Water Utilization: An Analytical White Paper Executive Summary t 5IFJOUFSWFOUJPOPGIVNBOTEPFTOPUSFBMMZDBVTFQSPCMFNTXJUIUIFiVTFwPGXBUFSCVUSBUIFS XJUIUIFNPWFNFOUPGXBUFSGSPNPOFQMBDFUPBOPUIFSBOEXJUIUIFSBUFBUXIJDIUIBUXBUFS NPWFT5IFTPMVUJPOTUPFBDIPGUIFTFJTTVFTBSFMJLFMZUPCFRVJUFEJòFSFOU t 5SBOTQJSBUJPOJTUIFNPWFNFOUPGXBUFSUISPVHIBQMBOUUPDBSSZOVUSJFOUTBOEHFOFSBUFDPPMJOH BOEBDDPVOUTGPSBCPVUPGBMMFWBQPSBUJPO8BUFSNPWFNFOUBXBZGSPNBöFMETVSGBDFDBO CFWJBMFBDIJOHFWBQPSBUJPOPSUSBOTQJSBUJPOJONBOZTJUVBUJPOTUIFTFBSFDPNCJOFEBOEDBMMFE FWBQPUSBOTQJSBUJPO t *UIBTCFFODBMDVMBUFEUIBUPOBWFSBHFUIFDPOUJOFOUBMTUBUFTSFDFJWFFOPVHIQSFDJQJUBUJPO JOPOFZFBSUPDPWFSUIFMBOEUPBEFQUIPG_JODIFT64(4 4VHHFTUJOHUIFSFJTOPSFBM TIPSUBHFPGXBUFSGBMMJOHJOUIF64CVUJOSFBMJUZTIPXTIPXBWFSBHFTDBOCFNJTMFBEJOH t 'SPNUPUIFSFXBTJODSFBTJOHXBUFSVUJMJ[BUJPOBOEBHSPXJOHDPODFSOUIBUXJUI QPQVMBUJPOBOEFDPOPNJDHSPXUIUIFSFXPVMECFBMBSHFJODSFBTFJOUIFWPMVNFSFRVJSFE )PXFWFSEVFUPXBUFSBXBSFOFTTFDPOPNJDGBDUPSTBOEOFXFSUFDIOPMPHJFTCFJOHBQQMJFE XBUFSWPMVNFVUJMJ[BUJPOIBTCFFOBCPVUøBUTJODFBSPVOEEFTQJUFQPQVMBUJPOBOE FDPOPNJDHSPXUI t *SSJHBUJPOXBUFSVUJMJ[BUJPOWPMVNFXBT_PGUIFUPUBMBOEJODMVEFEXBUFSUIBUJTBQQMJFE GPSQSFJSSJHBUJPOGSPTUQSPUFDUJPOBQQMJDBUJPOPGDIFNJDBMTXFFEDPOUSPMöFMEQSFQBSBUJPO DSPQDPPMJOHIBSWFTUJOHEVTUTVQQSFTTJPOMFBDIJOHTBMUTGSPNUIFSPPU[POFBOEXBUFSMPTUJO DPOWFZBODF*SSJHBUJPOPGHPMGDPVSTFTQBSLTOVSTFSJFTUVSGGBSNTDFNFUFSJFTBOEPUIFSTFMG TVQQMJFEMBOETDBQFXBUFSJOHVTFTBMTPBSFJODMVEFE t 5IFUSFOEGPSMFTTXBUFSBQQMJDBUJPOQFSBDSFTVQQPSUTUIFGBDUUIBUUIFSFIBWFCFFODPOTJEFSBCMF JNQSPWFNFOUTJOXBUFSVTFFóDJFODZBDSPTTNPTUDSPQTFDUPSTNPTUMZEVFUPDIBOHFTJO JSSJHBUJPOQSBDUJDFBOETZTUFNT t .PSFUJNFMZJOGPSNBUJPOBOEBWBJMBCJMJUZPGDVSSFOUEBUBJTJNQPSUBOU"UQSFTFOUUIFEBUBCFJOH VTFEJTQPTTJCMZOPMPOHFSSFMFWBOUPSJTOPUBDMFBSDVSSFOUQJDUVSF t $PSOJTBSFMBUJWFMZTNBMMVTFSJOUFSNTPGJSSJHBUJPO"DSPTTUIF64UIFBDSFTPGDPSOJSSJHBUFE SFQSFTFOUPGUIFUPUBMJSSJHBUFEBSFB)PXFWFSUIFWPMVNFPGXBUFSVUJMJ[FEJODPSOJSSJHBUJPO SFQSFTFOUTPOMZPGBMMJSSJHBUJPOXBUFS WaterUtilization:AnAnalyticalWhitePaper ForNCGAbyDr.J.McLaren,StrathKirnInc. CONTENT 1. 2. 3. 4. 5. DefiningtheBasicIssueandtheGlobalWaterSituation OverallUSWaterSituation(SupplyandUtilization) CornWaterUtilization FutureNeeds&Issues References&Appendix 1. DefiningtheBasicIssueandtheGlobalWaterSituation Trendsinwaterutilizationareshowingthatcontinuousimprovementisnowunderwayinmany countries,yetnumerouschallengesremainintherealmofwater.Forexample,someofthetopissues include:populationpressures,infrastructureneeds,foodproductionandagriculturalchanges,energy generation,aneverchangingclimate,andenvironmentalconcerns.Whiletheseissuesareimportant, anddeserveattention,thereisalargerunderlyingproblemrelatedtowaterinthatthefundamental watersituationisnotwelldefined,thedataisnonuniform,thedefinitionsarevaried(andoften technicallyinaccurate),andwaterisoftenapoliticalhammerwhichleadstoemotionalstatementsand actions.And,asillogicalasitsounds,allofthisonaplanetwherewatercovers~70%ofthesurface. Inordertodevelopsolutionstoaproblemitisfirstimportanttoproperlydefinethesituationinrealistic terms,andtoidentifythetoppriorityissuesforresolution.Humanstalkalotabout“wateruse”but whatdoesthatreallymean?Areweremovingwaterfromtheplanet?Arewechangingitintosomething else?Or,arewejustmovingitaroundfromplacetoplace?AccordingtoConnoretal(2009),common definitionsaroundwaterinclude: x x x x Waterusereferstowaterthatisbeingputtobeneficialusebyhumans.Detailedwater accounting,however,requiresmoreprecisedefinition. Waterwithdrawalisthegrossamountofwaterextractedfromanysourceinthenatural environmentforhumanpurposes.Differentiatingwithdrawalsbytypeofsourceisusefulto understandthepressureputondifferentpartsofthesystem. Waterdemandisthevolumeofwaterneededforagivenactivity.Ifsupplyisunconstrained, waterdemandisequaltowaterwithdrawal. Waterconsumptionorconsumptiveusereferstothatpartofwaterwithdrawnthatis evaporated,transpired,incorporatedintoproductsorcrops,consumedbyhumansorlivestock, orotherwiseremovedfromtheimmediatewaterenvironment. Whilethesedefinitionsareagoodstartandhelpsetacommonbaseline,inmostsituations“wateruse” or“waterconsumption”isnotthetechnicalequivalentofwaterbeingchemically,orreactively, ByStrathKirnInc. Page1of34 removedfromtheenvironment,andthisaspectisnotdefined.Forexample,inindustrialprocesses watermaybeutilizedinachemicalreactiontomakeaparticularproduct(e.g.hydrationofapolymer forplasticfilm)or,alternatively,insomesituationsitmaybeutilizedforcoolingandthenberecycled. Inonesituationwaterisused(noteasilyrecoverable)andintheothercasewaterisutilizedbymovingit fromoneplaceintheenvironmenttoanotherplaceintheenvironment.Inagriculture,watermaybe “used”inphotosynthesis,whereH2Oisphysicallysplitintohydrogenandoxygenandthehydrogenis incorporatedintofixedcarbonbasedmaterialsforfoodandenergy.Or,formostcropsituations,water ismovedinanaturalprocesscalledevapotranspiration,wherewatermovesfromthesoiltotheairvia theplanttissuesresultinginacoolingeffect.Incaseofphotosynthesis,wateris“used”andis permanentlyremovedfromthetotalwaterpool,whileinthecaseofevapotranspirationwaterismoved fromoneplacetoanotherintheenvironment. Therefore,theinterventionofhumansdoesnotreallycauseproblemswiththe“use”ofwater,but ratherwiththemovementofwaterfromoneplacetoanother,andwiththerateatwhichthatwater moves.Thesolutionstoeachoftheseissuesarelikelytobequitedifferent. Innature,watercanbefoundasasolid(ice),liquid,orgas,andiscontinuallymovingamongthetypes andfromoneplacetoanother.Thisprocessiscalledthehydrologicorwatercycle: Waterevaporatesfromtheoceanand,asitreachescooleraltitudes,thevaporcondensestoform clouds.Cloudsmaymovearoundbutwithinafewdaysthewaterreturnstothesurfaceasprecipitation. Muchoftheprecipitationreturnsthewaterdirectlytotheocean,butabout25%fallsoverland.From theground,watermayevaporateagain,orpenetratethesurfaceandbea)takenupbyplantsandmove backintotheatmospherebytranspiration,b)enterintotheriver/lakesystemtobeevaporatedor ByStrathKirnInc. Page2of34 carriedbacktotheocean,orc)bestoredformanyyearsinundergroundaquifers.Ingeneral,thereis continuousmovementofwater,buttheactualratesofmovementandresidencetimeinvarious locationsdependonseveralfactors,includinganthropogenicintervention.Forexample,theaverage residencetimeintheatmosphereis79dayswhileundergroundaquiferresidencetimecanbeover 100,000years. Thesizeofthevariouslocationreservoirsisalsoimportant,andmeaningfulrelativetotheflux(outand in)rates,andhowtheseareimpactedbyhumanactions.Currentestimates(Gleick,1996)putthe world'stotalwatervolumeat~332.5millioncubicmiles,with~97%beingsaltwater.Ofthe~3%total freshwater,abouttwothirdsisheldiniceandglaciers,and~30%isintheground.Rivers,lakesand otherfreshwatersurfacevolumesareonly~23,000cubicmiles(0.007%total),yethumanstendto focusonthissmallamountofwaterratherthanonthemassivevolumesinotherlocations.These relativevolumesaredepictedinthefollowingdiagram: Rivers 100% Swamps 80% 40% 100% Ground 80% Fresh 100% 20% 0% 60% Ice 40% 80% Surface 23 K miles3 ~0.007% total 20% 60% Saline Lakes 60% Surface . 