STEP-NC based reverse engineering of in-process model of NC simulation Shixin Xú, Nabil Anwer, Charyar Mehdi-Souzani, Ramy Harik, Lihong Qiao To cite this version: Shixin Xú, Nabil Anwer, Charyar Mehdi-Souzani, Ramy Harik, Lihong Qiao. STEP-NC based reverse engineering of in-process model of NC simulation. International Journal of Advanced Manufacturing Technology, Springer Verlag, 2016, . HAL Id: hal-01363744 https://hal.archives-ouvertes.fr/hal-01363744 Submitted on 11 Sep 2016 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. STEP-NCBasedReverseEngineeringofIn-ProcessModelofNCSimulation ShixinXÚ1,2,NabilANWER1,#,CharyarMEHDI-SOUZANI1,RamyHARIK3andLihongQIAO2 1 LURPA,ENSCachan,Univ.Paris-Sud,61avenueduPrésidentWilson,F-94235Cachan,France 2 SchoolofMechanicalEngineeringandAutomation,BeihangUniversity,Beijing,China,100191 3 DepartmentofMechanicalEngineering,UniversityofSouthCarolina,Columbia,SC,USA #CorrespondingAuthor/E-mail:[email protected] Abstract Thispaperproposesacomprehensiveprocessforreverseengineeringandfeaturerecognitionfroman in-processmodel(IPM),representedintrianglemesheswhichresultsfromNCsimulation.IPMcanbe ratherusefulinredesign,processplanning,machininginspection,etc.,inadditiontovisualizing machiningprocesses.Forexample,wemaycarryoutin-processcorrectionsaccordinglybycomparing therebuiltmodelfromanIPMwiththeoriginalone.However,untilnowIPMreverseengineering, especiallymanufacturingfeaturebased,isseldomresearched.First,aftersystematicallysummarizingthe IPMcharacteristicsandtakingadvantagesofthem,anovelregionsegmentationmethodbasedona shapedescriptor—calledtheshapeindex,whichisclosetothevisualeffectandiscapabletoidentify localshapesaccurately,isproposed.Theshapeindex,whichisderivedfromprincipalcurvatures,is calculatedbydiscretedifferentialgeometrymethods.Thesegmentationiscarriedoutgraduallyfrom simplesurfacetypes,suchasplanes,cylinders,tomorecomplexsurfacetypes;second,therecognition ofmanufacturingfeaturesdefinedintheISO14649standardisexplainedindetail.Theapproachisgraph based,andhighlyreliesonthepresenceofconcaveedgesinthemodel.Intherecognitionalgorithm Eulercharacteristicandcurvednessofthemodelareapplied,whicharenovelattempts.Casestudiesto verifytheproposedapproachesareprovided. Keywords:reverseengineering;regionsegmentation;featurerecognition;in-processmodel;discrete differentialgeometry;NCsimulation;STEP-NC 1. Introduction Discretedatageometryprocessinghasgainedmoreattentioninrecentyearsinmanufacturingsinceit permitssimplerepresentationandyetiscapabletoconsidercomplexshapes.Asaprincipalcomponent ofvirtualmanufacturing,NCmachiningsimulationdepictsthematerialremovalprocessesbysimulating themovementsofthemachinetoolandthecuttingtools.Generallymachiningprocessesaresimulated usingatimeordisplacementdiscretizationofthetoolpath.Correspondingtoeachmachiningprocess, wecangetanin-processmodel(IPM),asanexample,theIPMshowninFig.1.Thismodelisobtainedby thegeometricmodelingoftheengagementofthecutterwiththeworkpieceatdiscreteintervalsalong thetoolpath.Therearevariousmodelingtechniquesforthedescriptionoftheengagement,suchasthe solid-model-based,thewire-frame-based,thevoxel-/dexel-/z-buffer-based,thepoint-based[1]. Althoughthesolidmodelingtechniques(e.g.B-rep)aremoreprecise,discretemeshes(voxel-,dexel-, andz-bufferbased)aremostcommonlyusedfortherepresentationofcuttingtoolsandworkpieces becausethedynamicvisualizationofthematerialremovalonthepartisanessentialfeatureinNC simulation.Inthecourseofsimulation,thein-processmodelscanbeoutputastrianglemeshes(e.g.in STL/VRMLfiles).NowadaysthemajorityofcommercialNCsimulators(suchasNCSimul®)providesuch aninterface. Fig.1AnIPMoutputafteraroughingprocess AlthoughresearchonfeaturerecognitionfromregularCADmodelshasbeendoneextensively,feature recognitionandreverseengineeringfromIPMsarerarelyreportedandstudiedsofar.Anwer,etal[2] proposea“onesurfacepertrianglemethod”,whichusesaspecialunderlyingdatastructureoffacets. Thisdatastructureisevaluatedduringthesimulation.Theirmethodisefficientandrobustwhenthe meshesarenotverylarge. Untilnow,themajorgoalsofNCsimulationarestillconfinedtocheckanunprovedNCprogramtoavoid potentialcollisionswithfixtureelements,makingundercuts,orleavingexcessmaterial.However, ReverseengineeringoftheIPMcanberatherusefulinredesign,processplanning,machininginspection, etc.Forexample,bycomparingthereconstructedmodelfromanIPMwiththeoriginalCADmodel,we canknowthepotentialmachiningdeviationofamachiningoperation,thenwemaycarryoutin-process correction.Inthiswork,bymakinguseofthesimulatedoutput—theIPM,andbyre-establishinga machiningfeaturebasedmodel,wecanextendtheapplicationsofNCsimulationtobuildthefeedback linkfromCAM/CNCsystemsorshopflooramendmentsbacktoCAM/CAPP/CADsystems.Thisfeedback linkisveryusefulbecausethepartprogramisoftenchangedbymachiningengineersaccordingtothe simulationresultsortheshopfloorsituation.SothecurrentunidirectionalinformationflowfromCAMto CNCcanbechangedintobidirectionalone[3].There-establishedfeaturemodelcanservefordesign improvementssincewecancomparethismodelwiththeoriginaldesignedmodel,measuremore reliableandaccuratedimensionsonthismodel,oruseitforFEA,etc. Inaddition,insomesituations,theoriginalCADmodelisneitheravailablenorusable,andtheNC programistheonlydataavailableforproducingapart.ThiscouldhappenwhenoldCADarchivesare incompatiblewithnewsystemsormachines,ortheyaredamagedorlost,orwhenpartsaredesigned andmachinedonlyatshopfloors,etc.HencerebuildingthefeaturebasedCADmodelfromtheIPMis necessaryunderthesecircumstances.Itwouldsavemuchresourcethandesigningafeaturebased modelfromscratch. Thesepracticalneedsthusprompttoustodeveloptechniquesforfeaturerecognitionandreverse engineeringofin-processmodelstopromoteCAM/CNCintegrationandbidirectionalinformation transferbetweenthem.Theresearchworkreportedinthispaperismotivatedonbasisoftheabove observationandactualneeds.ItmainlyexplainsonapproachestoIPMsegmentationandthen recognitionofmanufacturingfeatures(i.e.STEP-NCfeatures).Theremainderofthepaperisorganizedas follows:Section2presentsbrieflythereviewofliteratureonmeshsegmentation,feature recognitionandexistingworkonreverseengineeringNCsimulationandG-Code.Section3 describesthecharacteristicsoftheIPMgeometricdata.Section4presentsanoverviewframeworkof thedevelopedapproach.IPMcoarseandfinesegmentationapproachesareelaboratedinsection5. IPMcoarsesegmentationapproachiselaboratedinsection5.STEP-NCmanufacturingfeatures recognitionapproachandclassification-basedrulesarepresentedinsection6.Casestudiesare presentedinsection7.Finally,conclusionsandperspectivesofthisresearchworkarediscussed insection8. 