Mon. Not. R. Astron. Soc. 378, 617–624 (2007) doi:10.1111/j.1365-2966.2007.11804.x High-precision effective temperatures of 161 FGK supergiants from line-depth ratios V. V. Kovtyukh Odessa Astronomical Observatory, Shevchenko Park, 65014, Odessa, Ukraine Accepted 2007 March 26. Received 2007 March 17; in original form 2006 August 24 ABSTRACT Precise effective temperatures (T eff ) are determined for 161 FGK supergiants using method of line-depth ratios. We obtain a set of 131 relations for temperatures of supergiants as a function of line depths. These relations have been calibrated against previously published accurate temperature estimates. The application range of the method is 3600–7800 K (F0I–K5I). The internal error of a single calibration is less than 110 K, while combination of all calibrations reduces uncertainty to only 5–30 K (standard error). The error in the zero-point is estimated to be less than 100–200 K. A significant advantage of the line ratio method is its independence of the interstellar reddening, and only modest sensitivity to abundance, macroturbulence, rotation and other factors. Key words: star: fundamental parameters – supergiants – Cepheids. 1 INTRODUCTION Spectral lines of high- and low-excitation potentials respond differently to the changes in T eff . Therefore, the ratio of their depths (or equivalent widths) is a very sensitive temperature indicator. Gray & Johanson (1991) demonstrated that the ratio of the central depth of V I λ 6251.83 Å to that of Fe I λ 6252.57 Å is correlated very strongly with B − V and T eff in main-sequence (MS) F7–K7 stars. Their work was developed by Gray (1994) to include more line pairs. As a next step we derived 105 calibrations for MS stars, with temperatures 4000–6150 K (Kovtyukh et al. 2003). In Kovtyukh, Soubiran & Belik (2004), the discovery of a narrow gap (just 50 K wide, between 5560 and 5610 K) in the distribution of effective temperatures for 248 MS stars served a nice confirmation of the precision of the method. This gap is attributed to the jump in the penetration depth of convective zone. The line ratio method has also been used for giant stars. Most recently, Strassmeier & Schordan (2000) applied 12 calibrations for 224 giants with T eff in the range 3200–7500 K, using R = 38 000, λ 6380–6460 Å spectra; Gray & Brown (2001) derived temperatures for 92 giants using five calibrations with a typical 25 K error for R = 100 000, 70 Å wide reticon spectra centred at 6250 Å. Using 100 calibrations, Kovtyukh et al. (2006) derived precise temperatures for 215 giants with near-solar metallicity. The range of application of the method is 3500–5700 K (G0III–K4III). For the majority of giants, the internal accuracy of T eff is 5–20 K. In Kovtyukh, Gorlova & Klochkova (1998) and Kovtyukh & Gorlova (2000), 37 calibrations for T eff were derived from highdispersion spectra of supergiants with effective temperatures from 4500 to 7000 K. The original Kovtyukh & Gorlova (2000) calibra E-mail: [email protected] C C 2007 RAS 2007 The Author. Journal compilation tion relies on the excitation temperature analysis of Fry & Carney (1997) combined with the photometric results of Kiss & Szatmary (1998). Since then, we increased the number of calibrations to 55, which further improved the precision of the derived temperatures. We applied our calibrations to the sample of 192 Classical Cepheids (about 350 spectra) with a large range of galactocentric distances (Rg = 5–15 kpc) to determine very accurate metallicities. Even for the faintest objects (V of 14–15 mag), the uncertainty in T eff was not larger than 50–100 K, and only when the signal-to-noise ratio (S/N) was less than 40, it increased to 200–300 K (see Kovtyukh, Wallerstein, Andrievsky 2005b, and references therein). The method yielded consistent results as a function of phase for numerous Cepheids spanning periods from 3 to 47 d (Luck & Andrievsky 2004; Andrievsky, Luck & Kovtyukh 2005; Kovtyukh et al. 2005a). Furthermore, we discovered in the galactic disc, at longitude l ≈ 120◦ and a solar distance of about 3 kpc, a region of enhanced metallicity: [Fe/H] ≈ +0.2 with respect to the local region (Luck, Kovtyukh & Andrievsky 2006). Effective temperature obtained using this new technique currently presents one of the most precisely determined fundamental stellar parameter, with relative precision of the order of 0.1–0.2 per cent. In the present paper, we increase the number of temperature calibrations for supergiants to 131, and extend the application range to 3600–7800 K. 2 O B S E RVAT I O N S The spectra of the program stars were obtained using facilities of the 1.93-m telescope of the Haute-Provence Observatoire (France) equipped with echelle-spectrograph ELODIE (Soubiran, Katz & Cayrel 1998). The resolving power was R = 42 000, wavelengths range 4400–6800 Å and S/N > 100 (at 5500 Å). The initial 618 V. V. Kovtyukh processing of the spectra (image extraction, cosmic ray removal, flat-fielding, etc.) was carried out as described in Katz et al. (1998). In addition, we employed spectra obtained with UVES at the VLT unit Kueyen (Bagnulo et al. 2003). All supergiants were observed with two instrumental modes Dichroic 1 and Dichroic 2 in order to cover almost completely the wavelength interval from 3000 to 10 000 Å. The spectral resolution is about 80 000, and for most of the spectra, the typical S/N is 300–500 in the V band. Further processing of spectra (continuum level location, measurement of line depths and equivalent widths) was performed with the DECH20 software (Galazutdinov 1992). Line depths Rλ were measured by means of Gaussian fitting. The accuracy of line-depth determination was obtained by measuring lines in two or more spectra of the same star, when available. The standard error obtained (0.01– 0.02) reflects the typical error of Rλ and is dominated by uncertainty in continuum placement. The highest precision was achieved when Gaussian fit is restricted to the core of the line. The typical observed error in a single line-depth ratio r = Rλ1 /Rλ2 is 0.02–0.05. All sufficiently strong and very weak lines have been rejected automatically from further analysis (see the next section). Table 1. The calibration lines. For example, equivalent widths for HD 26630 (T eff = 5337 K, romanic type) and HD 45348 (T eff = 7557 K, italic type) are given; T eff1 − T eff2 is a working temperature range of calibrations. λ1 (Å) 5348.30 5348.30 5373.71 5410.91 5497.52 5501.46 5501.46 5501.46 5506.78 5506.78 5506.78 5578.72 5578.72 5670.86 5754.68 5754.68 5772.15 5772.15 5778.47 5793.08 5809.25 5809.25 5862.36 5862.36 5934.66 5934.66 5956.70 5987.05 6003.03 6003.03 6008.56 6021.79 6021.79 6039.73 6046.01 6046.01 6046.01 6046.01 6046.01 6046.01 6046.01 6046.01 6052.68 6052.68 6052.68 6052.68 6052.68 6052.68 6052.68 6052.68 6052.68 6052.68 6052.68 6052.68 6055.99 6055.99 6055.99 6055.99 6055.99 6062.89 6078.50 3 C O N S T R U C T I O N O F T H E T E M P E R AT U R E C A L I B R AT I O N S Based on our previous experience, we restricted line pool to the iron-peak elements (such as Si, Ti, V, Cr, Fe, Ni) because they show a negligible response to changes in surface gravity (log g) and chemical composition on a star-to-star basis. With few possible exceptions, supergiants in our sample have metallicity of −0.45 < [Fe/H] < +0.30, which is close to solar. Using synthetic spectra method, we find that within this range the effect of metallicity on the line ratios is negligible for majority of our calibrations. To start iteration process, initial temperature has to be assigned to each star. Recently, a number of studies have been published concerning temperature scale of supergiants (Luck & Bond 1989; Luck & Wepfer 1995; Bravo Alfaro, Arellano Ferro & Schuster 1997; Fry & Carney 1997; Yong et al. 2006). Using temperatures in these studies, we constructed the first set of Rλ1 /Rλ2 versus T eff calibrations. Each calibration was composed of lines with vastly different excitation energies of the lower level. We visually examined scattered plots for every ratio and retained only those ratios that showed a clear tight correlation with T eff . An analytic fit was performed for these selected ratios to produce the initial relations. By averaging temperatures calculated from these fits, we obtained a second T eff approximation for each star. The random scatter has been reduced by 50–100 K. Once we established temperature scale for non-variable supergiants (∼200 spectra), we applied it to derive temperatures for 350 spectra of Classical Cepheids (see Kovtyukh et al. 2005a, and references therein). Then we merged these two data sets to perform the final refinement of our calibrations. From the initial 600 calibrations, we selected 131 whose mean square deviation for each calibration (standard deviation σ ) was smaller than 110 K. Table 1 shows the final 131 line pairs, with wavelengths, elements, excitation energies of the lower level (in eV), equivalent widths of two stars (HD 26630 and HD 45348), for example, and working temperature range (T eff1 , T eff2 ). The average internal accuracy of a single calibration (1σ ) is 80– 100 K (ranging from 60 to 70 K for the best and 100 to 110 K for the worst cases). Figs 1 and 2 show our typical calibrations. In many cases, the dependence could not be fitted with a continuous polynomial, therefore we tried other analytical functions as well, for example: T eff = abr rc , ab1/r rc , ar b , abr and a + bln(r). Here, C El EPL EW (eV) (mÅ) Cr I Cr I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Ni I Ni I VI Ni I Ni I Si I Si I Fe I Si I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Mn I Mn I VI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI Fe I Fe I Fe I Fe I Fe I Fe I Fe I 1.00 1.00 4.47 4.47 1.01 0.96 0.96 0.96 0.99 0.99 0.99 1.68 1.68 1.08 1.93 1.93 5.08 5.08 2.59 4.93 3.88 3.88 4.55 4.55 3.93 3.93 0.86 4.80 3.88 3.88 3.88 3.08 3.08 1.06 7.86 7.86 7.86 7.86 7.86 7.86 7.86 7.86 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 4.73 4.73 4.73 4.73 4.73 2.18 4.80 23 23 18 70 69 38 38 38 48 48 48 105 105 35 158 17 100 100 42 78 85 85 137 137 18 18 126 131 144 26 149 138 138 30 43 43 43 43 43 43 27 27 40 40 40 40 40 30 30 30 30 30 30 30 118 118 118 118 118 59 126 λ2 (Å) 5554.89 5565.71 5501.46 5501.46 5554.89 5554.89 5565.71 5633.97 5554.89 5565.71 5633.97 5645.62 5805.23 5690.43 5772.15 5772.15 5778.46 5778.46 5793.07 5793.92 6046.01 6052.68 5866.45 5866.45 6046.01 6052.68 5983.69 6216.37 6052.68 6052.68 6046.01 6046.01 6052.68 6046.01 6086.29 6108.12 6165.37 6180.20 6240.66 6258.10 6176.81 6215.15 6108.12 6151.62 6180.20 6240.66 6258.10 6108.12 6122.23 6136.61 6162.18 6176.81 6215.15 6219.28 6062.89 6062.89 6082.72 6085.27 6085.27 6078.50 6082.72 El EPL EW T eff1 (eV) (mÅ) (K) T eff2 (K) Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Si I Ni I Si I Si I Si I Fe I Fe I Si I Fe I SI SI Ti I Ti I SI SI Fe I VI SI SI SI SI SI SI Ni I Ni I Fe I Fe I Fe I Ti I Ni I Fe I Ni I Fe I Fe I Fe I Ti I Ni I Ca I Fe I Ca I Ni I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I Fe I 4.55 4.61 0.96 0.96 4.55 4.55 4.61 4.99 4.55 4.61 4.99 4.93 4.17 4.93 5.08 5.08 2.59 2.59 4.93 4.22 7.86 7.87 1.07 1.07 7.86 7.87 4.55 0.28 7.87 7.87 7.86 7.86 7.87 7.86 4.27 1.68 4.14 2.73 2.22 1.44 4.09 4.19 1.68 2.18 2.73 2.22 1.44 1.68 1.89 2.45 1.90 4.09 4.19 2.20 2.18 2.18 2.22 2.76 2.76 4.80 2.22 7800 7800 7800 7800 7800 7800 7800 7800 7800 7800 7800 6300 6750 6400 7000 7800 5000 6500 6400 6900 6900 6900 5000 6700 7800 7800 6900 5650 7000 7800 7000 7000 7000 5400 6800 6700 6500 6700 6700 6700 7800 7800 6800 6800 6700 6750 6750 7800 7800 7800 7800 7800 7800 7800 6000 4850 6800 6750 4900 6100 6700 35 35 38 38 35 35 35 23 35 35 23 71 70 95 100 21 42 42 78 64 43 40 88 88 27 30 126 67 40 30 43 43 40 43 77 134 84 124 104 98 14 16 134 104 124 104 98 9 92 57 99 14 16 21 59 59 74 88 88 126 74 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 5400 5600 3700 5400 7000 3600 5000 3900 4600 5300 5450 3600 5000 7000 7000 3700 4300 5550 7000 5600 5700 5700 3700 4800 4800 4950 4950 4950 4750 7000 7000 5250 5000 5000 5050 5000 7000 7000 7000 7000 7000 7000 7000 5000 3700 5000 4900 3600 3700 5000 C 2007 RAS, MNRAS 378, 617–624 2007 The Author. Journal compilation High-precision effective temperatures of 161 FGK supergiants Table 1 – continued C El EPL EW (eV) (mÅ) Fe I Fe I Fe I Fe I Fe I Fe I VI VI VI Si I Co I Ni I Ni I Ni I Ni I Si I Si I Si I Ti I Ti I VI Si I Si I Si I Si I VI VI Fe I Si I Si I Fe I Ni I Fe I Fe I Fe I Si I Si I Si I Si I Si I Fe I Fe I Fe I VI VI VI VI Si I Si I Ni I Cr I Fe I Fe I Fe I Fe I Fe I Si I Fe I SI Fe I Fe I Fe I Fe I 4.80 4.80 4.80 2.76 2.76 2.76 1.08 1.08 1.08 5.87 1.74 1.68 1.68 1.68 1.68 5.61 5.61 5.61 1.07 1.07 1.05 5.61 5.61 5.61 5.61 0.30 0.30 2.18 5.62 5.62 4.80 4.09 2.73 2.61 2.20 5.61 5.61 5.61 5.61 5.61 2.22 2.22 2.22 0.30 0.30 0.30 0.30 5.61 5.61 1.68 0.94 2.85 2.85 0.86 0.86 2.28 5.87 0.96 8.05 2.56 2.56 2.76 1.49 126 126 126 88 88 88 66 66 66 11 22 135 135 135 135 58 58 17 58 58 23 64 64 64 18 50 50 104 121 121 128 113 124 145 21 94 94 94 94 94 4 104 104 70 70 70 70 90 90 95 61 161 161 162 162 50 74 103 24 131 131 73 49 λ2 (Å) El EPL EW (eV) (mÅ) T eff1 (K) T eff2 (K) λ1 (Å) 6082.72 6085.27 6085.27 6086.29 6091.92 6155.14 6091.92 6155.14 6330.86 6219.28 6093.66 6125.03 6145.02 6155.14 6237.32 6126.22 6151.62 6358.69 6155.14 6155.14 6142.49 6151.62 6180.20 6258.10 6151.62 6237.32 6380.75 6155.14 6180.20 6358.69 6180.20 6258.10 6237.32 6237.32 6414.99 6240.66 6240.66 6258.10 6258.71 6358.69 6414.99 6243.81 6244.48 6243.81 6243.81 6244.48 6244.48 6261.10 6358.69 6414.99 6414.99 6414.99 6419.98 6414.99 6419.98 6414.99 6498.95 6597.61 6609.12 6748.84 6757.17 6721.84 6721.84 Fe I Fe I Fe I Ni I Si I Si I Si I Si I Fe I Fe I Fe I Si I Si I Si I Si I Ti I Fe I Fe I Si I Si I Si I Fe I Fe I Ti I Fe I Si I Fe I Si I Fe I Fe I Fe I Ti I Si I Si I Si I Fe I Fe I Ti I Ti I Fe I Si I Si I Si I Si I Si I Si I Si I Ti I Fe I Si I Si I Si I Fe I Si I Fe I Si I Fe I Fe I Fe I SI SI Si I Si I 2.22 2.76 2.76 4.27 5.87 5.62 5.87 5.62 4.73 2.20 4.61 5.61 5.61 5.62 5.61 1.07 2.18 0.86 5.62 5.62 5.62 2.18 2.73 1.44 2.18 5.61 4.19 5.62 2.73 0.86 2.73 1.44 5.61 5.61 5.87 2.22 2.22 1.44 1.46 0.86 5.87 5.61 5.61 5.61 5.61 5.61 5.61 1.43 0.86 5.87 5.87 5.87 4.73 5.87 4.73 5.87 0.96 4.80 2.56 7.87 7.87 5.86 5.86 3600 3600 4900 4200 3700 4200 3700 3700 3700 7000 3700 5600 4000 3700 5400 5100 5600 7000 3700 5050 3700 3700 3700 3700 7000 3700 3700 3700 3700 3700 5150 3700 3700 5300 7000 5050 3800 4700 4800 4700 