0% 40% Freshwater 20% 10 MM miles3 ~3% total 0% Earth 332 MM miles3 Intheabovediagram,thecirclesprovideavisualrepresentationofthelargesizedifferencesinvarious locations,andthenumberprovidesanestimateofthetotalvolumesincubicmiles. Inadditiontothelargedifferencesinlocationpoolsizes,itisimportanttounderstandtheflowrates betweenthevariouslocations.Thefollowingdiagramprovidesaglobalestimate(WW2010,2009)ofthe mainflowratesbetweenmajorwaterlocations,anddemonstratesthebalanceachievedinthe hydrologiccycle: ByStrathKirnInc. Page3of34 Atmosphere 0.013 X 1015 m3 Evaporation 361 X 1012 m3 Evapotranspiration 62 X 1012 m3 Precipitation 324 X 1012 m3 Precipitation 99 X 1012 m3 Land 34 X 1015 m3 Oceans 1,350 X 1015 m3 Runoff 37 X 1012 m3 Onaglobalscalethelocationsizesremainconstant,withtheevaporationbeingbalancedbythetotal returnvolumesviaprecipitationandrunoff.Notethatwaterdoesnotdisappear:i.e.itisnot“used”but rathermovesfromlocationtolocation.Theenergyrequiredtodrivethemovementaroundthe hydrologiccycleisobtainfromthesun. Transpirationisthemovementofwaterthroughaplant,tocarrynutrientsandgeneratecooling,and accountsforabout10%ofallevaporation.Watermovementawayfromafieldsurfacecanbevia leaching,evaporation,ortranspiration:inmanysituationsthesearecombined,andcalled evapotranspiration.Theprocessofphotosynthesisdoes“use”asmallamountofwaterbutthisisnot measurableontheglobalscale. 2. OverallUSWaterSituation Supply&Reserves Ithasbeencalculatedthat,onaverage,the48continentalstatesreceiveenoughprecipitationinone yeartocoverthelandtoadepthof~30inches(USGS,2009).Thisexamplesuggeststhatthereisnoreal shortageofwaterfallingintheUSbut,inreality,showshowaveragescanbemisleading. Clearly,theoverallUSprecipitationisconsiderablebutdoesnotoccurinauniformdistribution,and evaporationisnotuniform,leadingtosomewetareascontrastedwithdryareasacrossthecountry(see chartsbelow).However,thisexampledoeshighlightthepointthatwaterissuestypicallyarisedueto locationratherthantotalvolume.Theadditionaldimensiontobeconsideredistime,sinceprecipitation andflowratesbetweenlocationsmayvaryovertime. ByStrathKirnInc. Page4of34 Theannualaverageprecipitationtrend,overthepastcenturyintheUS,showsaveryslightincreasein rainfall(approx0.17inch/decadeincrease):asshowinthefollowingchartwithdatafromNCDC(2009): Century average = 29.19 inches/yr Trend line = 0.17 inches/decade Thedistributionofprecipitationisdemonstratedbymappingtheannualaveragerainfallover18902002 (Reillyetal,2008): Annual average rainfall 1890-2002 Thisprecipitationistheresourcethatcurrentlyaccountsforevapotranspiration,runoffviastreams,and rechargeoflakesandgroundwateraquifers.Thus,itisnotallavailableforinterceptionbyhumans.The followingchartshowsanestimateoftheprecipitationavailableforrunoffandrecharge,over1943 ByStrathKirnInc. Page5of34 2002:calculatedasthedifferencebetweenmonthlyprecipitationandmonthlypotential evapotranspiration,thensummingthenonzeromonths(Reillyetal,2008): Monthly rainfall minus evapotranspiration Summed over non-zero months Runoffimpactsstreamflowwhichishighlyvariableforanyparticularlocationovertime.Realtimedata isnowavailabletotracksuchchanges(USGS,2009),forexample: Real-time stream flow compared to historical daily flow Theestimatedaveragewateravailableforrecharge(Reillyetal,2008)hasbeenestimated(not necessarilyaccurateforallconditionstoday,butgivesanapproximationofthedistribution).This potentialrechargecapabilitycanbecomparedtothelocationsofthegroundwateraquifers,asshown inthenexttwocharts: ByStrathKirnInc. Page6of34 Distributionoftheaverage availablewaterforrecharge. [At1kmresolutionandforthe period19511980]. TheUShasover60large aquifers,withthemain30aquifersaccountingfor~94percentofthetotalgroundwaterwithdrawals forpublicsupply,irrigation,andselfsuppliedindustrialusescombined: ByStrathKirnInc. Page7of34 OtherwaterreservesincludetheGreatLakes(sharedwithCanada),withatotalvolumeof~2,900mile3 whichis21%ofthetotalsurfacefreshwaterontheplanet.AlltheotherUSlakes,rivers,andreservoirs areestimatedat2,540mile3.However,fromthepreviousdistributionchartsitisclearthatmostofthe lakeresourcesarenotinareaswherewaterdeficitsarecommon.MuchofthewesternUnitedStates, exceptforsomecoastalareas,hasfarlesswateravailableforgroundwaterrechargeandusethanthe restofthecountry.Thefollowingcharthasbeencompiledfromvariousdata(seeReillyetal,2008)and showsareasoflittleornowaterdeficiency,areasofseasonalmoisturevariation(summerdeficiency andwintersurplus),andareaswithlittleornowatersurplus: Finally,thereisalargewaterresourceintheUScoastline,althoughthistendstobeignoredduetothe salinenatureofthewater.Inthefuture,thisresourcewillbecomeakeysourcefromwhichtomove watertoirrigate,propagate,utilize,andevenrechargetheaquifers. ByStrathKirnInc. Page8of34 Utilization TheUSGShascompileddataonwaterwithdrawalsbystate,sourceofwater,andcategoryofuse,at5 yearintervalssince1950(USGS,2009B).Themostrecentreportreleasedis"Estimateduseofwaterin theUnitedStatesin2000",andmarks50yearsofwaterusedata.(notethat2005dataisstillunder analysisandisprojectedforreleasearoundmid2009).WhileUSGSreferstowateruse,itshouldbe keptinmindthatthiswaterisnot“used”butrather“utilized”forvariouspurposesbymovingitfrom onelocationtoanother,orbymovingfromalocationforaperiodoftime.Therearemultiple dimensionstowaterutilization:e.g.geographicalfactors,saline/freshwater,typeofutilization,sourceof withdrawal,returntorechargerates,qualitychanges,andtemporalpatterns.Dealingwitheach dimensionandtheinteractionsbetweenthefactorsresultsinhundredsofviews.Forthisreport,we includethehigherlevelviewsforeachtypeofutilizationplussomeadditionaldetailforspecificselected situationsandgeographies. From1950to1980,therewasincreasingwaterutilizationandagrowingconcernthat,withpopulation andeconomicgrowth,therewouldbealargeincreaseinthevolumerequired.However,duetowater awareness,economicfactors,andnewertechnologiesbeingapplied,watervolumeutilizationhasbeen aboutflatsincearound1980,despitepopulationandeconomicgrowth.Thesetrendsareshowninthe followingchartwithdatafromUSGS(2009B),withdetailsshownintheappendix: Atthelastofficialestimate,in2000,some408Bgal/daywerewithdrawnforallusesduringtheyear, andthatwaslessthanin1980:waterisnowbeingutilizedmoreefficiently.Decreasesintotalvolume occurredinthermoelectric,irrigation,otherindustrial(e.g.mining/manufacturing)applications,which morethanoffsetincreasesinpublicsupply,ruraldomesticsupply,livestockandaquaculture.