Spectral properties of Google Matrix (towards two-dimensional search engines) Leonardo Ermann CNEA-CONICET, Buenos Aires, Argentina Dima Shepelyansky (Toulouse) Klaus Frahm (Toulouse) Alexei Chepelianskii (Cambridge) November 5th 2013, “Workshop on Dynamic Networks 2013” Buenos Aires, Argentina Motivations in complex networks Outline • Google matrix introduction • PageRank and CheiRank • Examples of 2-d rank (Wikipedia, Univ., etc.) • World Trade Network • Other applications (Ulam networks, FWL, communities) • Conclusions “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires PageRank - Google Matrix *Brin and Page (1998) Spectral Indices directed network “Spectral properties of Google matrix”, L. Ermann • • • • directed networks easy to compute incoming links non-local properties adjacency matrix November 5th 2013, WDN13 Buenos Aires PageRank - Google Matrix *Brin and Page (1998) weighted adjacency matrix and dangling nodes directed network “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires PageRank - Google Matrix PageRank Google Matrix directed network “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires Google Matrix examples L.E, Chepelianskii and Shepelyansky, Jour. Phys. A 45, 275101 (2012). “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires G*, CheiRank and spectrum “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires PageRank - CheiRank analysis KP-P* correlator K-K* plane persona “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires Global 2-d examples Cambridge (2006) N∼2.105 Oxford (2006) N∼2.105 Linux Kernel V2.4 N∼3.105 wikipedia N∼2.106 “Spectral properties of Google matrix”, L. Ermann 10 November 5th 2013, WDN13 Buenos Aires 100 UCLA Stanford St Andrews NYU 80 countries TAMU PSU Oxford universities Virginia MSU Harvard Manchester SU Maryland 60 Queen Cambridge Minnesota K* WUSTL Georgia UM Heidelberg UNC 40 GT Tufts Caltech Yale Toronto Rutgers Cornell 20 Michigan MIT USC Berkeley Columbia Georgetown CMU Brown Northwestern FSU physicists Sakharov 80 Gauss Stokes Bethe Hamilton Dirac Boltzmann Marconi Planck 60 Curie Euler Lagrange K* 40 Fermi Archimedes Maxwell Rutherford Neumann Kelvin Faraday Hooke Bell Galilei Kepler Alhazen 20 Edison Newton Avicenna Franklin Oppenheimer 40 Penrose Noether Wheeler von BraunMay Dyson Gibbs Eddington Kuo 40 K L.60 “Spectral properties of 20 Google matrix”, Ermann 80 100 Davis Gross Gabor Schawlow KapitsaHertz Franck Compton Kilby BardeenCockcroft Bragg Chadwick Prigogine Lawrence Landau Von Laue Shockley Michelson Rayleigh Millikan 40 Appleton Lee Wilczek Leggett Yang Gell-Mann Chandrasekhar Onnes Thomson Bohr Sakharov Chu Bethe Marconi Dirac Planck Curie Wigner Born Pauli Weinberg Fermi Debye Raman Salam Heisenberg Feynman Einstein 20 Hodgkin Ryle Nobel laureates in physics Lederman Townes Schwinger 20 Heisenberg Biruni Feynman Einstein Tesla hawking 60 K* Abdus Salam Aristotle Leibniz Rabi 80 Weinberg 100 van del Walls Purcell de Broglie Bragg Chu Wigner Pauli Teller 80 Wieman Lorentz Born 60 Wien Hahn Huygens K Cornell Tomonaga Curie Boyle 40 100 Meitner Watt Pitt Florida 20 100 Durham Smoot Nambu Blackett Bothe AlvarezBridgman 802013, WDN13 100 K 60 November 5th Buenos Aires Google Matrix of the WTN United Nation Commodities Trade Network all countries of UN, from 1962 to 2011, all commodities or some specific products Money Matrix Mi,j = U $S(j ! i) G GP = P M G* ExportRank PageRank ImportRank CheiRank G⇤ P ⇤ = P ⇤ (K̃, K̃ ⇤ ) (K, K⇤) ImportRank, ExportRank PageRank, CheiRank L. Ermann and D.L. Shepelyansky, APPA,Vol. 120, A-158 (2011), arXiv:1103.5027, “Spectral properties of Google matrix”, L. Ermann http://www.quantware.ups-tlse.fr/QWLIB/tradecheirank November 5th 2013, WDN13 Buenos Aires G and G* matrices of the WTN (2008) G G* crude petroleum all commodities M “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires PageRank, CheiRank and Spectrum PageRank, CheiRank, ImportRank, ExportRank ↵ = 0.85 ↵ = 0.5 Spectra ↵=1 Zipf law P~1/K all commodities crude petroleum “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires 2d ranking “all commodities” “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires PageRank, CheiRank vs. ImportRank, ExportRank countries are treated on equal democratic ground G-20 ~ 74% K̃ ⇤ = 11 ! K ⇤ = 16 K̃ ⇤ = 13 ! K ⇤ > 20 K̃ ⇤ = 15 ! K ⇤ = 11 K̃ ⇤ = 19 ! K ⇤ = 12 “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires 2d ranking: crude petroleum Russia K̃ ⇤ = 2 ! K ⇤ = 1 Iran K̃ ⇤ = 5 ! K ⇤ = 14 Kazakhstan K̃ ⇤ = 12 ! K ⇤ = 2 its trade network in this product is better and broader than the one of Saudi Arabia (1st) its trade network is restricted to a small number of nearby countries. is practically the only country which sells crude petroleum to the CheiRank leader in this product Russia. “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires 2d ranking: barley and cars Ukraine (K* 1st to 6th) USA (K* 8th to 3rd) “Spectral properties of Google matrix”, L. Ermann France (K* 7th to 3rd) Thailand (K* 19th to 10th) November 5th 2013, WDN13 Buenos Aires 2d ranking evolution “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires Other applications of Google Matrix “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires Ulam Networks Chirikov standard map “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires Fractal Weyl law Standard map L.E and Shepelyansky, Eur. Phys. J. B 75, 299 (2010) Linux Kernel architecture network L.E, Chepelianskii and Shepelyansky, Eur. Phys. J. B 79, 115 (2011) “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires Wikipedia communities in G eigenstates L.E, Frahm and Shepelyansky, Eur. Phys. J. B 86, 193 (2013) “Spectral properties of Google matrix”, L. Ermann November 5th 2013, WDN13 Buenos Aires Conclusions • Google Matrix analysis of different networks (www: wikipedia, universities, softwares, etc.) • CheiRank and 2-d rankings • WTN example •Other applications: Ulam Networks Fractal Weyl law in maps and Linux Kernel Communities in Wikipedia • • • Thank You
© Copyright 2025 Paperzz