7000 3700 4500 4950 5450 5000 5500 3700 3700 3700 3700 3700 3700 4400 3700 3700 3700 4850 5600 5000 4600 3800 3700 4900 4950 6800 6700 7000 7000 5800 5750 5550 7800 6200 7000 7000 7000 7000 5900 6600 7800 5000 6150 5300 6700 5000 6700 7800 4900 4800 7000 6800 6700 6850 6200 7000 6900 7800 6800 4950 6700 6700 6700 7800 6900 6900 5450 6150 5500 6150 5600 7000 6900 6000 7000 7000 7000 7000 6200 7000 6600 7000 7000 7000 7000 6200 6710.31 6717.69 6717.69 6748.84 6748.84 6750.15 6757.17 74 88 88 77 63 121 63 121 62 21 54 58 64 121 94 58 104 10 121 121 61 104 124 98 3 94 90 121 124 162 124 98 94 94 16 104 104 98 98 162 16 90 87 90 90 87 87 95 162 74 74 74 146 74 146 74 103 60 131 49 61 73 73 C 2007 RAS, MNRAS 378, 617–624 2007 The Author. Journal compilation El EPL EW (eV) (mÅ) Fe I Ca I Ca I SI SI Fe I SI 1.49 2.71 2.71 7.87 7.87 2.42 7.87 49 45 209 49 49 155 61 λ2 (Å) El EPL EW (eV) (mÅ) T eff1 (K) T eff2 (K) 6767.77 6757.17 6757.17 6750.15 6767.77 6757.17 6767.77 Ni I SI SI Fe I Ni I SI Ni I 1.83 7.87 7.87 2.42 1.83 7.87 1.83 3700 7000 5300 4900 5000 4700 4800 6000 7800 6800 6800 6800 7000 6700 165 45 61 155 165 61 165 7000 Fe I 6085.27 / Si I 6155.14 6500 6000 Te ff, K 6078.50 6078.50 6078.50 6085.27 6085.27 6085.27 6090.21 6090.21 6090.21 6091.92 6093.14 6108.12 6108.12 6108.12 6108.12 6125.03 6125.03 6125.03 6126.21 6126.21 6135.36 6145.02 6145.02 6145.02 6145.02 6150.16 6150.16 6151.62 6155.14 6155.14 6170.49 6176.81 6180.20 6200.32 6219.28 6237.32 6237.32 6237.32 6237.32 6237.32 6240.66 6240.66 6240.66 6243.11 6243.11 6243.11 6243.11 6243.81 6243.81 6327.60 6330.13 6355.04 6355.04 6358.69 6358.69 6392.55 6414.99 6498.95 6538.60 6609.12 6609.12 6703.57 6710.31 Table 1 – continued 5500 5000 4500 4000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 R1/R2 Figure 1. Example of the typical temperature calibration derived in this work. The scatter is dominated by line-depth measuring errors and by real differences among stars, e.g., differing abundances, log g, etc. The typical error in line ratio is 0.02–0.05. 7000 Fe I 5987.05 / V I 6216.37 6500 6000 Te ff, K λ1 (Å) 619 5500 5000 4500 4000 3500 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 R1/R2 Figure 2. Another example of the temperature calibration. This calibration is applied only in the temperature range (T eff < 5650 K) where it provides a precision better than 110 K. a, b, c are constants and r is the line ratio, Rλ1 /Rλ2 . The choice of the particular approximation was done according to the leastsquare deviation. The typical uncertainty of the ratio r = Rλ1 /Rλ2 is 0.02–0.05, resulting in temperature error of 10–50 K. This observational error in the line-depth measurement accounts for about half of the 100 K dispersion obtained for a given star from one calibration. The other half results from unaccounted parameters like 620 V. V. Kovtyukh metallicity, non-LTE effects, gravity, macroturbulence, etc. In cases where Rλ1 /Rλ2 was a non-monotonic function (i.e. a given value of Rλ1 /Rλ2 corresponded to more than one value of T eff ), we have limited the application range of the latter to exclude this ambiguity. Several stellar properties are expected to limit the precision of the line-depth method, like rotation, macroturbulence, chemical abundance, gravity, etc. Note also that the precision of a given calibration varies with T eff . For example, the low-excitation lines weaken at high temperatures, which increases the measurement error for the line ratio and hence the error of the inferred T eff . Therefore, we provide for each calibration an allowed range of temperatures where it should be used (see Table 1). They were chosen such that uncertainties did not exceed 110 K. This allowed to naturally eliminate all strong (and also very weak) lines and lines sensitive to metallicity, log g, rotation, macroturbulence and other effects for a given temperature (see Fig. 2). The averaging of temperatures obtained from 70 to 100 line ratios significantly reduces the uncertainty from a single calibration. The final precision we achieve is 5–30 K (standard error, σ mean ) for the spectra of R = 42 000 and S/N = 100–150. This can be further improved with higher resolution and larger S/N. For the vast majority of stars, the errors are better than 30 K. We note that we only have few stars hotter than 7000 K, therefore we expect a larger systematic error at the hot end of our scale. For a number of supergiants, temperature was estimated independently from two or more ELODIE spectra. The difference between these estimates is within 2–3σ , where σ is a temperature error from a single spectrum (σ mean ). Our data set consists of spectra of two different resolutions, with only one star in common: HD 210848. The estimated values of T eff for this star are 6171 ±23 (51 calibrations) from ELODIE spectrum (R = 42 000) and 6163 ±17 (77 