[Itwillbe interestingtoseeifthetrendscontinuedthrough2005,whenthemostrecentdataarereleased.] ByStrathKirnInc. Page9of34 ThermoelectricPower(50%of2000total) NotethathydroelectricpowerisconsideredaninstreamuseandisnotincludedintheUSGSusereport. Waterwithdrawalforcoolingatthermoelectricgenerationfacilitiesaccountsfor~50%ofthetotalwater utilizedintheUS(~3%increasefrom1995to2000).Surfacewaterwasthesourcefor>99%ofthese withdrawals,and~30%wassurfacesalinewater.Thefollowingchartshowsthedistribution(USGS, 2009B): Freshandsalinewaterwithdrawalsintheeasternstateswere83percentofthetotal.Texasisthesingle largeststateforthistypeofutilization.ThestatesaroundtheGreatLakeswithdrawahighvolumefor cooling–theelectricitygenerationfacilitieswereoftendesignedtohaveaccesstothiswaterresource. ByStrathKirnInc. Page10of34 PublicWaterSupply(13%of2000total) Publicsupplyisdefinedaswaterwithdrawnbypublicandprivatewatersuppliersthatfurnishwaterto atleast25peopleorhaveaminimumof15connections,andmaybedeliveredtousersfordomestic, commercial,industrial,orthermoelectricpowerpurposes.Thepublicsupplywithdrawalsaremostlyall freshwater.Publicsupplywithdrawalswere~13%oftotalwithdrawalsand~63%iswithdrawnfrom surfacesources.Stateswiththelargestpopulationswithdrewthelargestquantitiesofwater:California, Texas,NewYork,Florida,andIllinoisaccountedfor40percentoftotalpublicsupplywithdrawals.The geographicdistributionofpublicsupplywithdrawalsisasfollows(USGS,2009B): In1950,only~62%oftheUSpopulationreceivedwaterfrompublicsupplywhileby2000thathadrisen to~85%.Thetrendtomorepublicsupplywaterisexpectedtocontinue. ByStrathKirnInc. Page11of34 IndustrialWater(5%of2000total) Notethatthedataforthissectionrefersto“selfsupply”industrial,whileinrealityadditionalindustrial watermaybesuppliedviathepublicsupply.Industrialwaterutilizationwas~5%ofthetotal.Utilization andusepurposesincludefabricating,processing,washing,diluting,cooling,ortransportingaproduct; incorporatingwaterintoaproduct;orforsanitationneedswithinthemanufacturingfacility.Examples ofindustrieswithlargewaterutilizationinclude:food,paper,chemicals,refinedpetroleum,andprimary metals.In2000,surfacewaterwasthesourcefor82percentoftotalindustrialwithdrawals.Nearlyall (92percent)ofthesurfacewaterwithdrawalsandnearlyall(99percent)ofthegroundwater withdrawalsforindustrialusewerefreshwater.For2000,totalindustrialwithdrawalswere11percent lessthanduring1995.Asshowninthefollowingchart(USGS,2009B),Louisiana,Indiana,andTexas accountedforalmost38percentoftotalindustrialwithdrawals.Thelargestfreshsurfacewater withdrawalswereinLouisianaandIndiana,whichtogetheraccountedfor32percentofthetotalfresh surfacewaterwithdrawals.ThelargestfreshgroundwaterwithdrawalswereinGeorgia,Louisiana,and Texas,whichtogetheraccountedfor23percentofthetotalfreshgroundwaterwithdrawals.Texas accountedfor71percentofthesalinesurfacewaterwithdrawalsforindustry. ByStrathKirnInc. Page12of34 Other(45%of2000total) Miningwateruseiswaterfortheextractionofminerals,coal,iron,sand,andgravel;liquidssuchas crudepetroleum;andnaturalgas.Thecategoryincludesquarrying,milling(crushing,screening, washing,andflotationofminedmaterials),reinjectingextractedwaterforsecondaryoilrecovery, andotheroperationsassociatedwithminingactivities.Allminingwithdrawalswere~1%ofthe2000 total. Domesticwateruseiswaterutilizedforarangeofpurposesincluding,drinking,preparingfood, bathing,washingclothesanddishes,flushingtoilets,andwateringlawnsandgardens.Waterfor domesticusemaybedeliveredfromapublicsupplier(reportedunderpublicsupply)orbeself supplied–typically,fromawell.Forselfsupplieddomesticwater,thewithdrawalswere~1%ofthe 2000total. Livestockwateruseiswaterassociatedwithlivestockwatering,feedlots,dairyoperations,andother onfarmneeds.Alllivestockwaterwithdrawalswerelessthan1%ofthe2000total. Aquaculturewateruseiswaterassociatedwithraisingorganismsthatliveinwaterforfood, restoration,conservation,orsport.Aquacultureproductionoccursundercontrolledfeeding, sanitation,andharvestingproceduresprimarilyinponds,flowthroughraceways,and,toalesser extent,cages,netpens,andclosedrecirculationtanks.Allaquaculturewaterwithdrawalswere almost1%ofthe2000total. Irrigation(40%of2000total) Irrigationwaterutilizationvolumewas~40%ofthetotalandincludedwaterthatisappliedforpre irrigation,frostprotection,applicationofchemicals,weedcontrol,fieldpreparation,cropcooling, harvesting,dustsuppression,leachingsaltsfromtherootzone,andwaterlostinconveyance.Irrigation ofgolfcourses,parks,nurseries,turffarms,cemeteries,andotherselfsuppliedlandscapewateringuses alsoareincluded.Allirrigationwithdrawalswereconsideredfreshwaterand58%wastakenfrom surfacewatersources,butthecentralstateshadthemajoritytakenfromgroundwatersources.The averageapplicationratewas2.48acrefeetperacre,acrossthe61,900irrigatedacresreportedin2000. Thefollowingchart(USGS,2009B)showsthatthemajorityofirrigationwithdrawals(86percent)and irrigatedacres(75percent)wereinthe17conterminouswesternstates,especiallywhereaverage precipitationwaslessthan20inches.Thetop5statesforirrigationvolume,inthe2000survey,were California,Idaho,Colorado,Nebraska,andTexasandaccountedforover50%ofthetotalirrigation waterwithdrawals.CaliforniaandIdahoaccountedfor40percentofsurfacewaterwithdrawals. CaliforniaandNebraskaaccountedforonethirdofgroundwaterwithdrawals. Estimatesoftotalirrigationwithdrawalsfor2000wereabout2percentmorethanduring1995.Surface waterwithdrawalswereabout5percentlessfor2000comparedto1995,butgroundwater withdrawalswere16percentmore.Theestimatednumberofirrigatedacreswasabout7percentmore, whichresultedinaslightlyloweraverageapplicationratefor2000. ByStrathKirnInc. Page13of34 About61.9millionacreswereirrigatedin2000.ApplicationratesweregreatestinthearidWestandthe