2. Relatedworks Therelatedworksmainlyinvolvemeshsegmentationandfeaturerecognition.Meshsegmentation partitionstheunorganizedtrianglesetintosubsets,eachofwhichissupposedtocorrespondtoa particulartypeofsurface.Theresultisregioncollections,likeasurfacemodel.Featurerecognitionisto furtherextractandorganizesomeregionsintomanufacturingfeatures.Thesourcedataisusuallyasolid model,butitalsocanbeothertypesofdata,suchaspolygonmeshes,pointcloud,oraG-codeprogram. 2.1Meshsegmentation Meshsegmentationorregionsegmentationplayanimportantroleinthediscreteshapemodeling domain.Segmentationmethodstrytoexploitgeometricinformationtoinferadecompositionofthe surfacethatcorrespondstotheonethatexpertswouldproducemanually[4].Whenobservinga renderedtrianglemesh,wecaneasilyperceiveadecompositionofthesurfaceintointerestingregions, suchasprimitiveshapes,whereasitturnsouttobearatherhardtaskforautomation.Segmentation methodshavebeencomprehensivelysurveyedbyShamiretal[5,6].Segmentationformechanical engineeringapplicationsaimsatpartitioningthediscretepartmodelintoregionsandeachregioncanbe fittedbyasinglemathematicallyanalyzableshape.Thesegmentationalgorithmsforamechanicalpart meshmodelarebroadlyidentifiedintwomaincategories: Edge-basedapproaches[7-11]–Theytrytodetectboundariesbetweensurfacepatches.Some derivativeattributes,likenormalvectors,curvatures,arecommonlyusedtofindtheboundaries.Normal vectorsareusedtodeterminesharpedgesandcurvaturesforsmoothedgedetection. Face-basedapproaches[12-16]–Theyclusterpoints/verticesintoconnectedregionswithsimilar propertiesandboundariesarethenderived.Thiscategoryworksontheglobalsizeofpointsetandsoit ismorerobusttotheedge-basedone.Bénière,etal[12]havepresentedanddevelopeda comprehensiveprocesstoextractgeometricprimitivesandbuildaB-repmodelfrom3Dmeshes. Inaddition,therearesomeapproachescombiningedge-basedandface-basedinformationtotryto overcomelimitationsoftheabovetwocategoriesofapproaches[17,18].Tosegmentmeshesobtained frompointcloud,Zhao,etal[19]usecurvednesstodetectshapeboundary,anduseshapeindexto clustervertices.Thispaper’sworkisacontinuationoftheirapproachappliedinIPM. Mostofthesegmentationapproachesaredirectlybasedonderivativeproperties(normalvectors, principal/Gaussian/meancurvatures),whicharesensitivetonoise.Theyassumethepolyhedral surfacesarenoiseless.ButIPMdatahasakindof“noise”—scallopsleftonmachinedsurfaces.Sothereis noverysuitablesolutionreportedtoregionsegmentationforin-processmodelsyet. 2.2Featurerecognition Afeature,oraformfeature,tobemorespecificallyinourwork,usuallyreferstoaportionofapartthat bearscertaingeometricortopologicalproperties,fromwhichwecandeducethemanufacturing informationformakingthem.Completenessofformfeaturesetisverysubjectiveanddomain dependent.AfeaturegenerationmodelproposedbyNallurietal[20]attemptstodefinethe completenessofafeatureset.Theydefinedomainindependentformfeatureasasetoffaceswith distincttopologicalandgeometriccharacteristics.Theymodelcreationofaformfeatureasadditionor subtractionoffeature-solidto/frombased-solid.Theydefinefeature“type”basedonthelocaltopology ofparticipatingbase-solidfacesand“shape”basedonshapeofthefeature-solid.Basedonthese definitionstheyenumerateandclassifyformfeatures.Theyenumerate94sweepformfeaturesand provideproofthatthose94typesarecompleteforsweepfeature-solid. Inthispaperweareinterestedinmachiningfeatures,whichareconcernedwithboththegeometric shapesandmanufacturingoperations,needingmoreparametersintheirdefinition.Forexample,we mayeitherusethename“pocket”torefertoasweptcutontheboundaryofapartmodel,ortoatrace leftonthepartboundarybyaspecificmachiningoperation.Machiningfeatures,asanimportantsubset ofmanufacturingfeatures,canberegardedasthevolumesweptbyacuttingtool,whichisalwaysa negative(subtracted)volume.Workonfeaturescanbedividedintotworoughcategories:design-byfeatures[21]andfeaturerecognition[22].Indesign-by-featuresfeaturestructuresareintroduced directlyintoamodelusingparticularoperationsorbysewinginshapes.Ontheotherhand,thegoalof featurerecognitionistoextractautomaticallyhigherlevelentities(e.g.machiningfeatures)fromlower levelelements(e.g.surfaces,edges,etc.)ofaCADmodel. Automaticfeaturerecognitionisregardedasanidealsolutiontoautomatedesignandmanufacturing processes.Thisisthepartoftheresearchthathasattractedmuchoftheattention.Anotherimportant applicationoffeaturerecognitionisformanufacturabilityevaluation.Afeaturerecognitionsystem shouldbeabletointerpretthedesigndifferentlybasedonalternativefeaturesandfeedbackthe manufacturabilityandcostofthoseinterpretationstothedesigner. TherearedifferentfeaturerecognitiontechniquesthathavebeenproposedforCAD/CAMintegration andprocessplanning.Hanetal[22]providesadetailedanalysisofsomeoftheexistingapproaches.The mostcommonmethodsrangefromgraph-basedalgorithms[23]tohint-basedandvolumetric decompositiontechniques.Inthegraph-basedfeaturerecognition,agraphshowingthetopologyofthe part(connectionoffaces)iscreated.Thegraphisoftenattributed(e.g.,theedgesaremarkedas concaveorconvex),itisthenanalyzedtoextractsubsetsofnodesandarcsthatmatchwithapredefined template. Graph-basedapproachesarecriticizedforseveralshortcomings.Theyfailtoaccountfor manufacturabilityoftherecognizedfeaturesduetotheirstrongrelianceontopologicalpatternsrather thangeometry.Theintersectionoffeaturescausesanexplosioninthenumberofpossiblefeature patternsthatspoilsattemptstoformulatefeaturepatterns.Toaddressthesedifficulties,Vandenbrande etal[24]proposedtosearchfor“minimumindispensableportionofafeature’sboundary”,calledhints, ratherthancompletefeaturepatterns.Forexample,presenceoftwooppositeplanarfacesisahintfor potentialexistenceofaslotfeature.Hintsarenotnecessarilyrestrictedtothepartgeometry.Theycan beextractedfromdesignattributesaswell.Forexample,“athreadattributemaybetakenasahole hint”.Thisapproachhasbeenmoresuccessfulinrecognizingintersectingfeatures.Someauthors[25,26] areinfavorofusingahybridofgraph-basedandhint-basedfeaturerecognitiontoimprovethe efficiencyofhint-basedreasoning.Inthehybridapproach,graph-basedreasoningisusedtofindout thoseareasofthepartthatcertainlyleadtovalidfeatureswhenusedbythehint-basedreasoner. However,buildingfeaturerecognitionsystemsthatfunctioneffectivelyonrealindustrialproductshas beenelusive.Arealproductwiththousandsoffacesandedgesbringsalmostalltheaboveapproaches toahaltduetocomputationalcomplexity.Furthermore,thefeaturesstudiedintheseapproachesare usuallyoversimplified.Themajorityoffeaturerecognitionliteraturenormallyhandles2½Dfeatures.The workdonebySundararajan[27]isfocusedonfreeformsurfaces,butitislimitedinapplication.Some issuessuchasthepresenceoffilletededgesandfreeformsurfacesinthemodelarestudiedbyRahmani andArezoo[25]. Fewcommercialfeaturerecognitionsystemsarealsoavailable.Theyhaveeffectivelyadoptedfeature recognitiontechnologyforrecreatingthefeaturetreefromimportedmodelssothateventheimported modelscanbeeditedasifitwereanativemodel.Major3DCADmodelershavefeaturerecognitionto convertimported3Dmodelsintonativefeaturebasedmodels.CAMsoftwareanddesignfor