calibrations) from VLT (R = 80 000). As one can see, these determinations are very close, despite a factor of 2 difference in resolution. Unlike in MS stars, lines in supergiants are strongly broadened by rotation, micro- and macroturbulence, resulting in intrinsic full width at half-maximum (FWHM) of about 0.5–0.7 Å and more. Therefore, line depths do not depend on resolution beyond R ∼ 35 000, and so does precision of T eff . To investigate this effect at lower resolutions, we compare determinations of T eff from ELODIE spectra with determinations from echelle-spectrometer LYNX (R = 25 000; Panchuk et al. 1999) at Table 2. Comparison temperatures determined from spectra with different resolution (R = 42 000 and 25 000). Star Teff (K) HD 020902 HD 026630 HD 194093 HD 209750 ELODIE R = 420 000 σ mean (K) 6541 5337 6202 5210 ±11 ±7 ±12 ±6 N 61 69 82 66 LYNX R = 250 000 Teff σ mean (K) (K) 6555 5358 6267 5229 ±33 ±20 ±15 ±10 N 26 46 52 46 the 6-m telescope of the Special Astrophysical Observatory (Russia) (see Table 2). The decrease of resolution to R = 25 000 results in increase of T eff error to 30–50 K and reduces the number of unblended lines available for temperature calibration. This effect is particularly relevant for supergiants, whose lines are broadened by large macroturbulence and v sin i as compared to MS stars and giants. Similarly, the number of calibrations is reduced at low S/N. For example, for S/N ∼ 100 the depth of a weak line (Rλ ∼ 0.05) is comparable with uncertainty of its measurement, ∼20 per cent, making it ineligible for use in temperature determination. Table 3 provides analytical fits for 15 most precise calibrations, together with wavelengths (λ1 , λ2 ) and excitation potentials (in eV) for the corresponding line pair, and working temperature range. All calibrations are available in the electronic form from the author upon request. Table 4 lists T eff for 161 supergiants derived from our calibrations. Each entry includes the name of the star, mean T eff , the mean square deviation for each determination (σ ), number of calibrations used (N) and the error of the mean (σ mean ). 4 C O M PA R I S O N W I T H OT H E R T E M P E R AT U R E S C A L E S We want to compare our line ratio based temperatures with temperatures derived from traditional colour method. V–K is regarded the best photometric temperature indicator in F–K supergiants. Unfortunately, it has only been measured for a few stars in our sample, Table 3. The 15 most precise temperature calibrations (r = Rλ1 /Rλ2 ). λ1 (Å) El EPL (eV) λ2 (Å) El EPL (eV) T eff1 (K) T eff2 (K) T eff = 6039.73 6055.99 6085.27 6090.21 6108.12 6126.21 6135.36 6150.16 6237.32 6243.11 5348.30 5410.91 5506.78 6003.03 6125.03 VI Fe I Fe I VI Ni I Ti I VI VI Si I VI Cr I Fe I Fe I Fe I Si I 1.06 4.73 2.76 1.08 1.68 1.07 1.05 0.30 5.61 0.30 1.00 4.47 0.99 3.88 5.61 6046.01 6062.89 6155.14 6091.92 6237.32 6155.14 6142.49 6237.32 6240.66 6243.81 5554.89 5501.46 5565.71 6052.68 6358.69 SI Fe I Si I Si I Si I Si I Si I Si I Fe I Si I Fe I Fe I Fe I SI Fe I 7.86 2.18 5.62 5.87 5.61 5.62 5.62 5.61 2.22 5.61 4.55 0.96 4.61 7.87 0.86 3700 5000 3700 3700 5400 3700 3700 3700 5050 4950 7000 7000 7000 7000 7000 5400 6000 7000 5800 7000 5000 5300 4900 6800 5450 7800 7800 7800 7800 7800 5.36966r2 − 345.093r + 5569 −21.6837r2 + 418.865r + 4532 5839.37(0.855011r )(r−0.090522 ) −11.2669r3 + 185.711r2 − 1215.97r + 6585 283.413r2 − 1908.86r + 7549 161.954r2 − 1389.19r + 6007 35.5005r2 − 656.539r + 5575 −770.29r + 5505 6779.2 (0.8148941/r )(r0.0541857 ) −618.234r + 5845 −919.996r + 8120 463.441r + 6748 −968.498r + 8986 −551.182r + 8037 −505.937r + 8295 C C 2007 RAS, MNRAS 378, 617–624 2007 The Author. Journal compilation High-precision effective temperatures of 161 FGK supergiants 621 Table 4. Effective temperatures of the programme stars. HD 000371 000611 000725 001457 003421 004362 004817 005747 007927 008906 008992 009167 009900 009973 010494 010806 011544 015784 016901 017506 017905 017958 017971 018391 020123 020902 025056 025291 026630 031910 032655 033299 034248 036673 036891 037536 038808 039949 042454 042456 044391 045348 045829 047731 048329 048616 048640 050372 052005 052220 052497 053003 054605 057146 061227 072722 074395 075276 077912 079698 084441 090452 092125 C Name φ Cas 14 Per η Per α Per µ Per β Cam α Lep NO Aur α Car 25 Gem ω Gem δ CMa 37 LMi Teff (K) σ (K) N σ mean (K) 5085 5431 6793 7636 5302 5325 3839 5024 7341 6710 6278 7632 4529 6654 6672 5051 5126 6467 5555 4050 6352 3974 6822 5871 5165 6541 5752 7497 5337 5441 6653 4574 6101 7500 5082 3918 5112 5248 5277 4754 4599 7557 4459 4989 4510 6413 3908 4794 3954 5661 5090 5540 6443 5134 7433 3774 5264 7487 4957 5252 5296 6688 5354 35 125 99 57 96 92 138 147 163 63 92 135 119 113 253 77 68 102 67 142 172 110 99 130 47 84 157 38 55 98 130 53 159 48 65 241 79 85 93 103 51 35 63 66 