Mountainstateswheresurfacewaterwasavailableandsurface(flood)applicationwasthepredominant methodofirrigation(29MMacres).InArizona,Montana,andIdaho,applicationratesexceeded5acre feetperacre.statesthatutilizedtheHighPlainsaquifer(Nebraska,Texas,Kansas,andOklahoma)orthe MississippiRiveralluvium(Arkansas,Missouri,Mississippi,andLouisiana)forirrigationreliedmostlyon groundwaterandhadapplicationratesrangingbetween1and2acrefeetperacre.Sprinklerirrigation (28MMacres)wasthepredominantapplicationmethodintheCentralPlainsstatesofKansas, Nebraska,NorthDakota,Oklahoma,SouthDakota,andTexas.Californiaaloneaccountedfor72percent oftheirrigatedacreagebymicroirrigationsystems(4MMacres).Surfaceirrigationwasthe predominantapplicationmethodinArkansas,Louisiana,Mississippi,andMissouri. ByStrathKirnInc. Page14of34 Otherirrigationinformation TheUSDAcarriedoutaspecificsurveyonirrigationasasupplementtothe2007AgriculturalCensus. TheresultswillbeavailableNovember30,2009. CurrentUSDAInformationforallcrops WhiletheUSGShasirrigationvolumeat61.9MMacres,theUSDAirrigationacresintherangeof5055 MMacres:webelievethedifferencehereisthatUSGSincludesgolfcoursesandotherlandscapeareas, whiletheUSDAareaisbasedonactualcrops.TheUSDAreportsthefollowingregionalirrigationareas: 1 2 2 1997 1969 Percent 2002 Percent Percent 1,000 acres 3 39,100 100 56,289 100 55,311 100 Eastern regions 4,200 11 12,308 22 13,288 24 Northern Plains 4,600 12 10,312 18 10,907 20 Uni ted States 1,000 acres 1,000 acres Region or crop Region 4 Southern Plains 7,400 19 6,273 11 5,592 10 Mountain 12,800 33 13,603 24 13,011 24 Pacific Coast 10,000 26 13,713 24 12,440 22 Corn for grain 3,200 8 10,816 19 9,710 18 Other grains 9,200 24 9,245 16 7,703 14 700 2 4,238 8 5,460 10 3,100 8 5,152 9 4,802 9 Crop Soybeans Cotton Alfalfa hay 5,000 13 6,087 11 6,809 12 Vegetables and orchar 3,900 10 6,722 12 6,734 12 14,000 36 14,030 25 14,093 25 5 Other lands in farms 1 Census of Agriculture. 2 Census of Agriculture, adjusted for non-response. 3 Includes Alaska and Hawaii. 4 Northeast, Appalachian, Southeast, Lake States, and Corn Belt. 5 Other uses wi th more than 500,000 irrigated acres include corn silage, other hay, dry beans, potatoes, sugar beets, nursery crops, cropland pasture, and other pasture. Source: USDA, Census of Agricul ture, selected years. Thedatasupporttheobservationthatirrigationinmostregionsisflattodownintermsofacres,except intheEasternregionwhereirrigatedacreshaveincreasedslightlyinrecentyears.Thesetrendswereup until2002andthe2007dataarenotyetreleasedbutweknowforexamplethat2007cornirrigated acreswerereportedat13.2MMacres–aconsiderableincreaseover2002. Whileacresmayhaveincreased,thevolumeofwaterutilizedforirrigationhasdeclined(orbeenflat) since1980.Theapplicationrateperacrehasdeclined,asshowninthefollowingchart: ByStrathKirnInc. Page15of34 Thistrendforlesswaterapplicationperacresupportsthefactthattherehavebeenconsiderable improvementsinwateruseefficiencyacrossmostcropsectors:mostlyduetochangesinirrigation practiceandsystems.TheUSDAdatafromspecialFarmandRanchIrrigationSurveysassociatedwith eachagriculturalcensus(USDA,2004)alsosupportsthistrendasfollows: System 1979 1998 2003 Change Change 1979-98 1998-2003 Percenta Million acres b All systems 50.2 52.6 8 -3 Gravity-flow systems 31.2 26.8 23.1 -14 -14 Sprinkler systems 18.4 24.6 26.9 34 9 Center pivot 8.6 18.5 21.3 115 15 54.2 Mechanical move 5.1 3 2.7 -41 -10 Hand move 3.7 1.9 1.7 -49 -11 1 1.2 1.2 20 0 (drip/trickle and micro-sp 0.3 2.2 3 633 36 Subirrigation 0.2 0.6 0.3 200 -50 Solid/permanent set Low-flow irrigation a Numbers in ( ) indicate a decrease. Based on USDA-NASS 2004 revised estimate for 1998 due to re-weighting for undercoverage. (The sum of subcategories will differ slightly from aggregates because of rounding error.) Source: USDA-ERS, based on Farm and Ranch Irrigation Surveys Themaintrendsinthedataindicatethatgravityflowsystemshavebeendeclining,lowflowtype systemshavebeenincreasing,andsubirrigationhasbeenhighlyvariable(lowbaseacres).Thetotal acresreportedasirrigatedinthisdataislessthantheUSDAreportedinthecensusdata,andweare uncertainwherethedifferentialarises.Therefore,weusethecommonlyquoted55MMacresforcrop irrigationacrosstheUS.Thedistributionofallagriculturalirrigationis: ByStrathKirnInc. Page16of34 Distribution of irrigated land in farms, 2002. Total area is estimated at ~55 MM acres Thedistributionofirrigationbycropintermsofacresandinrelationtothe%oftotalharvested acresisasfollows: MM acres, irrigated As % of total harvested acres 15% 14 12 10 33% 8 8% 6 80% 26% 7% 66% 4 13% 2 0 Cornhasthehighestnumberofacresirrigatedbutitisarelativelylowpercentofthetotalcorn acresharvested. ByStrathKirnInc. Page17of34 Othernotesonoverallirrigationofcrops TheUSDAoftenquotesirrigationasbeing“80%ofconsumptivewateruse”whichisamisleading numberbasedonthedefinition–whichexcludeswaterutilizationinthermoelectricsituations.Aswe sawfromtheUSGSwatervolumedata(previouscharts),thermoelectricisactuallythelargestvolumeof waterwithdrawalsand,whenthatisincludedthenirrigationaccountsfor~40%ofthewatervolume utilizedacrossthecountry(yr2000numbers). NOTE:thetotalwithdrawalsofwaterforirrigationcanbecalculatedas: 61,900,000acresX2.48acrefeet=153,512,000acreft/year TheUSDAestimatesthat,asawhole,theUShasabundantfreshwatersupplies.Annualrenewable suppliesinsurfacestreamsandaquiferstotalroughly1,500millionacrefeetperyear(maf/yr). Onaggregatetherefreshvolume(streamrunoffplusaquiferrecharge)is10Xhigherthanthewater withdrawalvolume.Wheredoesthatwatergo?Eitherrechargeorrunoffexcesstothesea. Ofcourse,aspointedoutbytheUSDA,anabundanceofwaterintheaggregatebeliesincreasingly limitedwatersuppliesinmanyareas,reflectingtheunevendistributionoftheNation'swaterresources. InthearidWest,morethanhalfoftherenewablewatersuppliesareconsumedundernormal precipitationconditions.Indroughtyears,wateruseoftenexceedsrenewableflowthroughthe increaseduseofwaterstoredinaquifersandreservoirs.Whiledroughtsexacerbatesupplyscarcity, waterdemandscontinuetoexpandwithresultingreallocationsamonguses(e.g.urbangrowth). Inotherwords,watersupplymaybeanissuebutthisonlyarisesinparticularareasforparticularcrops withparticulartypesofirrigationandisnotauniversalnationalproblem. ByStrathKirnInc. Page18of34 3. CornWaterUtilization Irrigatedcornarea Theestimatednumberofacresforirrigatedcornvariesbetweenreports:USDAdatabasedonthe