Algebra 1: Review Lesson 6.3

Algebra 1: Review Lesson 6.3
Name______________________________________________________
Solve the inequality, if possible.
1. 5π‘₯ βˆ’ 12 ≀ 3π‘₯ βˆ’ 4
2. 5(π‘š + 5) < 5π‘š + 17
3. 1 βˆ’ 8𝑠 ≀ βˆ’4(2𝑠 βˆ’ 1)
4. 3𝑝 βˆ’ 5 > 2𝑝 + 𝑝 βˆ’ 7
5. 5𝑑 βˆ’ 8𝑑 βˆ’ 4 β‰₯ βˆ’4 + 3𝑑
6. 6(π‘₯ + 3) < 5π‘₯ + 18 + π‘₯
Algebra 1: Review Lesson 6.4
Name______________________________________________________
Solve the inequality.
1. βˆ’7 < π‘₯ βˆ’ 5 < 4
2. 3β„Ž + 1 < βˆ’5 π‘œπ‘Ÿ 2β„Ž βˆ’ 5 > 7
3. 10 < 2𝑦 + 4 ≀ 24
4. βˆ’7 < βˆ’π‘§ βˆ’ 1 < 3
5. βˆ’1 ≀ βˆ’5𝑑 + 2 < 4
6. 4𝑐 + 1 ≀ βˆ’3 π‘œπ‘Ÿ 5𝑐 βˆ’ 3 > 17
Algebra 1: Review Lesson 6.5
Name______________________________________________________
Solve the equation, if possible.
2. |π‘Ÿ βˆ’ 7| = 9
2. 2|𝑠| + 4.1 = 18.9
3. 4|𝑑 + 9| βˆ’ 5 = 19
4. 2|π‘š βˆ’ 5| + 4 = 2
5. βˆ’3|𝑛 + 2| βˆ’ 7 = βˆ’10
6. The absolute deviation of π‘₯ from 7.6
is 5.2. What are the values of π‘₯ that
satisfy this requirement?
Algebra 1: Review Lesson 6.6
Name______________________________________________________
Solve the inequality.
2. |π‘₯ + 3| > 8
1
4. 5 |2 π‘Ÿ + 3| > 5
2. |2𝑀 βˆ’ 1| < 11
3. 3|5π‘š βˆ’ 6| βˆ’ 8 ≀ 13
5. |9 βˆ’ 4𝑛| ≀ 5
6. 2 |βˆ’5 + 4 𝑣| βˆ’ 4 > 3
1
Algebra 1: Review Lesson 6.7
Name______________________________________________________
Graph the inequality.
1.
π‘₯ + 3𝑦 > βˆ’3
2. 𝑦 ≀ βˆ’3
3. 5π‘₯ βˆ’ 𝑦 > 1