manufacturingsoftwarearealsobuiltusingthistechnology.FewCAD/CAMsoftwarehaveused commerciallyavailablethird-partyfeaturerecognitionlibrary,whichrecognizesvariousfeaturesfromBrepmodels[28].Separatelibrariesareavailablefordesign,manufacturingandsheetmetalapplications [28].However,manufacturingfeaturessuchas3/4/5-axisfeaturerecognitionaregenerallyunavailable insuchcommercialsystems. ManyresearchesfocusedonreconstructionofsurfacesorB-Repsolidmodelfromtriangularmeshes,but onlyfewwentfurthertorecognizefeatures.TheworkdonebySuniletal[29]enablestoperform featurerecognitionfromameshmodelofsheetmetalparts.Kiswantoetal[30]discussedfeature identificationbyemployinginformationfromnormalvectorsoffacetedmodel.Thisinformation togetherwithcurvatureinformationareusedtodetectflat,saddle,concave,convexandclosedbounded featuresonasculpturedsurface.Extractingfeatures,especiallySTEP-NCfeatures,fromafacetedmodel stillneedstobeinvestigatedfurther. Verylimitedworkshasbeenreportedonrecognitionmanufacturing/machiningfeaturesfromaninprocessmodelofNCsimulation[2],toourknowledge.Inparticular,noregionsegmentationworkthat usesshape-indexhasbeenreported.IfdevelopedtheNCsimulationfunctionscanbeextended.The emphasisofourpresentworkisonthereverseengineeringandfeaturerecognitionofin-processmodels. Variousdesignandrealizationissuesareaddressedinthesectionstofollow. 2.3ReverseengineeringofNCsimulationandG-code TheNCsimulationgeometricresult,thein-processmodel,canbeusedtorebuildapart’sCADmodel.To ourknowledge,reportedworkonthisproblemisscarce.Karunakaran,etal[31]proposedanalgorithm foroctree-to-B-repconversion,whichcandealwiththereverseengineeringofthesimulationwhose geometricoutputisoctreerepresentation.Anwer,etal[2]proposedtwomethods:“onesurfaceper triangle”methodanddiscreteshapesegmentationmethodforprocessingmesh-outputofNCsimulation. TheformeroneturnsthemeshintoapolygonalB-repmodel,byattachingsuchinformationascolor indicatingatool,cutnumber,surfaceindextotrianglemeshesinthecourseofsimulation.Eachtriangle isturnedintoafaceoftheB-repmodel.ThismethodwasrealizedincooperationwithadeveloperofNC simulationsoftware.Thelatteroneisbasedondifferentialgeometryandthepairshapeindex, curvedness.Thismethoddecomposeverticesintoagroupofregionsthatcanberepresentedbyprimary shapes.Xu,etal[32]continuedtheaboveworktobuildamachiningfeaturebasedmodelfromtheIPM. ApartprogramG-codecanalsobeusedtorebuildthepart’sCADmodelbysupplementingcuttingtool andrawpieceinformation.Cioană,etal[33]developedanadd-onapplicationforSolidWorks®toimport toolpathdatafromGcode,togetherwithcuttingtooldata,tobuildaCADmodelinteractively.Yanetal [34]developedamethodforfeaturerecognitionfromG-codebasedonZ-maprepresentationofforms (workpieceandtools).Foreachcuttingoperation,theirsystemcreatesandupdatestheZ-mapofthe machinedareaandextractscutcontours,cuttingparametersandmillingfeature.Millingfeature recognitionisdonebycomparingZlevelsandcheckingthecontinuityofthecutcontours.Shinetal[35] developedasystemcalledG2STEPtoconvertG-codeintoSTEP-NC.IntheirapproachturningG-code programsarehandledindetail,andturningfeaturerecognitionarementioned.Zhangetal[3]proposed amethodtore-usetheprocessknowledgeembeddedinG-codepartprogramswithdifferent manufacturingresources.Theirmethodcanrecognize2½DfeaturesfrommillingG-codemainlybytool types,toolpathboundaryandtherawpiecegeometry. 3. In-processmodelcharacteristics Anin-processmodelisthegeometricoutputdataofanNCsimulation.Invirtualmachiningitisusedfor visualizationofthemachiningprocess.Thein-processmodelcanbeoutputbythesimulationsystemasa collectionofunorderedsetoftriangles,whichareusuallyinSTLfileformat.Intermsoftriangleshapes withinatrianglemesh,therearetwodistincttypesoftrianglemeshes.OnetypeisasshowninFig.2a (typeI).Withinarequiredsurfacedeviation,thistype,whichisusuallyusedforvisualizationpurpose, usesasfewtrianglesaspossibletodiscretizeapart’ssurfacesinordertopresentrapidlythedynamic variationsoftheworkpiecebeingmachined.Thesize,shapeanddistributiondensityoftrianglesare quitedifferent.TheothertypeisshownasinFig.2b(typeII).Theshapesoftrianglesareroughlysimilar, butthesizesoftrianglescanbequitedifferent,andtrianglesareusuallydenselydistributedinsurface zonesoralongcurvedboundaries,whichmeansthenumberoftrianglesperunitareaismorethanother zones.Thistypeoftriangulationisusuallyusedforanalysis,suchasFEA.Thefactorstocontrolthesizes anddistributionsoftrianglesarethemaximumtriangle’sedgelengths,elementnumberpercurvature radiusofthepart’ssurface,etc.OnecommonmethodtogettypeIItriangulationistheDelaunay triangulation,whichmaximizetheminimumangleofalltheanglesofthetriangles,tendingtoavoid skinnytriangles.Intermsofthequalityofthetrianglemeshdata,typeIIisgenerallybetterthantypeI. Besides,thetrianglemeshobtainedaftertheprocessingofscannedcloudpointsinreverseengineering belongstothistypesinceahugenumberofthedensepointsareusedtoconstructthemesh.TheNC simulationrequiresrapiddisplayandupdateofthegeometricvariationoftheworkpiecebeingcut,so theIPMadoptstheformertypeoftrianglemesh.Ittriestousetheleastnumberoftrianglesforbetter performance. ByobservingtypeItrianglemesh,wecanfindthat,exceptfortheplanar/cylindricalzones,the characteristicsoftriangleswithinthesurfacezonearequitesimilartothoseoftypeII.Thereforewe havetodeviseanIPM-basedregionsegmentationmethodthatcanefficientlyhandletrianglemeshtype IaswellastypeIIconsideringthatageneralmechanicalpartiscomposedofplanarandcylindrical surfacesandpossiblymanyothertypesofsurfaces. ab Fig.2Twotypesoftrianglemesh:a)typeI;b)typeII OnedistinctivecharacteristicsofIPMisthatthereareoftenscallopsandstepovertraceslefton machinedsurfaces,asseenonthewallfacesinFig.3.Thepartismachinedbyanendmillcutter.These scallopsandtraces,whichwilldisturbthetrueunderlyingsurfacetyperecognition,canbeconsideredas akindofnoise. AnothercharacteristicoftheIPMofNCsimulationisthatitoftenhasoffcutcomponents,someofwhich areevenconnectedtothefinishedpartthruathinslice,liketheoffcutcoloredinredasshowninFig.3. Fig.3AnIPM(Theconnectedoffcutisindicatedbyredcolor.) AnothercharacteristicofIPMisthatitusuallyhasplentyofclustersofnarrowtrianglesinplanarand cylindricalregions(Fig.2a).Thesenarrowtrianglesresultfromthediscretizationofcylindershapesor ruledsurfacesonthemechanicalpart,andtheirconnectionshavecertainregularpatterns.Large trianglesarepresentinplanarfaceswhoselineboundaryedgesarenotdiscretized. Hence,anin-processmodelofNCsimulationisamodelwithnon-uniformvertex/triangledistributions.It ismainlycomposedofthreetypesoftriangles:narrowtriangles,relativelysmalluniformtrianglesand largetriangles. 