CensusofAgricultureestimatesthat~15%ofcornacresreceiveirrigation,andvariousUSGSdata indicatethatirrigatedcornis~15%oftotal.Thedistributionofacresisasfollows: Irrigated corn, 2002 census Irrigated corn, 2007 census 1 dot = 2000 acres Total = 13.16 MM acres 15% of harvested area Total = 9.71 MM acres 14% of harvested area ThemajorityofirrigatedacresareinNebraska,Kansas,andNTexas,roughlyfollowingthepositionof theHighPlainsaquifer,andthePlatteRiverinNebraska.Smallerareasofintenseirrigationalsooccurin California,Michigan,andalongtheMississippiriversystem. Normalneedsofcorn(focusonNebraskasinceithaslargestirrigationarea) Cornrequireswaterforgermination,photosynthesis,cellturgor,andtranspiration(watermovementto theatmosphereviamovementthroughthegrowingplant).Oftheseprocesses,onlyphotosynthesis actually“uses”water(togenerateoxygenandhydrogen).Transpirationinvolvesthelargestvolume utilizationofwater,coolingtheplantasitmovesthroughandbacktotheatmosphere.Some evaporationofwateroccursatthesoilsurface,especiallypriortocanopyclosure:thisistypically includedinthetotalwaterreturntotheatmosphereandiscalledevapotranspiration(ET). WhileNebraskahasalargeareaofirrigatedcorn,thisdoesnotmeanthatallthoseacresmustreceive 100%oftherequiredwaterfromirrigation.Thereisanoptimumvolumeofwaterrequiredandthisis calculatedbasedonETneed,rainfall,andsoilholdingcapacity(Nebguide,1996).Toomuchirrigation hasacostpenaltyandcanmovenutrientsoutoftherootzone,toolittleirrigationresultsinahighyield ByStrathKirnInc. Page19of34 penalty.TheyieldimpactofreachinganoptimumETisshowninthefollowingchartofcornyield, irrigationandET,inNebraska: TheoptimumETforcorninNebraskaranges from23”(West)to28”(East).SpecificET Irrigation(in) 0 ET(in) 13.5 valuesarepublishedforspecificlocations. GrainYield(bu/ac) 59 (SeeNebguide,1996) Grain/ET(bu/acin) 4.3 Intermsofproduction,thistranslatesto4.3bu/infordrylandand7.1bu/inforirrigationuptothe maximumrequiredETamount.Theinterestingoutcomeofthisdataisthatunderdrylandconditionsthe cornplantisstressedtothepointofbecominginefficientinproduction.Theadditionofevensome irrigationwateractuallyincreasestheefficiencyofwaterutilization(lesswaterperunitofgrain produced),asshowninthefollowingchart: Full Limited Irrigation Irrigation 6 13.8 19.1 25.3 135 178 7.1 7.1 Dryland Water Utilization (ET): gal per bu grain Increased water used efficiency Corn yield in bu/acre 59 7000 6000 178 135 5000 4000 3000 2000 1000 0 Irrigation = Dryland 0 Limited 6” Full 13.8” Inthiscase,irrigatingtofullETrequirementprovidedthehighestgrainyieldandrequiredthelowest amountofwaterperunitgrainproduced.Irrigationactuallyimprovedtheutilizationofwaterunder conditionswhereETwasnotmetfromsoilwateralone. Thecornthatisirrigated,acrosstheUS,onaveragereceives~10acreinchesofirrigationwater(~750 gal/acre/day,ifcorngreweverydayoftheyear.)Ifthatsamewaterwereappliedtoallcornacresit wouldrepresent1.5acinadditionalwater:putincontextthisisonlyabout3%oftheaveragerainfall oneachacreofcorngrown. ByStrathKirnInc. Page20of34 AllwaterrequiredtooptimizeETneedreturnstotheatmospherewhere,within19days,itreturns againasprecipitation.Thus,theissueofnotthatgrowingcorn“uses”water,itonlyborrowsthewater forashorttime.Theonlyissuethatmightbecomeimportantisthatsomeirrigationwaterismoved fromtheundergroundaquifertotheatmosphereatafasterratethanwouldotherwiseoccur.Thenthe rateofrechargeoftheaquiferfromprecipitationandrunoffalsobecomesimportant(seesectionon HighPlainsAquifer). Forcomparison:overthecourseofagrowingseason,eachcornplantwillmoveabout14gallonsof waterthroughitselfandbackintotheatmosphere.AtypicalpersoninAmericawilldrinkmorethanthat amounteverymonth. Offtake WhileETmoveswatertotheatmosphere,asmallamountofwateristakenwiththeharvestedcrop. Typically,1420%ofthegrainweightismoisturecontent.Thisamountisequalto~150galH2O/acre corngrown,whichisA)asmallamount,B)availableforutilizationintheprocesswherecornisused (livestockfeedorfuel/industrialprocessing).Some2Bgalwaterisexportedinthecorngrainandthis relativelysmallamountcouldbeconsideredtobe“used”sinceitisremovedfromthenationalwater budget(butstillremainsintheglobalwaterpool). Processing Muchhasbeenmadeofthewater“use”duringthecommercialprocessofgeneratingethanolfromcorn grain.Again,thevastmajorityofthiswaterisnot“used”butisutilizedtofacilitatethefermentation process.Watertreatmentandanevergrowingvolumeofrecycledwateratethanolfacilities,minimizes thevolumethatutilized.Thefollowingchartshowsthecomparativeutilizationinprocessing: Comparative utilization of water Refining one barrel of oil One pound of plastic One pound of chicken One foot-board lumber Pre-2000 ethanol plants Current ethanol plant New ethanol plant 0 10 20 30 40 50 60 Gallons of water to facilitate the production of one gallon of ethanol or the unit product noted ByStrathKirnInc. Page21of34 Anotherperspectiveonthisisthatmostethanolisusedastherequiredoxygenateforoctanevalueand cleaningburninggasoline,whichmeansthatover95%ethanolisusedinE10blends.Onegallonof formulatedgasolinerequires~27.5galwatertoproduce.Therelativeproportionsofthatprocesswater areasfollows: The process for making one gallon of formulated gasoline requires water. The relative amount of water utilized is: From making ethanol Related to oil Whilemakingethanolfromcornrequireswater,thecomparativeamountutilizedisrelativelysmalland theamountthatis“used”isnegligible. HighPlainsAquifer ThemajorityofirrigatedcornliesovertheHighPlainsaquiferandtheremovalofwaterwithoutanyre chargecouldbealongtermissue–forfutureirrigationofcornitselfandforotherremovalneeds. UnderstandingthesituationanddynamicsoftheHighPlainsaquiferisimportantforfutureactions. TheHighPlainsaquiferlaysunder8statesandhasanestimatedareaof174,000mile2.Theirrigated landoverthisaquiferrepresents~27%ofthetotalUSirrigatedarea,andtheaquifersupplies~30%of thetotalirrigationwaterutilized.Theaquiferalsoprovidesdrinkingwatertoover80%ofthepeople livingabovetheaquiferboundary(~2.5MMpeople). TheHighPlainsaquiferwascreatedprimarilybyageologicalunitcalledtheOgallalaFormation (NebraskaSandHillsandalluvialdeposits),whichunderlies~80%oftheHighPlains.Saturatedthickness oftheHighPlainsaquiferrangesfrom0tomorethan1,000feetinNebraska,withanaverageofabout 200feet.Depthtowaterrangesfrom0to500feet,withanaveragedepthofabout100feet.Ground watergenerallyflowsfromwesttoeastanddischargesnaturallytostreamsandspringsandby