Ultra-sensitive Detection of Molecular Oxygen using Cavity

DFG
Universität Konstanz
Humbolt-Universität Berlin
O. Vogelsang, S. Orlov
J. Mlynek, A. Peters
D. Weise
Optik-Zentrum Konstanz
Ultra-sensitive Detection of Molecular Oxygen using
Cavity-enhanced Absorption Spectroscopy
(NICE-OHMS)
European Cold Molecule Network Meeting
December 13th, 2002
ƒ NICE-OHMS
(Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy)
ƒ First results
y Cavity-enhanced absorption spectroscopy
y Detection schemes
y The electronic structure of O2
y Why molecular oxygen?
Outline
9 (?)
2 µB
9
9
2 µB
none
yes
9 (?)
Buffer-gas cooling [2]
Evaporative cooling [3]
Magnetic moment [1]
Electric dipole moment [1]
Hyperfine structure
A. Boca et al., J. Chem. Phys. 112(8), 2000
J.L. Bohn, PR A 62(032701), 2000
A.V. Avdeenkov et al. PR A 64(052703), 2001
[1]
[2]
[3]
no
≈ 10-4 D
9 (?)
9
9
Low field seeking ground state [1]
16O18O
0
0.205 %
18O
5/2
0.038 %
17O
17O
2
0
99.747 %
16O
16O
2
ISOTOPOMERS
Nuclear spin
Natural abundance
ISOTOPES
Properties of the oxygen isotopomers
/ Need for precision spectroscopy
ƒ Electric dipole-dipole interactions with 16O18O
ƒ Internal rotational and vibrational degrees of freedom
y Molecular BEC
y Ultracold Chemistry
ƒ Test of the Symmetrization Postulate with buffer-gas cooled 16O2
ƒ Measurement of precise absorption cross sections (e.g. for astronomy)
ƒ Study of molecular structure
ƒ Verification of theoretical intermolecular PESs
ƒ One of the simplest paramagnetic diatomic species
y Test of fundamental questions in Physics
Prospects of ultracold oxygen samples
y Doppler-free spectroscopy (?)
y CW Spectroscopy for continuous monitoring
ƒ Windows limit possible wavelength range
ƒ Limited optical access
ƒ Low laser powers (mW)
y Compatible with cryogenic setup
ƒ Expected initial density in the trap: 1012 molecules/cm3
ƒ 100x increased sensitivity @ 200 mK
(reduced Doppler-width, increased occupation of initial state)
y Detection limit of < 1010 molecules / cm3 @ 300 K
y Scheme should be very general
Requirements for oxygen detection
-
+
u
3
-
X Σg
3
AΣ
3
C ∆u
3
B Σu
1
c Σu
a1∆g
IR Atmospheric System (924 - 1580 nm)
-1
A ≈ 0.00021 s
Atmospheric System (538 - 997 nm)
-1
A ≈ 0.089 s (A-Band)
1
+
-
b Σg
Herzberg System III (257 - 263 nm)
-1
A ≈ 0.00001 s ?
Herzberg System II (254 - 272 nm)
-1
A ≈ 0.0001 s ?
Herzberg System I (243 - 279 nm)
-1
A ≈ 0.001 - 1 s ?
Schumann-Runge Ba nds (175 - 468 nm)
7 -1
A ≈ 2 ⋅10 s
The electronic structure of molecular oxygen
O2
O-O
+
O2
Σ+ ↔ Σ + , Σ- ↔ Σ -
g↔u
∆Λ = 0, ±1
∆S = 0
Selection Rules
A ≈ 3.8 ⋅107 s-1
Rubidium D2 Line
3
-
X Σg
+
u
-
AΣ
C3∆u
3
3
B Σu
/ Use of Vacuum UV lasers and optics is too challenging
y Laser induced fluorescence (LIF)
between 175 and 177 nm
ƒ Strongly decreasing absorption coefficient
y Absorption measurements above 175 nm
ƒ Highest absorption coefficient
ƒ Continuum / no laser needed
y High sensitivity absorption measurements
below 175 nm
Detection in the Schumann-Runge System
O2
O-O
+
O2
/ Detection via B3Σu- state is too involving
ƒ Moving O2+ is influenced by the magnetic field
ƒ Maximum electric field for O2+ detection is limited by
the buffer-gas
ƒ Ionization potential: 97265 cm-1 (103 nm)
y Photoionization from the ground state
ƒ One-photon dissociation @ 204 nm
from the excited b1Σg+ state
y Two-step Photodissociation
(Eppink et al., 1998)
ƒ Detection of the fragments e.g. through Two Photon
Allowed Laser Induced Fluorescence @ 226 nm or
Photoionization @ 204 nm
ƒ Dissociation energy: 41260 cm-1 (242 nm)
y Photodissociation of O2 around 175 nm
Photodissociation and Photoionization
3
-
X Σg
+
u
AΣ
C3∆u
3
B3Σu-
O2
O-O
O2+
759
760
R branch
761
762
ƒ Rubidium D2 line: 6⋅105 cm-1
ƒ αmax ≈ 7⋅10-6 cm-1 @ 296 K, 1 mbar
764
Wavelength [nm]
763
