Algebra 1: Review Lesson 6.3 Name______________________________________________________ Solve the inequality, if possible. 1. 5π₯ β 12 β€ 3π₯ β 4 2. 5(π + 5) < 5π + 17 3. 1 β 8π β€ β4(2π β 1) 4. 3π β 5 > 2π + π β 7 5. 5π β 8π β 4 β₯ β4 + 3π 6. 6(π₯ + 3) < 5π₯ + 18 + π₯ Algebra 1: Review Lesson 6.4 Name______________________________________________________ Solve the inequality. 1. β7 < π₯ β 5 < 4 2. 3β + 1 < β5 ππ 2β β 5 > 7 3. 10 < 2π¦ + 4 β€ 24 4. β7 < βπ§ β 1 < 3 5. β1 β€ β5π‘ + 2 < 4 6. 4π + 1 β€ β3 ππ 5π β 3 > 17 Algebra 1: Review Lesson 6.5 Name______________________________________________________ Solve the equation, if possible. 2. |π β 7| = 9 2. 2|π | + 4.1 = 18.9 3. 4|π‘ + 9| β 5 = 19 4. 2|π β 5| + 4 = 2 5. β3|π + 2| β 7 = β10 6. The absolute deviation of π₯ from 7.6 is 5.2. What are the values of π₯ that satisfy this requirement? Algebra 1: Review Lesson 6.6 Name______________________________________________________ Solve the inequality. 2. |π₯ + 3| > 8 1 4. 5 |2 π + 3| > 5 2. |2π€ β 1| < 11 3. 3|5π β 6| β 8 β€ 13 5. |9 β 4π| β€ 5 6. 2 |β5 + 4 π£| β 4 > 3 1 Algebra 1: Review Lesson 6.7 Name______________________________________________________ Graph the inequality. 1. π₯ + 3π¦ > β3 2. π¦ β€ β3 3. 5π₯ β π¦ > 1
© Copyright 2026 Paperzz