evapotranspirationinareaswherethewatertableisnearthelandsurface.Pumpingfromnumerous irrigationwellsacrosstheareaalsocontributestogroundwaterwithdrawal.Currently,precipitationis theprincipalsourceofrechargetotheaquifer.Thelocationis: ByStrathKirnInc. Page22of34 HighPlainsgroundwaterisutilizedprimarilytogrowcropsforthenation;irrigationaccountsfor94 percentofthegroundwateruse.Thesecondlargestgroundwateruse,418milliongallonsperday (MMgal/day),isfordomesticdrinkingwater.Almost2millionpeoplerelyontheHighPlainsaquiferfor theirdrinkingwater.Surfacewaterisusedfordrinkingwaterprimarilyinthelargercitiesnearthe peripheryoftheHighPlainsaquifer(Cheyenne,Wyoming,andLubbock,Odessa,andAmarillo,Texas). Otherutilizationofaquiferwaterincludeslivestock(222MMgal/day),mining(210MMgal/day),and industry(155MMgal/day).TheirrigationresultsinatypicalHighPlainsscene: Irrigation well from the aquifer Center Pivot Typical irrigated area TheUSGShasmadestatementslike: ByStrathKirnInc. Page23of34 “RegionalvariabilityofwaterlevelchangesintheHighPlainsaquiferresultsfromlargeregional differencesinclimate,soils,landuse,andgroundwaterwithdrawalsforirrigation.Withdrawalsgreatly exceededrechargeinmanyareas,causinglargewaterleveldeclines.Waterlevelshavedeclinedmore than100feetsinceirrigationbegan(1940's)inpartsofKansas,NewMexico,Oklahoma,andTexas.In someareas,becauseofwaterleveldeclines,irrigationhasbecomeimpossibleorcostprohibitive.” Inresponsetothisbelief,theU.S.GeologicalSurvey,incooperationwithnumerousfederal,state,and localwaterresourceagencies,beganagroundwatermonitoringprogramin1988toassessannual waterlevelchangeintheaquiferusingwaterlevelmeasurementsfrommorethan7,000wells. Changes in water level measured during 1980 - 1999 The100”declineisactuallyonlyinsmalllocalizedregions.Forsome99%ofallwaterlevelchanges between1980to1999,thedatashowarangefromariseof34feettoadeclineof67feet.Theaverage areaweightedwaterlevelintheHighPlainsaquiferdeclined3.2feetfrom1980to1999comparedtoa declineof9.9feetfrompredevelopmentto1980.Intheareaswithfrom50to175feetofwaterlevel declinefrompredevelopmentto1980,theaveragewaterleveldeclinefrom1980to1999was26feetor about1.4feetperyear.Thisdoesnotequatetotheheadlinesofa100’lossofwateracrosstheaquifer. Themostrecentdataavailableshowsthechangefrompredevelopmentto2005asfollows: ByStrathKirnInc. Page24of34 Changes in water level measured during from Predevelopment to 2005 Totalwaterinstorageintheaquiferin2005wasabout2,925millionacrefeet,whichwasadeclineof about253millionacrefeet(or9percent)sincepredevelopment.Comparingthedatainthetwocharts aboveitseemsthat: 1. Thedeclineinwaterlevelintheaquiferdoesnotcorrespondtothehighestnumberofcorn irrigatedacres.Infact,inNebraska,theaquiferwaterlevelseemstoberising. 2. Thedatafor2005seemstoshowmoreintensewaterlevelchangesinlocalizedareasbutnot acrosstheaquifer.Whydoeswaternotflowwithintheaquifer? 4.FutureNeeds&Issues Moretimelyinformationandavailabilityofcurrentdataisimportant.Atpresent,thedatabeingusedis possiblynolongerrelevant,orisnotaclearcurrentpicture.Forexample,theUSDAagricultural irrigationdataareallfromthe1990’sorbefore.TheUSGSusesolddatawithafewreferencestoearly 2000’sdata,thesurveyof2005isnotyetpublished.Manyofthedebatesarebasedonolddataandthe presenttrendisunclear.Forexample,inrecentyearsthenumberofacresirrigatedhasdeclined,orthe numberofacresirrigatedhasremainedflatwhilethevolumeofwaterutilizedhasdeclineddueto newermanagementtechniquesandbetterequipment–butthesefactorsareseldombroughtforthin thedebate. ByStrathKirnInc. Page25of34 Cornisarelativelysmallintermsofirrigation.AcrosstheUS,theacresofcornirrigatedrepresent21% ofthetotalirrigatedarea.However,thevolumeofwaterutilizedincornirrigationrepresentsonly7%of allirrigationwater.Moreover,theprimaryareaforcornirrigationliesovertheHighPlainsaquiferwhich doesnotcorrespondtothemostintensewaterutilizationforirrigation(seefollowingchart): Clearly,Californiaiswherethemainissueexistsinrelationtowateravailabilityforirrigation.ForCAand otherlocalizedareas,someactionplanisrequiredtodealwithfutureneeds.Historically,increased waterdemandsweremetbyexpandingavailablewatersupplies.Actionssuchasdamconstruction, moregroundwaterpumping,andinterbasinconveyancearenotlikelytocontinueonanysignificant scale.Thereareseveralschoolsofthoughtthatevensuggestthefuturesupplyoffreshwater(via precipitation)willbedecreasedduetoconceptsaboutglobalwarming.Whilewecanfindevidencethat somewarminghasoccurredinurbansituations,wedon’tfindanysignificantwarmingintheMidWest, noranyrelationshiptorainfallpatterns,overthepast100years.Forexample,thefollowingchartsare justtwoexamplestations: Rainfall Temperature ByStrathKirnInc. Page26of34 Rainfall Temperature Futurewaterdemandswillrequireoneormoreofthefollowingsolutions: x x x x x x Reallocationofexistingsupplies:willlikelyimpactagriculturewithwaterbeingtakenforpublic utilization,overirrigation. Changeincropwaterneed.Weseethisasbeingverydifficultsinceloweringtranspirationhasa biologicallimitduetotheneedtocooltheplant.Droughttolerancegenesmayhelptosome extentbuttheirmodeofactionislikelytoberelatedtoturgorpressureratherthanloweringthe transpiration:yieldratio.Droughttolerancewillincreaseyieldinsomesituations,suchasminor waterstress,butwillnotovercomemajorwaterdeficit. Continuationofimprovementinwaterdelivery.Irrigationmanagement,efficiencyofwater delivery,betterequipmentwillallmakeacontribution. Recyclingmorewaterviaadvancedtreatmentsandreverseosmosis.Allindustrial,processand livestockwaterusecouldbefurtherrecycled–oftenwithinagriculture. Generatingmorefreshwatersupplywillneedtobeconsideredveryseriously,especiallyin California.Areasinproximitytotheseathatrequireadditionalwatercanusedesalinationwith shortandmediumdistancetransportinspecificpipelines.Thisisjustmovingwaterfromthe largestsourcetoanareathatrequiresmorewaterforutilizationbyallthehumanactivities. Inthelongerterm,theremayevenbeaneedtorunapipelinefromseasidedesalinationplants torechargethecentralaquifersystem.Thereisnorealshortageofwaterintheworld–justin somelocationsandthetechnologyexiststofixthat. Itisagrowingfashiontotalkabouttheworldshortageofwater–whichisastrangestatementwhen theplanetis70%coveredwithawatervolumeinexcessof330millioncubicmiles.Thecurrentsituation ismoreaboutcostthanitisaboutwater.Itreallybecomesaquestionofwhatvaluesocietyputson havingwateravailabletofacilitateprocessingandtheprovisionofusefulproducts.Giventhepricethat peoplepayforbottledwater(anotherformofredistribution)itseemsthatpipelinedeliveryof desalinatedwatershouldbequiteacceptable. ByStrathKirnInc. Page27of34 5.References Connor,R.,Faurès,JM.,Kuylenstierna,J.,Margat,J.,Steduto,P.,Vallée,D.,andvanderHoek,W. (2009).Chapter7:EvolutionofWaterUse.In,WaterinaChangingWorld.3rdU.N.WorldWater DevelopmentReport.UnitedNationsEducational,ScientificandCulturalOrganization(UNESCO)Natural Sciences,Paris,France. Gleick, P. H., (1996). Water resources. In Encyclopedia of Climate and Weather, Ed. Schneider, S.H., Oxford University Press, New York, pp.817-823. Hoekstra,A.Y.,andChapagain,A.K.