4. Overviewofthemethod Infacttheworkistoestablishahigh-levelgeometricstructurebasedontheunstructuredtrianglemesh. ConsideringthesecharacteristicsofNCsimulation,andtakingadvantageofthem,wehavedevisedan efficientmethodforsegmentationandfeaturerecognition,whichisuniquelyadaptedtoin-process model.Fig.4showstheoverallstrategyofthemethodwhichconsistsofthefollowingsteps:(1) PolyhedralB-repmodelconstruction:thisisthepre-processingoftheIPM,includingoffcutremoval,IPM dataerrorcorrection,thebuildingofamanifoldpolyhedralB-repmodel;Computationofvertexnormal vectors,vertexcurvatures,edge-xities,someattributesoftrianglemesh,etc.Thesewillbeusedfor subsequentprocessingandfordeterminingsomethresholds.(2)Coarsesegmentation:identificationof sharpedgesonthepart’sboundary,identificationofnarrowtriangleclusters,segmentationofplanar andmostofcylindricalfaces;(3)Shapeindexbasedsegmentationandrefinement:segmentationofnonruledfaces.Ninesurfacetypesaredefinedbasedonshapeindex.Everyvertexoftheshapeisassigneda surfacetypelabelduringlocalsurfacetyperecognition.Thenconnectedregionsaregeneratedfrom theseclusteredvertices;(4)STEP-NCfeaturerecognition:featureclassidentificationanditsdefining components,suchasitsprofile(s),parameters. Fig.4Flowchartofthemethod Thepre-processingstepincludesremovingoffcuts,buildingapolyhedralB-repmodelandcomputesome geometricvalues(likefacetnormalvectors,dihedralanglesbetweentwofacets).TheNCsimulation software,suchasNCSimul®,generallyoutputsIPMasanSTLfile.Thisoriginalmeshdatausuallycontains offcuts,isolatedvertices/edgesusuallyresultingzero-areatriangles,incorrectlyorientedtriangles,holes, etc.Forexample,theIPMshowninFig.3hasapartoftheoffcutsthatisstillconnectedtothefinished part. ForamendingthevariousdefectsoftheIPM,approachesarebriefedasfollows:Isolatedornonmanifoldvertices/edges/facesaredetectedandcorrectedautomatically(Forexample,ifazero-area triangleisfound,anisolatedvertexoredgeisdetected,thenthistrianglecanberemoved.);incorrectly orientedtrianglesarereversedautomaticallyaccordingtotheorientationoftheirneighboringtriangles; holesarefilledinteractivelyinconsiderationthatthemodelcanbeanon-solidmesh,andareal boundaryandahole’sboundarycannotbeidentifiedautomatically;theoffcutsarecleanedinteractively sinceitiseasytomakeoutthemforauser.Ifanoffcutisconnectedtothepart,theremightbesome newholesleftontheIPMafterauserdeletesittocleanthemodel,ameshsplittingoperationwitha polygonsectionisusedandmakesuretheholeshealed. Thereforeafterrepairingthemodel,inourcase,webuildawatertightpolyhedralB-repmodel,inwhich eachtriangleisbuiltasanorientedface,andmeanwhiletheIPMdataiscorrected[2].Weadoptthe half-edgedatastructurefortheB-repmodel.Thisprocedureincludeeliminationofoffcutdata, constructing/healingmodeltopology,computinggeometricvaluesofthemodelandstoringthemtothe extendedattributesoftherelevantentities(faces/edges/vertices).Thepre-processedIPMcanbesaved asanalternativemeshfileformat,OFF,whichisindexbased,andhencemuchsmallerinsizecompared withthecorrespondingSTLfile.AfterfinishingthissteptheIPMdatahasnoduplicatedvertices,no wronglyorientednormalvectors,nodegeneratedfaces,nonon-manifoldentities,andnoinvalidface indices. 5. In-processmodelsegmentation Inthissection,anewsegmentationmethodisdevelopedtoidentifymachiningregionfromtriangular meshesofthein-processmodelofNCSimulation.Aftertheidentificationofsharpedgesandgrouping narrowtriangles,thensmallregulartrianglesarealsogrouped.Fromthesegroups,regionboundaries areidentified.Torecognizethesurfacetypesforthegroupsofsmallregulartriangles,shapeindexbased segmentationisapplied. 5.1Identificationofsharpedges Theedge-xity,whichisameasureofanedge’sconcavity/convexity,isusedtodecidewhetheranedgeis anobviouslysharpedgeornot.Forasharededgeoftwosurfaces,theedge-xitymisdefinedas(Fig.5) [36]: m=(n1×n2)‧a1(1) Where,n1,n2areunitnormalvectorsofthetwosurfacesF1andF2,a1istheirsharededgee’sdirection, representedasaunitvector. ab Fig.5Definitionoftheedge-xity:a)smoothmodel;b)discretemodel Herewesupposethatif|m|≥ε1(Whereε1isasmallvalue,whichcanbeadjustedbyusers.),thenthe edgeisconsideredasasharpedge.Thisconstraintcorrespondstothedihedralangleofthetwofacets. Forexample,whenε1=0.5,itisequivalenttohaveaconstraintonthedihedralanglebetween30°and 150°.Fig.6showstheobviouslysharpedgesfilteredoutingreen. Fig.6Sharpedgesfilteredbyedge-xities 5.2Identificationandgroupingofnarrowtriangles Firstwedefinetheshapeattributeofanarrowtriangle.Inatriangle,ifoneofitsangleα<ε2,andno otheranglegreaterthan(90°+ε2),thenthetriangleisconsideredasanarrowtriangle.Hereitiscalleda pintriangle.Besidesthetriangle’sshape,thegroupingcriteriaalsotakesaccounttheadjacency relationshipandthesizeofthetriangles.Thisstepistogrouptheconnectedpintrianglesinthemesh intoregions.Wehavenoticedthatapintriangle’sheadedge(i.e.theoppositeedgeofthetriangle’s smallestangle,theshortestedgeinthetriangle)isusuallyresultedfromthediscretizationofacurved edge. Thegroupingoperationisperformedasfollows:Forapintriangle,ifoneofitssideedges,whichform thesmallestangle,isnotasharpedge,andtheadjacenttriangleisanaxetriangle,thenaddtheadjacent triangletothisgroup.Dothesameforthepintriangle’sanothersideadjacenttriangle.Repeatthe groupingoperationforthenewlyaddedtriangle(s).Inthegrouppintrianglesareconnectedonlybytheir sideedges,andtheirheadedges’lengthsalongacertaindirectionaresimilar.Bytheendofgrouping operation,iftherearelessthan3pintrianglesinagroup,wedropthisgroupsincetheyareunlikely resultedfromacylinder.Fig.7showsaresultaftergroupingpintriangles.(Herewesetε2=15°inthe experiments.) Nexttodeterminetheunderlyingsurfacetypesofthegroupregionsofthepintriangles.Thesurface typeshouldbeplanarorcylindricalinmostcases.First,usethelinearleastsquaremethodtodetermine whetheragroupregioncanbefittedbyaplaneornotwithinagiventolerance.Ifthegroupregion cannotbefittedbyaplane,thenusetheGaussimagefeatureofacylinder(whichismappingfroma pointonasurfacetotheunitnormalofthesurfaceatthispoint)todeterminewhethertheregionisa cylinderornot.TheGaussianimageofacylinderisagreatcircleontheGaussiansphere,i.e.thenormal ofthefacetsformingthecylinderformapartofthegreatcircleontheGaussiansphere.Take3 connectedfacetstostart,if(1)thereisaconstrainedplanepossiblepassingthrutheoriginofGauss spheresuchthatthedistanceofthe3normalpointsfromtheconstrainedplaneisbelowathreshold valueand(2)thecirclefittedonthese3pointsformsapartofgreatcircleonGausssphere(i.e.center= (0,0),radius=1),thenthe3connectedfacetsformacylinder.Addadjacentfacetifitsatisfiestherules. Markidentifiedcylindricalfacetsasconvex(ridge)orconcave(valley)dependingonwhetherthefacet normalsaredivergingorconverging.Iftheregionisnotacylinder,thensettheregionasundetermined surfacetype.Forthiscase,theregionprobablybeothertypeofruledsurface,orapartofatorus,ora partofasurface.Theregion’ssurfacetypewillbedeterminedbythesubsequentcurvature-based segmentationmethod. Fig.7Narrowtriangleidentificationandgrouping 5.3Groupingsmallregulartriangles SmallregulartrianglesareusuallydiscretizedbyageneralsurfaceinanIPM.Theyhaverelatively uniformsizesandshapes,andtheyaredenseinaregion.Thegroupingpurposeistocontrolthesizeof