4.2 SSS and SAS Congruence Date: Goals: • Prove triangles congruent by SSS • Prove triangles congruent by SAS Warm-up: Sketch a diagram showing two congruent triangles, ABC QRS . If AB 15 , can we determine any of the side lengths of QRS ? Explain. Side Side Side Congruence Example 1: SSS Congruence Determine if the following triangles can be proven congruent by SSS. If they cannot, state what is missing. A. B. C. 10 U E F F R C 8 15 15 10 I A L H 16 16 D B 8 12 N 12 G K Side Angle Side Congruence: Included Angles: Example 2: SAS Congruence Determine if the following triangles can be proven congruent by SAS. If they cannot, state what is missing. A R A. L B. C. C M A B N P T U Example 3: Using SSS or SAS in Proofs Complete the following proofs. O H Q F P A. Given: OP EH , OH EP Prove: HOP PEH Statement 1. OP EH , OH EP 2. HP HP 3. HOP PEH E H Reason D F B. Given: FI RG , FN RN R N is the midpoint of IG Prove: FIN RGN N I Statement G Reason 1. FI RG , FN RN N is the midpoint of IG 2. IN NG 3. FIN RGN C. Given: EN NG , MN NP E P N Prove: ENG GNP G M Statement 1. EN NG , MN NP 2. ENM PNG 3. Reason N D. Given: MN MK , ML bisects NMK L Prove: MLN MLK M K Statement Reason 1. MN MK ML bisects NMK 2. NML KML 3. 4. MLN MLK E. Given: QT is a perpendicular bisector of UR Q Prove: QTU QTR U Statement 1. QT is a perpendicular bisector of UR 2. QTU and QTR are right angles 3. QTU QTR 4. UT TR 5. 6. QTU QTR R T Reason
© Copyright 2025 Paperzz