2.1 Homework Solutions 1. f (x) = x5 + 6x 2 − 7x f ′ ( x ) = 5x 4 +12x − 7 f ′′ ( x ) = 20x 3 +12 ( ) 2 y′ = ( x +1) 3 3. y = x 3 + 1 2 3 3 ( x +1) y′′ = 3 = 1 − 13 3 ⋅ 3x 2 = 3 ( 1 3 ) ( ) ⎡⎣⎢( x +1) ⋅ 4x − 2x ( x +1) − 3 ⋅ 4x − 2x ⋅ 1 3 x 3 +1 3 ⋅ 3x 2 x +1 = 2 3 3 x +1 4x 4 + 4x − 2x 4 ( x +1) ) x 3 +1 2 ( 4 ( 2x 2 3 = ( ) 2x x 3 + 2 ( x +1) 3 4 2 ) −2 3 3 3 2 3 3 5. g(t) = t 3e5t g′ (t ) = t 3 ⋅e5t ⋅5 + e5t ⋅ 3t 2 = t 2 e5t ⎡⎣ 5t + 3⎤⎦ g′′ (t ) = t 2 e5t ⋅5 + t 2 ( 5t + 3) ⋅e5t ⋅5 + e5t ⋅ ( 5t + 3) ⋅2t = te5t ⎡⎣ 5t + 5t ( 5t + 3) + 2 ( 5t + 3) ⎤⎦ = te5t ⎡⎣ 25t 2 + 30t + 6 ⎤⎦ 7. y = sin 3 x y′ = 3sin 2 x cos x y′′ = 3 ⎡⎣sin 2 x ⋅−sin x + cos x ⋅2sin x cos x ⎤⎦ = 3sin x ⎡⎣ 2cos2 x − sin 2 x ⎤⎦ 1 4⎤ ⎦⎥ 2.2 Homework Solutions 1. sec y = x 2 y + ex dy dy = x 2 + y ( 2x ) + ex dx dx dy sec y tan y − x 2 = 2xy + ex dx x dy 2xy + e = dx sec y tan y − x 2 sec y tan y ( 3. ysin x + ) x = 16y sin y dy dy sin y (1) − x cos y dx dy ycos x + sin x + = 16 2 dx dx sin y dy dy dy ycos xsin 2 y + sin xsin 2 y + sin y − x cos y = 16sin 2 y dx dx dx dy ycos xsin 2 y + sin y = x cos y − sin xsin 2 y16sin 2 y dx 2 dy ycos xsin y + sin y = dx x cos y − sin xsin 2 y16sin 2 y ( ) 5. Find the equations of the lines tangent and normal to the curve 2 5x − 3xy + y2 = 3x at the point (1, 2) . dy dy 10x − 3x + y ( −3) + 2y = 3 dx dx dy dy 10 (1) − 3(1) + ( 2 )( −3) + 2 ( 2 ) = 3 dx dx dy = −1 dx y − 2 = −1( x −1) Tangent: Normal: y − 2 = 1( x −1) 2 2.3 Homework Solutions 1. y = sin −1 ( ex ) 1 ex x y′ = ⋅e = 1− e2 x 1− e2 x 3. y = sin −1 ( 2x + 1) y′ = 1 1− ( 2x +1) 2 ⋅2 = 2 ( ) 1− 4x 2 + 4x +1 y = xcos−1 x − 1− x 2 − 12 −1 1 −1 y′ = x ⋅ + cos x − 1− x ⋅ ( −2x ) ( ) 2 1− x 2 −x x = + + cos−1 x 2 2 1− x 1− x −1 = cos x 5. 7. ( y = sin−1 2 ( x ) 1 y′ = 1− 9. ( ) 2x 2 ) 2 ⋅ 2= 1− dy =0 dx sec−1 x y= x y′ = 2 ⎛ 1⎞ y = cot −1 ⎜ ⎟ − tan−1 x ⎝ x⎠ y = tan −1 x − tan −1 x = 0 ⇒ 11. ( ) 2x x⋅ 1 1 − sec−1 x − sec−1 x 2 2 x x −1 = x −1 2 x2 x 3 ( = 2 −4x − 4x 2 ) − 12 = (−x −1 2 −x ) 1 2 2.4 Homework Solutions 1. Find the equation of the tangent line to f (x) = x 5 − 5x + 1 at x = −2 and use it to get an approximate value of f (-1.9). f ( −2 ) = −21 y + 21 = 75 ( x + 2 ) f ′ ( x ) = 5x 4 − 5 ⇒ f ′ ( −2 ) = 75 y = −21+ 75 ( x + 2 ) ⇒ y x=−1.9 = −13.5 f ( −1.9 ) ≈ −13.5 3. Find all points on the graph of y = 2sin x + sin 2 x where the tangent line is horizontal. f ′ ( x ) = 2cos x + 2sin x cos x = 0 cos x = 0 or ⎧ π x = ⎨ ± ± 2π n ⎩ 2 sin x = −1 ⎧ 3π x = ⎨ ± 2π n ⎩ 2 ⎛π ⎞ ⎛ π ⎞ Points where the tangent line is horizontal: ⎜ ± 2π n, 3⎟ , ⎜ − ± 2π n, 1⎟ ⎝2 ⎠ ⎝ 2 ⎠ 5. ( use it to approximate g (1.1) . g (1) = 7 ( ) g′ ( x ) = 2 + sec2 x 2 −1 ( 2x ) ⇒ g′ (1) = 4 y − 7 = 4 ( x −1) g (1.1) ≈ y (1.1) = 4 (1.1−1) + 7 = 7.4 ) Find the equation of the tangent line to g ( x ) = 5 + 2x + tan x 2 −1 at x = 1 and 4 7. ⎛ π 2⎞ x at x = 1 and ⎝ 2 ⎟⎠ Find the equation of the tangent line to f ( x ) = ln xsin ⎜ plug x = 1.1 into both the original and the tangent line equation. Explain why the values are so similar. f (1) = 0 ⎛ ⎛π ⎞ π⎞ ⎛ π ⎞ ⎛ 1⎞ f ′ ( x ) = ( ln x ) ⎜ cos ⎜ x ⎟ ⎟ + sin ⎜ x ⎟ ⎜ ⎟ ⇒ f ′ (1) = 1 ⎝ 2 ⎠ 2⎠ ⎝ 2 ⎠ ⎝ x⎠ ⎝ y = x −1 f (1.1) ≈ y (1.1) = .090 f (1.1) = .1 The results are so similar because of local linearity. The tangent line is extremely close to the curve near the point of tangency, so values of y for the tangent line serve as good approximations for values of f near the point of tangency. 5
© Copyright 2026 Paperzz