sub-components,whichpossiblymakesthesegmentationlesscomplicated.Thegroupingoperationtries tostartfromboundarytrianglesofaregionbeingformed,andisperformedasfollows:selectaseed trianglethatisnotyetgroupedandsharesanedgewithapintriangle'sheadedge.Ifthereisnopin triangleintheIPM,fromtheungroupedtriangles,selectaseedtrianglethathasasharpedge.Checkthe seed’sadjacenttriangle,iftheadjacenttriangleissimilartotheseedintermsofshapeandarea,then addittothegroup.Againcheckthenewly-addedtriangle,graduallyexpandthegroupwithtrianglesthat aresimilartotheiradjacentonesuntilnomorecanbeadded.Thegroupingoperationsshouldnotcross sharpedgeboundaries. Inthesegroups,thereareprobablystillsomeplanarand/orcylindricalregionsleft,usethesame methodsin4.2toidentifythem.TheresultforthisstepisshowninFig.8. Fig.8Smallregulartrianglegrouping 5.4Groupmergingandidentificationofregionboundaries Thisstepistomergeadjacentregionsofthesametypestoreducethenumberofregionsobtainedinthe previoussteps.Forplanartypeofregions,ifseveralgroupsandtheirsurroundingungroupedtriangles arecoplanar,theycanbemergedintooneregion.Iftwoadjacentcylindricaltypeofregionshavesame axisandradius,theycanbemergedintooneregionaswell.Ifseveralungroupedbigtrianglesare coplanar,theycanbegroupedasaregion.Aftertheseexpansionandmergeoperations,thereprobably arestillsomeisolatedtriangles(liketheonesinthebottomsofthesurfacesasshowninFig.8).Ifthe adjacenttrianglesoftheisolatedonebelongtoasmallregulartrianglegroup,addtheisolatedtriangle tothisgroup. Aftertheaboveoperations,eachtrianglebelongstoaplanarorcylindricalregion,oraregulartriangle group.Inaregionitsexternaledgesformitsboundary.Aregion’sboundary,likeaface,possiblyconsists ofoneormoreedgeloops.Aloop’sdirectionkeepsthedirectionofhalfedgesinboundarytriangles.Ina planarregion,theloopscanbemarkedasouterorinnerloops.Ifaloop’snormalvectorconformstothe region’snormalvector,thenitisanouterloop;ifaloop’snormalvectorisoppositetotheregion’s normalvector,thenitisaninnerloop.Inordertofacilitatesubsequentapplications,ifseveral consecutiveboundaryedgescanformacircle/arc,theyarelabeled.Fig.9showstheparts’regionsafter coarsesegmentation.Regionsaredemarcatedbyblueboundaries.Theunderlyingsurfacetypesofthose groupsinorangecolorwillbedecidedinthenextfurthersegmentationprocedureusingdiscrete differentialgeometrymethods. Fig.9Resultsofcoarsesegmentation 5.5Shapeindexbasedregionsegmentation Aregulartrianglegroupobtainedabovemightbecomposedbyseveralsurfacepatchesunderneath.This phaseistoidentifythetrianglesetofthesepatches.Thesegmentationisperformedontheregular trianglegroups.Specifically,itisoperatedonthesetofverticesoftriangleswithinagroup.Avaluecould beassociatedwitheachvertexinthevertexsetwhichsomehowencapsulatesthecharacteristicsofthe localityofthevertex.Thedefinitionofsegmentationisthepartitionofverticessuchthateachregion consistsofconnectedverticeswhichhavethesamevaluewithinatolerance. Inthisphasethefirststepistoidentifyflat(planar)typeofverticesbasedonthenormalvectorsof triangles.Themethodisasfollows:foravertexofatriangleintheregulartrianglegroup,computethe normalvectorsofthevertex’sone-ringtriangles,comparethesevectors,iftheirdirectionsareequal withinatolerance,thenmarkvertex’stypeasflat.Thissimpleyeteffectivemethodbypassescurvature sincecurvaturecalculationneedsnormalvectorinformationaswell. Thesecondstepistocomputethecurvatures.Theprincipalcurvaturesandprincipaldirectionsfor3D meshesarecomputedfromthevertex’sneighborhoodvertices[37-39].Themethodadoptedhereis basedontheworkreportedin[37],whichwasimprovedbyaddingweightstothediscreteshape operatormatrixandmodifyingneighborregion[2].Specialattentionshouldbepaidtoverticesonthe modelboundary.Theboundaryistheintersectionofadjacentsurfaces,whichimpliesthatthegeometric propertyofeachvertexonaboundaryshouldbecalculatedfromitssurroundingneighborhoodwithin onesurface.Iftheneighborhoodverticesarechosenacrosstheboundary,highdeviationoftheprincipal curvaturesofthevertexwouldoccur.Tolowerthedeviation,theanisotropicneighborhoodisadvised here.Basedonthecoarsesegmentationresult,whichhasmarkedtheregion’sboundaryedges,we choosethetwo-ringneighborhoodtrianglesofavertexexclusivelywithintheregion(whereas,foran innervertex,chooseonlyone-ringneighborhoodtriangles.),andthereforemoreaccuratecurvatures wouldbeobtained.Forexample,inFig.10,tocomputethecurvaturesofvertexV,onlythe7neighboring verticesofVintheorangeregionareused,theother4verticesinthelightorangeregionarenotused. Thefirstringverticesareindicatedbybluecolor,andthesecondringverticesareindicatedbylightblue color.Whentherearescallopnoisesusuallycausedbyaball-endcuttingtoolmachiningintheIPMdata, wecanchoosetwoormoreneighborhoodtrianglesofavertextocomputethevertex’scurvatures.This caneasethedisturbanceofthescallops. Fig.10Neighborhoodvertexselectionforcomputingcurvaturesofavertexonregionboundary Thethirdstepistocomputetheshapeindexvalueforthenon-flattypeverticesandclassifythem accordingly.Shapeindex,asinglevaluefordescribinglocalshape,isselectedasthemathematicalbasis forregionsegmentation[40].Theshapeindex,ranged[-1,1],iscalculatedbytheprincipalcurvatures. Shapeindexisdefinedas: (2) Where,kmaxandkminarethemaximumandminimumprincipalcurvaturesofavertex,respectively. Thenforthenon-flattypesofvertices,ninesurfacetypes(sphericalcup,trough,rut,saddlerut,saddle, sphericalcap,dome,ridgeandsaddleridge)aredefinedbasedontheirshapeindexvalues(Fig.11).Note: weaddanisolatevalue2,whichisnotcalculatedbytheshapeindexformulaanddoesnotbelongtothe shapeindexinterval,forlabelingflatvertices.Everyvertexoftheshapeisassignedasurfacetypelabel duringlocalsurfacetyperecognition. Fig.11Surfacetypes,shapeindexscalesandcolorscales Thefourthstepistogenerateconnectedregionsbyclusteringverticeswhichhavethesamesurfacetype. Thentwooperationsareperformed[19]:connectedregiongrowingtogenerateinitialsegmentation result,andregionrefining,whichaimstoreduceover-segmentedregionsandtoimprovethe segmentationresult.Whenavertexyetunassignedwitharegionlabelismet,thevertexismarkedwith aregionlabelbyitsneighborcondition.Withthisassociatedregionlabel,thevertexisaddedtoan existingregionorcreatesanewregion. ThestepsfortheregionsegmentationofaregulartrianglegroupareillustratedinFig.12. Setofverticesofaregulartrianglegroup Identifyflattypeofvertices Identifysurfacetypesofnon-flatverticesbyshapeindices Vertexclusteringandconnectedregionlabeling Partitionsatisfying? N Regionmergingandrefining Y Regionsegmentationresults Fig.12Stepsfortheregionsegmentationofaregulartrianglegroup TheIPMregionsegmentationestablishedahigherstructureonthetrianglemesh.Theresultisalistof regions,andeachregionisgiventhefollowinginformation:allfacets(triangles)oftheregion,itssurface type,anditsboundaryedgesanditstype(line,arc…). 