77 76 140 93 206 77 83 118 83 57 37 143 54 60 75 111 90 106 89 28 87 46 26 90 86 24 29 15 43 68 8 58 64 66 28 55 28 93 26 25 22 18 64 58 61 36 22 69 94 48 34 66 27 85 10 81 83 81 68 43 29 43 66 51 55 22 55 30 97 46 76 67 82 28 33 84 16 63 84 66 74 86 6.6 13.4 14.6 11.2 10.1 9.9 28.1 27.3 42.2 9.7 11.1 47.7 15.6 14.1 31.2 14.6 9.2 19.3 7.0 27.9 34.3 23.5 23.4 16.3 6.2 10.7 26.2 8.0 6.6 10.1 18.8 9.1 19.6 9.2 7.1 76.2 8.8 9.4 10.3 12.5 7.8 6.4 9.6 8.1 10.8 10.3 29.8 12.5 37.6 7.8 12.2 13.6 10.1 6.3 7.0 24.9 5.9 14.9 9.5 12.1 11.1 12.4 9.6 Remarks emiss NGC 654 Double var Cluster SB Double var var var var? SB Double Double Double C 2007 RAS, MNRAS 378, 617–624 2007 The Author. Journal compilation HD Name Teff (K) σ (K) N σ mean (K) 099648 104452 109379 114988 117440 125728 125809 134852 136537 139862 146143 147266 151237 152830 159181 161074 161149 164136 165435 171237 171635 171874 172365 173638 174104 178524 179784 180028 180583 182296 182835 183864 185018 185758 186155 187203 187299 187428 188650 189671 190113 190323 190403 190405 191010 192713 193370 194069 194093 194951 195295 195432 195593 195617 196725 199394 200102 200805 200905 202109 202314 204022 204075 τ Leo 1 Com 4942 5704 5117 4985 4683 4972 4837 6488 4960 5091 6077 5091 5825 6603 5220 4008 6505 6483 7400 6792 6201 6275 5978 7444 5657 6710 4956 6251 6043 5072 6912 5323 5451 5390 6560 5710 4566 5911 5669 4891 4784 6155 4894 6358 5269 5028 6369 4883 6202 7392 6575 5872 6625 3949 4165 5085 5364 6865 3980 4976 5004 5375 5287 109 218 111 182 98 90 58 155 72 91 87 110 162 156 52 167 330 161 168 116 71 197 163 50 181 147 42 127 121 50 120 45 72 92 184 110 167 119 212 65 160 64 57 132 81 67 50 40 104 75 58 105 52 159 200 104 94 121 194 107 56 66 91 62 25 80 21 58 26 65 28 65 30 85 29 33 26 64 38 40 21 19 26 79 55 27 22 16 44 55 72 92 77 26 82 28 68 13 53 27 53 78 24 60 22 57 12 81 48 79 23 82 25 68 89 8 37 39 26 29 6 34 65 47 84 77 13.8 43.6 12.4 39.8 12.9 17.6 7.1 29.2 8.9 16.7 9.5 20.5 28.2 30.7 6.5 27.0 52.1 35.0 38.5 22.7 7.9 26.6 31.4 10.6 45.3 22.2 5.7 15.0 12.6 5.7 23.5 5.0 13.6 11.2 51.0 15.1 32.1 16.4 24.0 13.2 20.6 13.7 7.6 38.0 9.0 9.6 5.6 8.4 11.5 15.0 7.0 11.1 18.3 26.2 32.1 20.4 17.5 49.3 33.3 13.3 8.2 7.2 10.4 46 Her V644 Her β Dra 83 Her ν Her 45 Dra V473 Lyr 32 Aql α Sge QS Vul 44 Cyg θ Del ξ Cyg ζ Cap Remarks SB Irregular SB Double SB Double in nebula Double SB 622 V. V. Kovtyukh Table 4 – continued HD 204509 204867 205114 205603 206731 206778 206859 207089 207119 207489 207647 207991 208606 209750 210745 210848 211153 214714 Name β Aqr Peg 12 Peg α Aqr ζ Cep Teff (K) σ (K) N σ mean (K) 6510 5466 5224 4994 5030 4108 4876 4428 3946 6350 5127 3777 4702 5210 4180 6163 5130 5424 217 64 61 101 60 176 45 188 126 98 96 74 53 49 99 149 112 197 55 76 77 22 24 34 70 27 32 78 33 6 43 66 32 77 27 70 29.2 7.4 7.0 21.5 12.3 30.1 5.4 36.3 22.3 11.1 16.7 30.4 8.0 6.0 17.4 17.0 21.5 23.5 Remarks HD 216206 216219 216756 218043 218600 219135 219978 220102 220819 221661 221861 223047 224165 225292 236433 249750 +60 2532 var Flower Castelli, logg=1.5 7000 Te ff, K 6000 5500 5000 4500 0.2 0.4 0.6 0.8 1.0 1.2 V809 Cas ψ And Sp Teff (K) F0 F1 F2 F3 F5 F6 F7 F8 F9 G0 G1 7492 7392 6920 6699 6500 6268 6210 5979 5752 5561 5364 this paper 6500 4000 0.0 σ (K) N σ mean (K) 5003 5701 6526 6447 7458 5479 3928 6832 7495 5033 4417 4808 4804 4947 6541 5475 6268 31 233 142 145 99 82 238 103 78 111 66 62 59 81 93 115 149 53 64 36 37 5 91 26 35 7 24 34 56 50 27 35 41 70 4.3 29.2 23.6 23.8 44.2 8.5 46.7 17.5 29.4 22.7 11.4 8.3 8.3 15.6 15.7 17.9 17.9 Remarks var double NGC 129 NGC 7654 Table 5. Effective temperatures of supergiants as a function of spectral type. The number of used stars is given. 8000 7500 Teff (K) Name 1.4 1.6 (B-V)o Figure 3. The correlation of (B − V)o colours and effective temperatures for the program supergiants. Two colour–temperature relationships from the literature also are indicated by lines in the figure: Flower (1996); Castelli (model atmospheres of Castelli for log g = 1.5; see table 2 in Bessell et al. 1998). σ mean (K) N Sp Teff (K) 80 8 1 8 2 13 3 3 4 1 13 1 G2 G3 G4 G5 G8 G9 K0 K1 K2 K3 K5 5189 5124 5065 4955 4884 4689 4443 4180 3977 3944 3835 318 107 12 43 139 142 σ mean (K) N 140 74 62 97 113 264 15 4 2 8 8 3 2 1 5 2 3 69 84 In practice, spectral types are often used for a quick estimation of T eff . In Table 5, we provide such relation for line ratio temperatures derived for our sample. Spectral types for program stars have been taken from SIMBAD. Fig. 4 compares out temperature scale with four other studies from the literature. Fry & Carney (1997) and Yong et al. (2006) derive T eff by balancing iron abundance obtained from individual lines with different excitation potentials. Fry & Carney used 101 high-resolution spectra of 23 Galactic Cepheids. Yong et al. (2006) updated temperatures from Fry & Carney sample