(2007).WaterFootprintsofNations:Waterusebypeopleasa functionoftheirconsumptionpattern.WaterResourcesManagement,21,3548. NCDC(2009).NationalClimaticDataCenter,NOAASatelliteandInformationService. http://www.ncdc.noaa.gov/oa/ncdc.html NebGuide(1996).Evapotranspiration(ET)orCropWaterUse.UniversityofNebraska,Cooperative ExtensionInstituteofAgricultureandNaturalResources,NebGuideG90992A Reilly,T.E.,Dennehy,K.F.,Alley,W.M.,andCunningham,W.L.(2008).GroundWaterAvailabilityinthe UnitedStates:U.S.GeologicalSurveyCircular1323,70pp.Denver,CO. USDA(2004).FarmandRanchIrrigationSurvey(2003).Volume3,Part1,SpecialStudiesof2002Census ofAgriculture,AC02SS1.U.S.DepartmentofAgriculture,NationalAgriculturalStatisticsService. USGS(2006).WaterLevelChangesintheHighPlainsAquifer,Predevelopmentto2005and2003to 2005.ScientificInvestigationsReport2006–5324. USGS(2009).UnitedStatesGeologicalSurvey.http://www.usgs.gov USGS(2009B).USGSreportsonestimatedwateruseintheU.S.http://water.usgs.gov/watuse/ WW2010(2009).WeatherWorld2010ProjectattheUniversityofIllinois. http://ww2010.atmos.uiuc.edu/(Gh)/home.rxml ByStrathKirnInc. Page28of34 APPENDIX Oneestimateofglobalwaterdistribution: Watersource Watervolume,in cubicmiles Watervolume,in cubickilometers Percentof freshwater Percentof totalwater Oceans,Seas,&Bays 321,000,000 1,338,000,000 96.5 Icecaps,Glaciers,& PermanentSnow 5,773,000 24,064,000 68.7 1.74 Groundwater 5,614,000 23,400,000 1.7 Fresh 2,526,000 10,530,000 30.1 0.76 Saline 3,088,000 12,870,000 0.94 SoilMoisture 3,959 16,500 0.05 0.001 GroundIce& Permafrost 71,970 300,000 0.86 0.022 Lakes 42,320 176,400 0.013 Fresh 21,830 91,000 0.26 0.007 Saline 20,490 85,400 0.006 Atmosphere 3,095 12,900 0.04 0.001 SwampWater 2,752 11,470 0.03 0.0008 Rivers 509 2,120 0.006 0.0002 BiologicalWater 269 1,120 0.003 0.0001 332,500,000 1,386,000,000 100 Total Source:Gleick,P.H.,1996:Waterresources.InEncyclopediaofClimateandWeather,ed.by S.H.Schneider,OxfordUniversityPress,NewYork,vol.2,pp.817823. ByStrathKirnInc. Page29of34 Totalwaterwithdrawalsbywaterusecategory,2000.(fromUSGS) [Figuresmaynotsumtototalsbecauseofindependentrounding.Allvaluesareinmilliongallonsper day.—,datanotcollected] THERMOELECTRIC PUBLIC LIVE AQUA DOMESTICIRRIGATION INDUSTRIAL MINING POWER SUPPLY STOCKCULTURE STATE Fresh Fresh Fresh Fresh Fresh Fresh SalineFreshSaline Fresh Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Districtof Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts 834 80.0 1,080 421 6,120 899 424 94.9 78.9 11.2 28.9 28.5 286 66.8 56.2 13.3 0 0 0.18 — 2,440 1,250 250 244 1,760 670 383 416 525 753 102 199 110 12.0 85.2 135 122 33.2 21.6 27.5 41.2 35.7 32.5 19.4 — 34.9 37.6 41.9 109 111 — 7.34 — 824 739 77.1 42.2 4,290 1,140 364 17,100 154 101 21.5 3,710 29.3 1,020 5.84 42.4 126 1,140 Minnesota Mississippi 43.1 — 1.01 — 5,400 — 7,910 — 30,500 409 11,400 — 30.4 — 43.5 3.92 10.4 — — 198 537 — — 0.07 833 8.12 19.8 134 188 120 10.7 59.4 0 3.86 0 0.08 13.6 0 0 3.25 — 0 0 — — 27.4 140 85.7 8.17 2.78 0 23.7 153 — — — — — — — — 8.02 291 1.18 217 15.4 622 30.0 9.80 — 14.5 0.85 — 1,970 55.5 0 — — 391 0 — — 2,400 0 82.5 — 237 0 32.8 5.60 53.3 0 31.4 — 317 0 — 243 2,680 0 — — 247 0 — 0 0 — — — 0 0 0 — — — Saline Fresh Saline 8,190 0 9,990 0 33.6 0 161 144 100 0 6,720 8.17 2,180 0 10,900 0.08 352 12,600 38,40012,800 138 0 12,600 0 187 3,440 708 3,440 366 738 582 741 658 12,000 8,14012,000 3,250 61.7 6,410 91.7 0 0 640 0.85 0 0 19,500 0 11,300 0 13,700 0 6,700 0 10,100 0 2,540 0 3,360 0 2,260 0 6,610 0 3,260 0 4,160 0 5,610 0 10,400 0 113 295 504 295 20,100 6,500 641 19,500 13,700 10,100 3,360 6,610 4,160 10,400 799 19.6 — 239 201 11.3 — 698 0 — — 7,710 500 359 80.8 69.3 227 52.8 1,410 — — 371 154 242 0 588 0 — 0 — 2,270 362 0 148 Missouri 872 53.6 1,430 72.4 83.3 62.7 0 16.9 0 5,640 0 Montana Nebraska 149 330 18.6 48.4 7,950 — 8,790 93.4 — — 61.3 38.1 0 — — 0 128 4.55 110 2,820 Nevada 629 New 97.1 Hampshire NewJersey 1,050 NewMexico 296 NewYork 2,570 NorthCarolina 945 22.4 2,110 — — 10.3 0 — — 36.7 0 41.0 4.75 — 16.3 44.9 0 6.80 0 236 761 140 1.68 2,860 — 35.5 — 287 121 6.46 — — 7.88 132 10.5 297 293 0 110 0 — 0 — 0 36.4 0 — — 0 650 56.4 4,040 7,850 3,390 0 5,010 1,620 NorthDakota 63.6 11.9 145 — — 17.6 0 — — 902 0 1,470 134 31.7 25.3 1.36 807 0 88.5 0 8,590 Ohio ByStrathKirnInc. 79.7 31.4 142 189 65.8 227 8.31 0.02 36.8 0 — — 9,990 305 6,730 10,900 51,200 12,600 4,150 1,320 9.87 379 108 0 6,260 3,610 9.87 Total 0 9.69 10.4 — Michigan TOTAL 1,430 6,490 1,050 3,610 0 10,000 7,910 4,660 0 10,000 3,870 2,810 0 148 3,870 2,960 8,230 0 8,230 0 8,290 0 12,200 0 4.55 8,290 12,300 2,810 0 2,810 447 761 1,210 2,170 3,390 3,260 0 7,080 5,010 9,730 1,620 5,560 3,260 12,100 11,400 1,140 0 1,140 0 11,100 0 11,100 Page30of34 Oklahoma Oregon 675 25.5 718 151 16.4 25.9 195 0 2.48 256 0 1,760 256 2,020 566 76.2 6,080 — — — — 15.30 0 6,930 0 6,930 Pennsylvania 1,460 132 13.9 — — 1,190 0 182 0 6,980 0 9,950 0 9,950 RhodeIsland 119 8.99 3.45 — — 4.28 0 — — 2.40 290 138 290 429 SouthCarolina 566 63.5 267 — — 565 0 — — 5,710 0 7,170 0 7,170 SouthDakota Tennessee 93.3 890 9.53 32.6 373 42.0 22.4 — — — 5.12 842 0 0 — — — — 5.24 9,040 0 528 0 10,800 0 0 528 10,800 4,230 131 8,630 308 — 1,450 907 220 504 9,820 3,440 24,800 4,850 29,600 Utah Vermont 638 60.1 16.1 21.0 3,860 3.78 — — 116 — Virginia 720 133 26.4 — 1,020 125 3,040 WestVirginia 190 40.4 0.04 Wisconsin 623 96.3 Wyoming 107 6.57 4,500 PuertoRico 513 0.88 U.S.Virgin Islands 6.09 1.69 43,300 3,590 Texas Washington TOTAL 0 146 42.7 5.08 26.3 198 6.91 0 — — 62.20 355 0 0 — 470 53.3 — — 3,850 3,580 — — 577 39.9 — — 519 — — 968 0 — — 196 66.3 70.2 447 0 — — — 94.5 — 0.50 — 137,000 1,760 4,760 447 203 0 4,970 447 5,200 3,640 8,830 0 5,270 39.9 5,310 3,950 0 5,150 0 5,150 — 6,090 0 7,590 0 7,590 5.78 0 79.5 222 243 0 4,940 222 5,170 — 11.2 0 — — 0 2,190 620 2,190 2,810 — 3.34 0 — — 0 136 11.6 136 148 3,70018,500 1,2802,010 1,490 136,000 59,500345,00062,300 408,000 ByStrathKirnInc. Page31of34 TrendsinestimatedwateruseintheUnitedStates,19502000.