6. Manufacturingfeaturerecognition ThissectionelucidatesSTEP-NCmanufacturingfeaturesrecognitionapproachandclassification-based rules.AfterabriefintroductionofSTEP-NCfeatures,wepresentsrulesonlybasedontopological characteristicstoclassifyfourbasictypesofformfeatures,whichcoversthemajorityofSTEP-NC features.ThendetailedexplanationtorecognizevarioustypesofSTEP-NCfeaturesaregiven. 6.1STEP-NCfeatures ThemanufacturingfeaturesdefinedintheISO14649(STEPDataModelforComputerizedNumerical Controllers)standardareoftencalledSTEP-NCfeatures.ISO14649isamodelofdatatransferbetween CAD/CAMsystemsandCNCmachines[41,42].Itaimsatstandardizingthedataformatsusedatthe machinelevel,onekeylinkintheentireprocesschaininmanufacturingenterprises.Itspecifies machiningprocessesratherthanmachinetoolmotion,usinganobject-orienteddatastructure.The essentialentityofthestandard,“machining_workingstep”,specifiestheassociationbetweena manufacturingfeatureandamachiningoperationcompletedtothatfeature.Itencapsulatesdesign information(i.e.manufacturingfeature)andmanufacturinginformation,suchascuttingtool,feedrate, cuttingspeed,coolantstatus.STEP-NCcreatesanexchangeable,workpiece-orienteddatamodelforCNC machinetools,supportsthedirectuseofproductdatafromISO10303.Thedatamodeloftherecent STEPAP242[43]formachiningformfeatureisconsistentwithSTEPAP214andSTEP-NC. Fig.13showstheSTEP-NCmanufacturingfeature,whichisanabstractsupertypeofregion,transition featureand2½Dmanufacturingfeature.ThisfigureindicatesthataSTEP-NCfeatureisdefinedimplicitly byasetofparameters.Afeaturewithaprofile,likepocket,slot,step,isdefinedusinganopen/closed boundarywithadepthoratravelpath.Forexample,informationoffeature’sdepth,placement,‘feature boundary’and‘bottomcondition’isusedtodefineaclosedpocket.The‘featureboundary’(aclosedand non-self-intersectingprofile)ofaclosedpocketisdefinedintheXYplaneofthefeaturecoordinate system.ThepocketisformedbymovingtheprofileadistanceofthedepthalongthenegativeZ-axis direction.The‘bottomcondition’specifiesthepocket’spossiblebottomshape.Onthepocket’sbottom theremightexistislands(bosses),whicharenotcutduringthemillingofthepocket.Apocketmayhave otherparameters:slope(definingtheanglebetweensidefacesandZ-axis),‘planarradius’(definingthe edgefilletbetweensidefacesandthebottom)and‘orthogonalradius’(definingtheedgefilletamong sidefaces).Holes,slots,steps,profilefeatures,etc.aredefinedsimilarly. Atransitionfeatures,describingthetypeofconnectionbetweenadjacentmachiningfeatures,canbe definedonlyontheborderofthetwofeatures.Chamfer(definedbytheangleandadimension)and ‘edgeround’(definedbyaradiusandoptionally2dimensions)aretwotypesoftransitionfeaturesin STEP-NC.Acompoundfeatureisagroupofconnectedtwoormorefeatures.‘Counterbore’consistingof 2holeswithdifferentdiameters,and‘countersunk’consistingofataperedholeandacylindricalhole, aretwotypesofcompoundfeatures.Theirbottomsofthenon-thruholeswithlargerdiametersarethe startingsurfacesforthethruholeswithsmallerdiameters. Fig.13STEP-NCfeatures[41] 6.2Featureclassification Weclassifyformfeaturesbasedonthepurelytopologicalcharacteristicsandweusegraphtheoryto analyzethem[36].Formfeaturesimplypotentialmachininginformationthatmakestheirforms.Their geometricscopeisgenerallylargerthanthoseofmachiningfeatures.Foreachdefinedcategorythe correspondingSTEP-NCfeaturesaregiven.Sothesubsequentfeatureextractionalgorithmscanexploit andmatchthegraphpropertiesofeachcategory. Hereformfeaturesarerepresentedbytheadjacencygraphs,whosenodesdenotefaces,andarcswith concavity/convexityvaluesdenoteedges[36].Forexample,theformfeatureshowningrayinFig.14ais representedbytheadjacencygraphGshowninFig.14b.RemovingtheconvexedgesinG,wegetthe graphG+,asshowninFig.14c. 0 f1 1 0 f4 1 0 f0 1 f2 1 1 0 1 f0 f3 1 f3 f2 1——concavity f4 1 f1 1——concavity 0——convexity abc Fig.14Adjacencygraphofafeature:a)aformfeature;b)graphG;c)graphG+ (1)Passage.Apassagehasnobottom,andconsistsofasetoffacesformingawall.Thewallfacesare connectedbyconcaveorconvexedges.Aconcaveedgeistheonewhoseedge-xitym<0;whereasa convexedgeistheonewhoseedge-xitym>0.Ifthereareconvexedges,theirnumberaregenerallyless thanthenumberofconcaveedges. Apassagehasthefollowingproperties(iorii)(Fig.15&16): i) ThegraphG+isacycleandG=G+; ii) ThegraphG+isoneorseveralchainsandgraphGisacycle. Where,Gistheadjacencygraph,G+isthegraphafterremovingtheconvexedgesinG. TheSTEP-NCfeaturesthatbelongtothepassageclassarethruroundholesandthruclosedpockets (Fig.17). ab Fig.15Exampleofapassage:a)thepassage;b)G/G+ abc Fig.16Anotherexampleofapassage:a)thepassage;b)G;c)G+ ab Fig.17STEP-NCpassagefeatures:a)thruholes;b)thruclosedpocket (2)Depression.Adepressionhasoneaccessofentryandonebottomfaceconnectingitswallfaces viaconcaveedges.Ithasthefollowingproperties(iandii)(Fig.18): i)GraphG+hasavertexvwhosedegreedeg(v)=λ(G+),whereλ(G+)isthenumberofcocylcles(i.e. numberofverticesminusnumberofconnectedcomponents,whichis1inthispaper.); ii)GraphG-vobtainedbysuppressionvertexvofG,isacycle,whoseconcaveedgesismorethanthe convexedgesinnumber. TheSTEP-NCdepressionfeaturesareblindroundholes,blindclosedpockets,andslotswithtwoends. abc def Fig.18STEP-NCdepressionfeatures:a)blindclosedpocket,planarbottom;b)G+;c)G-v;d)blindclosed pocket,radiusedbottom;e)blindclosedpocket,generalbottom;f)slotwith2radiusedends Adegenerateddepressionistheonewhosebottomfacedegeneratestoanedgeoravertex.Likethe depressioninFig.19,itsbottomisvertex.Inthiscase,wecanaddanisolatedelementvtothegraph.If thegraphG+vhastheaboveproperties,thenthefeatureisadepression. v v Fig.19Adegenerateddepression:a)thefeature;b)G+v (3)K-protrusion.Ak-protrusionhasoneorseveralaccessesofentry,andhasonebasefaceonwhich protrusionsareattachedviaconcaveedges.Ithasthefollowingproperties(iandiiandiii)(Fig.20): i)GraphG+hasavertexvwhosedegreedeg(v)=λ(G+); ii)GraphG-vcontainskdisjointcomponents. iii)Acomponent(G-v)i,(1≤i≤k),itisacyclewhoseconcaveedgesislessthantheconvexedgesin number. TheSTEP-NCk-protrusionfeaturesarebosses,profilefeaturesandsphericalcap. ab cde Fig.20Exampleofk-protrusion:a)thek-protrusion;b)G;c)G+;d)(G-v)1;e)(G-v)2 (4)K-slot.Ak-slothasoneorseveralaccessesofentry,andhasonebasefaceconnectingoneor severalopenwallfaces.Ithasthefollowingproperties(iandii)(Fig.21): i)GraphG+hasavertexvwhosedegreedeg(v)=λ(G+); ii)GraphG-vcontainskdisjointchains(G-v)1,…,(G-v)j,and/orisolatedverticess1,…,sk. TheSTEP-NCk-slotfeaturesareblindopenpockets,slotsthathasatleastoneendisopen,andsteps. ab cde Fig.21Exampleofk-slot:a)thek-slot;b)G;c)G+;d)(G-v)1;e)(G-v)2 (5)Compoundclass.Thistypeofformfeatureiscomposedbyseveralsimplefeaturesdefinedabove.For example,adepressionwithanislandonitsbottomisacompoundfeature.Thebasicprocessing approachisdecompositionthegraph.Fig.22showsacompoundandthegraphdecomposition. abcde Fig.22Exampleofacompound:a)thefeature;b)G+;c)G-v;d)(G-v)1(depression);e)(G-v)2(k-protrusion) 