Q branch forbidden (Σ→Σ)
y Extremely low absorption coefficients
0E+ 00
1E-18
2E-18
3E-18
4E-18
Detection in the Atmospheric A-Band
Integrated Cross Section
[MHz/molecule cm -2 ]
765
766
P branch
4 K (calculated)
70 K (calculated)
767
296 K (HITRAN Database)
768
-
b1Σg+
1
a ∆g
/ Not sensitive enough
ƒ Expected detection limit using pulsed lasers: 1010 molecules / cm3
ƒ Anti-Stokes signal is a directed laser beam
ƒ Result of the third order nonlinear susceptibility χ(3)
y Coherent Anti-Stokes Raman Spectroscopy
ƒ Reduced efficiency through limited solid angle and possible quenching of the b1Σg+ state
ƒ Favorable branching to singlet-state (≈ 1/60)
y Fluorescence spectroscopy
y Direct absorption spectroscopy not feasible
3
X Σg
Atmospheric A-Band Detection Schemes
transmitted
signal
PZT
vacuum chamber
ƒ λ = 760.8854 nm
ƒ Length 15 cm → ∆ν = 625 kHz
ƒ Cavity Finesse 1600
power monitor
& wavemeter
y Preliminary experiment @ room temperature
Iso lator
Frequency
Lock
y Increased absorption length through the use of a resonator
Cavity-Enhanced Absorption Spectroscopy
nm
76 0
er
e La s
Dio d
4
Freq u en cy 3 9 4,0 0
0
3
+ x GH z
5
6
7
8
Pin ≈ 3 mW
y Detection limit: 1 mbar @ 296 K (2⋅1016 oxygen molecules / cm3)
2
0
1
2
3
4
5
6
-6
1
1e-6 mba r
5.1 mba r
10 mba r
20 mba r
31 mba r
43 mba r
57 mba r
67 mba r
89 mba r
130 mba r
Results
Transmission [10 ]
Improve by 6 orders of magnitude
Shot-noise limited
Optimized
Precision Scanning
• Detection limit
• Signal to noise ratio
• Cavity transmission
• Frequency measurement
→ Frequency Reference
→ Good mirrors
→ FM technique
→ Ultra-high-finesse cavity
ƒ Only pulsed operation
/ Alternative: Cavity ringdown spectroscopy
ƒ Demonstrated for the Oxygen A-Band by L. Gianfrani et al. (1999)
ƒ Integrated absorption sensitivity 10-14 cm-1
ƒ Developed for molecular overtone spectroscopy / molecular frequency standards
ƒ Combination of Cavity-Enhanced and FM Spectroscopy
ƒ J. Ye, J.L. Hall, 1997 (JILA)
/ Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy
9
• Test of principle
Necessary Improvements
νFM
νFM = FSR
FSR
y Sidebands serve as intensity reference
NICE-OHMS Principle
NICE-OHMS
Normal FM
Cavity Modes
Frequency Scan
Ti:Saph
AOM
Frequency Stabilization
EOM1
λ/4
FSR
Tracking
EOM2
NICE-OHMS Experimental Setup
Frequency
Lock
νFSR = 1.734 GHz
PZT
NICE-OHMS Signal
y INVAR Spacer with maximum side access
y Coatings optimized for transmission
y R = 1 m → w0 ≈ 220 µm
y Length 8.65 cm → FSR = 1.734 GHz, ∆ν < 17 kHz
y Specified Finesse >100,000 for 760 – 790 nm
NICE-OHMS Resonator
y Broadband AR coating (400 – 800 nm)
y Indium-sealed windows
y Heated capillary for O2 injection
NICE-OHMS Experimental Cell
ƒ Optimal thermal anchoring
ƒ Use of a Piezo in a buffer-gas
environment
ƒ Thermalization of hot O2 with a cold
Helium buffer-gas ?
ƒ Capillary Injection
y Test setup for the implementation in
dilution fridge
ƒ Doppler-free spectroscopy ?
ƒ Increased sensitivity
ƒ First experimental data for “cold” O2
y Spectroscopy of molecular oxygen
between 300 and 4 K
NICE-OHMS on buffer-gas cooled molecular oxygen
ƒ Compatible with cryogenic environment
ƒ Only 1 laser needed
ƒ Low light intensities possible
ƒ Widely applicable
ƒ Extremely sensitive
y NICE-OHMS in the Atmospheric A-Band
ƒ Not suitable in a cryogenic environment
ƒ Feasible, but VUV wavelengths
y Absorption spectroscopy in the Schumann-Runge bands
ƒ Problem: Detection
y Oxygen is an interesting candidate for magnetic trapping
Summary
ƒ J. Mlynek, A. Peters
ƒ O. Vogelsang, S. Orlov
y The Cryogenic Magnetic Trap Team
ƒ For providing the diode laser for the preliminary experiment
y Schiller Group (Düsseldorf)
y Doyle Group (Harvard)
ƒ Kurt-Alten-Stiftung, Hannover
ƒ Optik-Zentrum Konstanz
ƒ DFG
y Financial Support
Acknowledgements