and added 24 new Cepheids. Comparison to our determinations gives a standard deviation of 112 K (76 common spectra). The difference does not appear to correlate with T eff (see Fig. 4a). Bravo Alfaro et al. (1997) used 13-Colour photometry for the determination of T eff for 71 supergiant stars with an average accuracy of about 300 K. Their temperatures are also in good agreement with that of ours. No clear correlation of the difference with temperature is observed (Fig. 4b), and the mean dispersion of 226 K (for 22 common stars) is within the uncertainty of that study. precluding accurate comparison. In Fig. 3, we plot our temperatures against another popular index – (B−V)0 . The dereddened B−V colour is taken from Bersier (1996), who derived extinction based on Geneva photometry. For comparison, colour–temperature relations from Flower (1996) and Castelli [colours have been computed by Castelli; see table 2 in Bessell, Castelli & Plez (1998)] are also shown. Flower obtained T eff from the literature, while Castelli determined colour indices and bolometric corrections from ATLAS9 no-overshoot Kurucz’s models. As one can see, in general our temperatures agree well with both scales, except at the hot end (T eff > 5500 K) where the former are ∼200 K hotter. Note that (B − V)0 values are very sensitive to metallicity, and (to a lesser degree) to macroturbulence and other physical factors. Fig. 3 seems to be dominated by colour excess errors, with essential contribution from real variations in (B − V)0 due to other physical parameters beside temperature. C C 2007 RAS, MNRAS 378, 617–624 2007 The Author. Journal compilation High-precision effective temperatures of 161 FGK supergiants 5 Z E RO - P O I N T O F T E M P E R AT U R E S C A L E 400 0 a) -400 3500 4000 4500 5000 5500 6000 6500 7000 7500 4000 4500 5000 5500 6000 6500 7000 7500 4000 4500 5000 5500 6000 6500 7000 7500 400 Te ff (other paper) - Te ff (this paper) 623 0 b) -400 3500 400 0 c) -400 3500 400 Values of T eff for a given star often differ between independent sources in the literature by as much as 200–500 K. Yong et al. (2006) discuss how non-LTE and other effects in the extended atmospheres of supergiants may compromise precision of T eff determination. At present, we cannot give preference to one method over the others discussed in Sections 3 and 4, since all of them are prone to these effects. Therefore, we do not attempt to constrain the zero-point of our temperature scale further by tying it to any of the above scales. Bravo Alfaro et al. (1997) used three independent methods to determine the effective temperatures for A0–K0 supergiants from their 13-Colour photometry. The estimated uncertainties in T eff by the three methods are comparable and are approximately 200– 300 K. According to compilative catalogue of Cayrel de Strobel et al. (2001), the mean errors of T eff supergiant are 100–200 K. Hence, we think that the possible zero-point error of our scale is less than 100–200 K. 0 -400 6 S U M M A RY d) 3500 4000 4500 5000 5500 6000 6500 7000 7500 Te ff (this paper) Figure 4. Comparison of our temperatures with estimates from the literature: (a) filled squares – Fry & Carney (1997), filled triangles – Yong et al. (2006); (b) Bravo Alfaro et al. (1997); (c) Gray et al. (2001) and (d) Cayrel de Strobel et al. (2001). Gray, Graham & Hoyt (2001) derived T eff from the comparison of classification-resolution spectra and fluxes from Strömgren photometry with a grid of synthetic spectra and fluxes computed from Kurucz models. Comparison with our scale shows a trend of difference with T eff : the scales agree around T eff = 6500 K, but at 5200 K our values are ≈300 K higher while at 7500 K ≈ 200 K lower (Fig. 4c). The most accurate determinations of T eff from the literature have been compiled in catalogue by Cayrel de Strobel, Soubiran & Ralite (2001). It is evident from Fig. 4(d) that our derived temperatures are in good agreement with this catalogue but this figure also shows a possible quadratic trend of difference with T eff . Note that this compilation is very inhomogeneous. Blackwell & Lynas-Gray (1998) have determined very precise T eff of 420 stars using the Infrared Flux Method (IRFM). We derive temperatures very close to theirs for three common stars (Table 6). The average temperature difference is only −12 ± 9 K. These tests demonstrate reliability of our scale. Note that some supergiants may be photometrically variable, with associated temperature variations (see Table 4). Though we tried to avoid using such supergiants, we cannot completely rule out the possibility of variability in some of the stars considered. Table 6. Comparison of our temperatures with those of Blackwell & LynasGray (1998). Star HD185758 HD204867 HD209750 C Blackwell & Lynas-Gray Teff σ mean (K) (K) 5415 5474 5206 ±38 ±27 ±30 (This