y-40,y)
4. Vertical tangents: m . :
2x
.
3Ÿ1 " y 2 « 3Ÿ1 " y 2 0, y 2 1,
y1
y "1
When y 1,
x 2 1 " 3 4, x 2 6, x o 6
When y "1,
x 2 " 1 3 4, x 2 2, x o 2
Locations of vertical tangent lines are
6 ,1 , " 6 ,1 ,
2 , "1 ,
" 2 , "1 .
Example If x 2 6xy y 2 8, find y UU .
a.
d ¡x 2 6xy y 2 ¢ d ¡8¢ ® 2x 6¡y x dy ¢ 2y dy 0
dx
dx
dx
dx
b. Solve for
3
dy
.
dx
dy
dy
dy
dy
x 3y
2y
"2x " 6y ® 2Ÿ3x y "2Ÿx 3y ®
"
3x y
dx
dx
dx
dx
dy
dy
d2y
.
c. Compute
d ¡ ¢ using the Quotient Rule and
dx dx
dx
dx 2
dy
dy
Ÿ1 3 Ÿ3x y " Ÿx 3y Ÿ3 x 3y
d2y
dx
dx
d
¡"
¢
"
dx 3x y
dx 2
Ÿ3x y 2
dy
dy
Ÿ3x y 3Ÿ3x y " 3Ÿx 3y " Ÿx 3y dx
dx
"
Ÿ3x y 2
dy
Ÿ9x 3y " x " 3y " 3x " 9y 3x y
dx
"
Ÿ3x y 2
x 3y
dy
8Ÿx "
" y 8x
" 8y
3x y
dx
"
"
Ÿ3x y 2
Ÿ3x y 2
8¡xŸ3x y " Ÿx 3y " yŸ3x y ¢
Ÿ3x y 3
8¡3x 2 xy " x " 3y " 3xy y 2 ¢
8¡3x 2 " x " 3y " 2xy y 2 ¢
Ÿ3x y 3
Ÿ3x y 3
6x
4