6.3STEP-NCfeaturerecognition 6.3.1Flowchartofthealgorithm Generallyspeaking,thefeaturerecognitionisdoneintwophases.Onephaseistoidentifytheform featureclass(passage,depression,k-protrusion,ork-slot),andthendeterminethecorrespondingSTEPNCfeatureclass;theotherphaseistoextracttheSTEP-NCfeatureparametersaccordingtothe standard’sspecifications.Fig.23showstheflowchartofthefeaturerecognitionalgorithm. Input: regions & shape types Process region borders Generate region adjacency matrix Identify thru holes/closed_pockets Identify blind holes/closed_pockets Identify bosses, profile features Identify open pockets, slots, steps Identify transition features Group into compound features End Fig.23.Flowchartofthefeatureextractionalgorithm 6.3.2Processofregionborders Afterregionsegmentation,mostofregionbordersaresmooth,butinthesmallregulartriangleregions, therearesomesegmentswhosebordersarejagged.Tokeepthetopologicalrelationshipofmesh unchanged,weadoptthemethodin[44],tofindtheshortestpathbetweentwoborderverticesthatare currentlyconnectedwithjaggededges.InFig.24thejaggedborderedgesofsegmentSconsistofe1-e2, e3-e4.Bysearchingtheshortestpathontheborder,thealternativeedgesarefoundase’1,e’3-e’4, respectively. Fig.24Regionboundarysmoothing Determineouter/innerloopsofregionborders.Iftwotrianglessharinganedgearenotinsameregion, thesharededgeisaborderedge.Theborder’sdirectionisinconformancetotheedgedirectionofthe bordertriangle.Foraplanarregion,thenormalvectorofaborderiscalculatedaccordingtoitsdirection. Iftheborder’svectorisinthesamedirectionastheregion’s,thentheborderistheouterloopofthe region;Iftheborder’svectorisintheoppositedirectiontotheregion’s,thentheborderisaninnerloop theregion. Fitregionborderswithlines,arcsorsplinecurves.TheprofilesofaSTEP-NCfeatureconsistoflines,arcs andsplinecurves.Thisfittingprocesswillfacilitatetoextractamachiningfeatureanddecideitstypeand itsparameters. 6.3.3Regionadjacencymatrix Inordertoimprovetheefficiencyofthealgorithm,adataschemeoriginallyusedinimagesegmentation [45]—regionadjacencygraph(RAG)isadopted.Thisalgebraicstructurecontainsasetofnodesanda setofedges.Eachnodesrepresentsaconnectedregion(i.e.aconnectedsubsetofthemesh),andeach edgerepresentsanadjacencybetweentworegions.Thealgorithminputistheregionsegmentation resultofanin-processmodel,whichareregionsrepresentedbyacollectionoftrianglesandtheir respectiveshapetypes.HeretheinputisstructuredasaRAG.Thenafterfinishingsomerelevant calculations(suchastheconvexity/concavityforregionborders.),theRAGaretransformedasaregion adjacencymatrix(whichissimilartoafaceadjacencymatrix).Theadjacencymatrixisasquare symmetricmatrixanditsdimensionisequaltothenumberofregions.Theelementsaijofthismatrix describethedependenciesbetweenregions: 0:regioniandregionjarenotincontact type:diagonalelementsindicatearegiontype aij= 1:regionsiandjshareaconcaveedge -1:regionsiandjshareaconvexedge -2:regionsiandjshareatangentedge Theextractionalgorithmcheckstheserelationsfrequently,sothecreationofthismatrixacceleratethe calculations. 6.3.4Extractionofthruholesandthru,closedpockets Thesefeaturesbelongtothepassageclass.Hereweproposeanovelapproachtorecognizethem.First wecalculatethenumberofpassagesinthein-processmodelbyusingEulercharacteristic(alsocalled Eulernumber).TheniftheEulernumberindicatesthattherearepassagesinthemodel,normal searchingproceduresareperformed.Thiswillcertainlyincreasetheefficiencyofthealgorithm. HereistheexplanationonhowtocalculatetheEulercharacteristic,whichisatopologicalinvariant,a numberthatdescribesatopologicalspace'sshaperegardlessofthewayitisbent.TheEuler characteristic,commonlydenotedbyχ,wasclassicallydefinedforthesurfacesofpolyhedra,according totheformula[46] χ=V–E+F(3) WhereV,E,andFarerespectivelythenumbersofvertices,edgesandfacesinthegivenpolyhedron. Ontheotherhand,theEulercharacteristicofaclosedmanifoldshapecanbecalculatedfromits genusg,whichisnumberofpassages,intuitively. χ=2–2g(4) Afterpre-processing,theIPMbecomesamanifoldpolyhedralB-reptrianglemeshmodel.Moreover itsfacenumberandedgenumberhasthefollowingrelationship. E=3F/2(5) Combining(1),(2)and(3),thenumberofpassagesisasunder: g=1+F/4–V/2(6) ThenumberoftrianglesFandthenumberofverticesVcanbeeasilygotfromthepre-processedIPM. Ifg>0thenperformthefollowingdetections. Ausualapproachtoextractthruholesandthru,closedpocketsistoanalyzeregion’sinnerloopswith convexedgesonly[47].Suchaloopindicatestheexistenceofaholeoraclosedpocket.Startingfrom suchaloop,thefeature’ssides(wallfaces)arecollected.Thecollectionendswhensideregions encounteracommonregionhavinganinnerloopwithconvexedges.Thetwoinnerloopsconfirmthat theholeorthepocketisbottomless.Ifthetypeofsideregionsis“rut”,thenthefeatureisathruhole; otherwiseitisathruclosedpocket.ButasFig.15shows,thethrupocketisnotoriginatedfromaninner loop.Inthiscasetheabove“loop”hintcannotbeused,butwecanbesurethatthereisapassageinthe partbyapplyingformula(6),thenthegraphmatchingofthetopologicalpropertiesofapassagecanbe usedtosearchthepassage.SotheEulernumbercanhelpfindpassagesinsomesituation. Nextdeterminethefeature’sparameters.Thelocationoftheregioncontainingtheinnerloopwith biggerz-valueisusedtodeterminethelocation(x,y,z)andtwovectorsdescribingtheorientationofthe feature.ThefirstvectornormaltotheregiondecidesZ-axis,whilethevectorlayingontheregiondecide X-axis.Theregionwiththisinnerloopisthestartingfaceofthefeature.Ifthefeatureisaholeas decidedabove,theinnerloopisinfactacircle,andthehole’sradiusequalstothecircle’s.Ifthereare arcsbetweentwoadjacentloopedgesformingconcaveangle,theradiusofthearcsisusedtostorethe valueoforthogonal_radiusparameter(Fig.17b). 6.3.5Extractionofblindholesandblind,closedpockets Extractingblindholesandblind,closedpocketsisalsodonebyanalyzingregion’sinnerloopswith convexedges.Thesedepressionfeatureshavebottomregionswithconcaveborderedges.Asidewallof thefeaturestartsfromtheinnerloopsandendsatthebottomregionthruaconcaveedge.Thefeature’s location,orthogonal_radiusofthefeaturecanbedecidedinthesamewayasthru,closedpockets.To findthebottom,thesideregionhavingthegreatestlengthinthedirectionofthevectornormaltothe regionwiththeinnerloopisselected.Ifsuchdeterminedsideregioncontactswiththeregionwhose typeiscylindrical(rut),orsaddle,orsphericalcup,andthesetworegionsformaconcaveangle,the radiusofsuchcylindricalorcupregionsisselectedasthevalueofplanar_radiusparameterandalso pocket/holedepthisrevised.Notethatthefeature’sbottomregioncanbeinclined.Afterthebottom regionisselected,thepocket/holebottomtypemustbedetermined.Forexample,ablindholecanhave 4bottomtypes:flat,conical,flatwithradius,orsphericalbottom(Fig.25).Thebottomtypecanbeeasily decidedbythebottomregion’ssurfacetype.Iftheregionrepresentingthebottomhasinnerloopswith concaveedgesonly,thepockethasbosses.Bossisthepartofthematerialwhichmustbenotcutduring