paper) Teff σ mean (K) (K) 5390 5466 5210 ±11 ±7 ±6 C 2007 RAS, MNRAS 378, 617–624 2007 The Author. Journal compilation The traditional spectroscopic methods (e.g. using model atmospheres) do not always allow to derive certain atmospheric parameters with high precision. New methods are sought to improve the accuracy and to automate the whole process. The line ratio method presented in this work has been designed with these goals in mind. We tested our method on a given star’s spectra obtained at different times, on different telescopes and with different resolution R. For R > 35 000, these estimates agree within 2–3 σ mean , where σ mean is an accuracy of T eff from a single spectrum. Highly precise T eff derived here for 161 supergiants can serve as T eff standards in the 3600–7800 K range. For the majority of the sample σ = 20–30 K, being only slightly worse at the hot and cool ends of the scale, as well as for a non-solar metallicity ([Fe/H] larger than ±0.5 dex). We also tested our method on stars common between our sample and the independent studies from the literature. In all cases, our method demonstrates a good match, except with Gray et al. (2001). The difference with the latter study is a monotonic function of temperature, the origin of which is unclear. The comparison with independent studies from the literature provides an approximate estimate for the accuracy of the zero-point of our scale: 100–200 K. To determine this uncertainty precisely requires comparison with directly measured T eff . The direct method of T eff definition relies on the measurement of stellar angular diameter and bolometric flux. For a given star, the line ratio technique allows to detect variations in T eff as small as 10 K and less. Another important advantage of this method is that it produces reddening-free estimates. Summarizing the supergiant temperatures determined in this work using line ratio technique has both the high internal precision and agree well with the most accurate estimates from the literature. AC K N OW L E D G M E N T S This work is based on spectra collected with the 1.93-m telescope of the OHP (France) and the ESO Telescopes at the Paranal Observatory under programme ID 266.D-5655. The author thanks Dr C. Soubiran for kindly providing ELODIE spectra of some supergiants. In addition, the author would like to thank Dr N. Gorlova for many useful discussions. The author is also grateful to the anonymous referee for the careful reading of the manuscript and the numerous important remarks that helped to improve the paper. 624 V. V. Kovtyukh Kovtyukh V. V., Soubiran C., Belik S. I., Gorlova N. I., 2003, A&A, 411, 559 Kovtyukh V. V., Soubiran C., Belik S. I., 2004, A&A, 427, 933 Kovtyukh V. V., Andrievsky S. M., Belik S. I., Luck R. E., 2005a, AJ, 129, 433 Kovtyukh V. V., Wallerstein G., Andrievsky S. M., 2005b, PASP, 117, 1173 Kovtyukh V. V., Soubiran C., Bienaymé O., Mishenina T. V., Belik S. I., 2006, MNRAS, 371, 879 Luck R. E., Bond H. E., 1989, ApJS, 71, 559 Luck R. E., Andrievsky S. M., 2004, AJ, 128, 343 Luck R. E., Wepfer G. G., 1995, AJ, 110, 2425 Luck R. E., Moffett Th. J., Barnes Th. G., Gieren W. P., 1998, AJ, 115, 605 Luck R. E., Kovtyukh V. V., Andrievsky S. M., 2006, AJ, 132, 902 Panchuk V. E., Klochkova V. G., Najdenov I. D., Vitrichenko E. A., Vikuliev N. A., Romanenko V. P., 1999, Preprint (Special Astrophysical Observatory of Russian Academy of Science, No. 139) Ridgway S. T., Joyce R. R., White N. M., Wing R. F., 1980, ApJ, 235, 126 Soubiran C., Katz D., Cayrel R., 1998, A&AS, 133, 221 Strassmeier K. G., Schordan P., 2000, Astron. Nachr., 321, 277 Yong D., Carney B. W., de Almeida T. M. L., Pohl B. L., 2006, AJ, 131, 2256 REFERENCES Andrievsky S. M., Luck R. E., Kovtyukh V. V., 2005, AJ, 130, 1880 Bagnulo S., Jehin E., Ledoux C. et al., 2003, ESO Messenger, 114, 10 Bersier D., 1996, A&A, 308, 514 Bessell M. S., Castelli F., Plez B., 1998, A&A, 333, 231 Blackwell D. E., Lynas-Gray A. E., 1998, A&AS, 129, 505 Bravo Alfaro H., Arellano Ferro A., Schuster W. J., 1997, PASP, 109, 958 Cayrel de Strobel G., Soubiran C., Ralite N., 2001, A&A, 373, 159 Galazutdinov G. A., 1992, Preprint SAO RAS, 92, 28 Flower P. J., 1996, ApJ, 469, 355 Fry A. M., Carney B. W., 1997, AJ, 113, 1073 Gray D. F., 1994, PASP, 106, 1248 Gray D. F., Brown K., 2001, PASP, 113, 723 Gray D. F., Johanson H. L., 1991, PASP, 103, 439 Gray R. O., Graham P. W., Hoyt S. R., 2001, AJ, 121, 2159 Katz D., Soubiran C., Cayrel R., Adda M., Cautain R., 1998, A&A, 338, 151 Kiss L. L., Szatmary K., 1998, MNRAS, 300, 616 Kovtyukh V. V., Gorlova N. I., 2000, A&A, 358, 587 Kovtyukh V. V., Gorlova N. I., Klochkova V. G., 1998, Astron. Lett., 24, 372 This paper has been typeset from a TEX/LATEX file prepared by the author. C C 2007 RAS, MNRAS 378, 617–624 2007 The Author. Journal compilation
© Copyright 2026 Paperzz