(USGS,2009B) Thewaterusedataareinbilliongallonsperday(thousandmilliongallonsperday)andareroundedto twosignificantfiguresfor195080,andtothreesignificantfiguresfor19852000;percentagechangeis calculatedfromunroundednumbers.—,notavailable] Year Percentage change 195021955319604196541970319753198031985319903199532000 19952000 1 Population,inmillions 150.7164.0179.3193.8205.9216.4229.6242.4252.3267.1285.3 Offstreamuse: Totalwithdrawals 180 240 270 310 370 420 440 399 408 402 408 Publicsupply 14 17 21 24 27 29 34 36.5 38.5 40.2 43.3 Ruraldomesticandlivestock: Selfsupplieddomestic 2.1 2.1 2.0 2.3 2.6 2.8 3.4 3.32 3.39 3.39 3.59 Livestockandaquaculture 1.5 1.5 1.6 1.7 1.9 2.1 2.2 54.47 4.50 5.49 (6) Irrigation 89 110 110 120 130 140 150 137 137 134 137 Industrial: Thermoelectricpoweruse 40 72 100 130 170 200 210 187 195 190 195 Otherindustrialuse 37 39 38 46 47 45 45 30.5 29.9 29.1 (7) Sourceofwater: Ground: Fresh 34 47 50 60 68 82 83 73.2 79.4 76.4 83.3 Saline (8) 0.6 0.4 0.5 1.0 1.0 0.9 0.65 1.22 1.11 1.26 Surface: Fresh 140 180 190 210 250 260 290 265 259 264 262 Saline 10 18 31 43 53 69 71 59.6 68.2 59.7 61 +7 +2 +8 +6 — +2 +3 — +9 +14 1 +2 1 48StatesandDistrictofColumbia,andHawaii 48StatesandDistrictofColumbia 3 50StatesandDistrictofColumbia,PuertoRico,andU.S.VirginIslands 4 50StatesandDistrictofColumbia,andPuertoRico 5 From1985topresentthiscategoryincludeswateruseforfishfarms 6 Datanotavailableforallstates;partialtotalwas5.46 7 Commercialusenotavailable;industrialandminingusetotaled23.2 8 Datanotavailable 2 ByStrathKirnInc. Page32of34 IrrigationdatafromUSGSSurveyin2000(USGS,2009B) APPLICAT ION IRRIGATED LAND WITHDRAWAL S WITHDRAWALS (in thousand acres) (in million gallons per day) (in thousand acre-feet per y ear) RATE (in acrefeet per acre) STATE By type of irrigation By source By source Total Sprinkle Micro- Total Surface irrigatn Ground Surface water water Total Ground Surface water water Alabama 68.7 1.3 0 70 14.5 28.7 43.1 16.2 32.2 48.4 Alaska 2.43 0 0.07 2.5 0.99 0.02 1.01 1.11 0.02 1.13 0.69 0.45 Arizona 183 14 779 976 2,750 2,660 5,400 3,080 2,980 6,060 6.21 Arkansas 631 0 3,880 4,510 6,510 1,410 7,910 7,290 1,580 8,870 1.97 California 1,660 3,010 5,470 10,100 11,600 18,900 30,500 13,100 21,100 34,200 3.37 Colorado 1,190 1.16 2,220 3,400 2,160 9,260 11,400 2,420 10,400 12,800 3.76 Connecticut 20.6 0.39 0 21 17 13.4 30.4 19 15 34 1.62 Delaware 81.1 0.71 0 81.8 35.6 7.89 43.5 39.9 8.84 48.7 0.6 DC 0.32 0 0 0.32 0 0.18 0.18 0 0.2 0.2 0.63 515 704 839 2,060 2,180 2,110 4,290 2,450 2,370 4,810 2.34 1,470 73.8 0 1,540 750 392 1,140 841 439 1,280 0.83 16.7 105 0 122 171 193 364 191 216 407 3.35 Florida Georgia Hawaii 2,440 4.7 1,300 3,750 3,720 13,300 17,100 4,170 15,000 19,100 5.1 Illinois 365 0 0 365 150 4.25 154 168 4.76 173 0.47 Indiana 250 0 0 250 55.5 45.4 101 62.2 51 113 0.45 Idaho Iowa Kansas 84.5 0 0 84.5 20.4 1.08 21.5 22.9 1.21 24.1 0.28 2,660 2.14 647 3,310 3,430 288 3,710 3,840 323 4,160 1.26 0.49 Kentucky 66.6 0 0 66.6 1.14 28.2 29.3 1.28 31.6 32.9 Louisiana 110 0 830 940 791 232 1,020 887 261 1,150 1.22 35 0.95 0.03 36 0.61 5.23 5.84 0.68 5.86 6.55 0.18 0.78 Maine Maryland 57.3 3.32 0 60.6 29.8 12.6 42.4 33.4 14.1 47.6 Massachusetts 26.6 2.35 0 29 19.7 106 126 22.1 119 141 4.88 Michigan 401 8.67 4.87 415 128 73.2 201 144 82 226 0.54 Minnesota 546 0 26.9 573 190 36.6 227 213 41.1 254 0.44 Mississippi 455 0 966 1,420 1,310 99.1 1,410 1,470 111 1,580 1.11 Missouri 532 1.43 792 1,330 1,380 48.1 1,430 1,550 53.9 1,600 1.21 Montana 506 0 1,220 1,720 83 7,870 7,950 93 8,820 8,920 5.18 4,110 0 3,710 7,820 7,420 1,370 8,790 8,320 1,540 9,860 1.26 192 0 456 647 567 1,540 2,110 635 1,730 2,360 3.65 6.08 0 0 6.08 0.5 4.25 4.75 0.56 4.76 5.32 0.88 Nebraska Nevada New Hampsh New Jersey 109 15.7 3.7 128 22.8 117 140 25.5 131 156 1.22 New Mexico 461 7.17 530 998 1,230 1,630 2,860 1,380 1,830 3,210 3.22 70 8.73 1.84 80.6 23.3 12.1 35.5 26.1 13.6 39.8 0.49 North Carolina 193 3.7 0 196 65.8 221 287 73.8 248 322 1.64 North Dakota 200 0 26.7 227 72.2 73.2 145 80.9 82.1 163 0.72 0.58 New York 61 0 0 61 13.9 17.8 31.7 15.6 19.9 35.5 392 1.5 113 507 566 151 718 635 170 804 1.59 1,160 4.02 1,000 2,170 792 5,290 6,080 887 5,920 6,810 3.14 Pennsylvania 28.9 7.17 0 36 1.38 12.5 13.9 1.55 14 15.6 0. 43 Rhode Island 4.48 0.29 0.05 4.82 0.46 2.99 3.45 0.52 3.35 3.87 0.8 Ohio Oklahoma Oregon ByStrathKirnInc. Page33of34 Continued… IRRIGATED LAND WITHDRAWAL S WITHDRAWALS (in thousand acres) (in million gallons per day) (in thousand acre-feet per y ear) APPLICAT ION RATE (in acrefeet per acre) STATE By type of irrigation By source By source Total Sprinkle Micro- Surface irrigatn Total Total Ground Surface Ground Surface water water water water South Carolina 166 3.66 17.5 187 106 162 267 118 181 300 1.6 South Dakota 276 0 78.3 354 137 236 373 153 264 418 1.18 0.41 51.2 5.35 3.96 60.5 7.33 15.1 22.4 8.22 16.9 25.1 4,010 89.4 2,390 6,490 6,500 2,130 8,630 7,290 2,390 9,680 1.49 526 1.68 880 1,410 469 3,390 3,860 526 3,800 4,330 3.08 Tennessee Texas Utah Vermont 4.95 0 0 4.95 0.33 3.45 3.78 0.37 3.87 4.24 0.86 Virginia 64.3 13.9 0 78.2 3.57 22.8 26.4 4 25.6 29.6 0.38 1,270 49.9 252 1,570 747 2,290 3,040 837 2,570 3,400 2.16 2.21 0 0.98 3.19 0.02 0.02 0.04 0.02 0.02 0.04 0. 01 355 0 0 355 195 1.57 196 218 1.76 220 0.62 Washington West Virginia Wisconsin Wyoming 190 4.73 964 1,160 413 4,090 4,500 463 4,580 5,050 4.36 15.5 33 5.35 53.8 36.9 57.5 94.5 41.4 64.5 106 1.97 0.2 0 0 0.2 0.29 0.21 0.5 0.33 0.24 0.56 2.8 28,300 4,180 29,400 61,900 56,900 80,000 137,000 63,800 89,700 153,000 2.48 Puerto Rico U.S. Virgin Isl TOTAL Note:Irrigationunits Gallonsisavolumeapplied.Acresistheareathatavolumeisappliedto.Oneacrefootisthevolumeof waterthatcoversoneacretoadepthofonefoot:equals43,560cubicfeet=325,851gallons.Oneacre inch=27,154gal. ByStrathKirnInc. Page34of34 NCGA National Office $FQJ%SJWF $IFTUFSöFME .0 'BY NCGA Washington Office $ 4USFFU /8 4VJUF 8BTIJOHUPO%$ 'BY June 2009 © National Corn Growers Association
© Copyright 2026 Paperzz