themachining.Thepocketbottomregionalsocanhaveinnerloopwithconvexedges,determiningother concavefeature,forexamplenextpocketlyingonthisbottom.Allthesideregionsandthebottom regionformingthefeaturearemarkedasrecognized.Suchregionsarenolongeranalyzedbythe extractingprocedure.Thestartingregionforthepocketorholeisnotmarkedasrecognizedbecause suchregionscanbethepartofotherfeature. AccordingtoSTEP-NCfeaturespecifications,someslotscanbeconsideredasthespecialtypesofpockets. Iftheappropriateconditionsaresatisfied,thepocketisclassifiedasslot.Forexample,ifthepocket profile(theinnerloop)consistsoftwoparallellinesandtwoarcs,likearunningtrack,andwidthofthe pocketistwicethevalueoftheradiusonthepocketends,thenthepocketisaslotwithtworadiused ends(Fig.18f). Fig.25STEP-NCblindholetypes 6.3.6Extractionofbosses,profilefeatures,sphericalcap InISO14649aboss,asadependentmachiningfeature,havingnoseparateworkingstepassignedtoit, canoccuronfeaturesofplanarface,blindclosed/openpocket,andstep.Anoutsideprofile(Fig.26a)is theremovalvolumeofarbitraryshapefromtheoutsideshapeofaworkpiece.Thesetypesoffeatures canbeextractedbyanalyzingaregion’sinnerloopwithconcaveedgesonly,andtheregionisthebase face.Foraprofilefeaturethisloopisthe“feature_boundary”;forabossfromthisloopitsboundary, whichisdefinedatthetopoftheboss,canbeinferred.Basedonthelengthofthesideregionsofthe bossorprofilefeature,measuredinthedirectionofthevectornormaltothebasefaceofthefeature, determinestheparameterofHeightofabossorDepthofaprofilefeature.Regionsformingthebossor profilefeaturearemarkedasrecognized. Asphericalcapiscircularaboutanaxisofrotation.Itconsistsofallpointsatagivendistancefroma pointconstitutingitscenter.Thecenterisdefinedbyitsplacement,whichisinthesphere'scenter.Fig. 26bshowsasphericalcapsittingonaboss.Whenwefoundoutalltheconnectedregionsoriginating fromaninnerloopwithconcaveedges,weidentifyaregionwhosesurfacetypeis“sphericalcap” (surfaceindex≈1),thenthisregionisobviouslyaspherical_capfeature.Thefeature’sparameters,radius andinternal_anglecanbeobtainedbyfittingtheregionwithaspheresurface. ab Fig26.a)Profilefeature;b)sphericalcap 6.3.7Extractionofopenpockets,slotsandsteps Searcharegionwhoseouterborderhasmostnumberofconnectedconcaveedges.Thenumbershould beequalorgreaterthan2.Thisregionisselectedasthebottomfaceofthenewblindfeature(pocketor slot).Theconnectedregionssharingtheconcaveedgeswiththebottomisincludedasthesidefaces.The sidefacewiththegreatestdimensioninthedirectionofthevectornormaltothebottomisusedto decidethepocketdepth.Sideregionsaremarkedasrecognized.Againsearcharegionwhoseouter borderhasmostnumberofconnectedconcaveedges,andrepeattheoperation.Thisregionmightbe sameastheonepreviouslyselectedsincetheremightexistseveraldisconnectedopenpocketsbasedon sameface. Slotisregardedasaspecialpockettypeundercertaingeometricconstraints.Theaboveoperationshave extractedblindopenpockets.Amongthemtheremightexistsuchaslotwhoseoneendisopenandthe otherendiswoodruffed,orradiused,orflat,asdefinedbyISO14649(Fig.21a).Thespecificslottypecan bedeterminedbycheckingtherelevantgeometricconstraints.Notethatslotswithtwoendsbeing woodruffed/radiused/flat,orslotswithloopendtypes,havealreadybeenextractedin7.5sincetheyare infactblindclosepockets. Thetopologyofathru,openpocketsisfacechainconnectedbyconcaveedges.Soregionchains connectedbyconcaveborderedgesaresearchedamongunrecognizedregions.Theseregionsformthe sidefacesofathru,openpocket,andfromthemtheopen_boundaryparametercanbeinferred.This methodcanonlyextractautomaticallythru,openpocketswhosesidefaceshaveconcaveedges.For thosewhosesidefaceswithoutconcaveedges,userinterventionisneeded. Thruslotsandsteps(Fig.21a)arespecialthru,openpocketssatisfyingcertaingeometricconstraints.A stepfeatureisavolumeofmaterialremovedfromthetopandthesidesoftheworkpiece.Astephas twoplanarfacesdefinedbyaV-profile,andconnectedbyaconcaveedge.Asforthethruslot,one commonshapehasabottomfaceandtwoparallelsidefaces,connectedbytwoconcaveedges.Inthe extractedthru,openpocketstheremightincludesomethruslotsand/orsteps.Wecanusethese geometriccharacteristicstosortoutthruslotsandstepsfromtheextractedthru,openpockets. 6.3.8Extractionoftransitionfeatures ISO14649definestwotypesoftransitions:chamfersandedgerounds.Theruleforextractingchamfers isachamfer’sgeometrictraitsplusitsmanufacturingknowledge.Achamferisalwaysanouterchamfer, whichmeansallitsedgesareconvex,asonlythiscanbegeneratedinaseparatemachiningoperation. Itslength/widthratioishighandithasthenormalvectornorparallelorperpendiculartoZ-axisofthe partcoordinatesystemingeneral.Checkingthesepropertiesonunmarkedplanarregions,chamferscan beselected.Thechamfer’sparameterangle_to_planeistheanglebetweenoneofitsadjacentregions andthechamferregionusuallywithvalueof45°or30°frommanufacturingpointofview. Rounding/blendingfeaturesincludingedgeroundsareextractedhereusingauniqueapproach developedbytheauthors.Curvednessmapofthemodelisfirstcomputed,andthenunmarkedregions withhighcurvednessareidentifiedasroundingfeatures. Curvednessisapositivevaluethatspecifiestheamountorintensityofthesurfacecurvature[40].Itis definedas: (7) Wherekmaxandkminarethemaximumandminimumprincipalcurvaturesofavertex,respectively. Weusethecurvednessvaluetodetectroundingregion.Verticesonsmoothedgesandtransitionregions havehighercurvednessvalue,asthusathresholdcanbegiventodetectthem.Thismethodiseasytobe realizedandtooperate.Thecurvednessrangeofadiscretemodelisdependentonitsshapesize.The thresholdcanbegivenastheaverageofthemodel’smaximumcurvednessandminimumcurvedness. Fig.27bshowstheresultsofaroundedpocket’scurvednessmap.Inmostcasestheidentifiedrounding regionshavesurfacetypesofrut/ridge/spherical_cup/spherical_cap.AsfortheISOedgeroundfeature, accordingtothedefinition,itisalwaysanouterfillet,whichcanbemanufacturedinanextramachining operation.Thismeansthatonlytheroundingregionfilteredbythecurvednesswithsurfacetype‘ridge’ canbeanedgeroundfeature.Theedgeroundfeature’sparameter‘radius’canbecalculatedbyfitting the‘ridge’regionwithacylindricalsurface. ab Fig.27a)Roundedpocket;b)Curvedness 6.3.9Groupingintocompoundfeatures Acompoundfeatureisafeaturecomposedoftwoorseveralsimplefeatures.Unlikeareplicatefeature, thereisnoregularspacingbetweentheelementsofacompoundfeature.Twoexamplesofcompound featuresinSTEP-NCarecounterbore_holeandcountersunk_holeasshowninFig.28. Aftersimplefeaturesinthepartmodelareextracted,groupingsimplefeaturesintocompoundfeatures canbedonebycheckingtheirgeometricpatterns.Forexample,acounterborefeatureconsistsoftwo co-axialholes.Oneblindholehasalargerdiameterthantheother.Thelargerhole’sbottomconnects thesmallhole.Toextractacounterbore,firstselect2co-axialholes:oneisblindandtheotheristhru, thencomparetheirdiametersandconnectionrelationship.Ifthetwofitthepattern,thentheyare groupedintoacounterborefeature. Fig.28Counterboreandcountersunkholes Insomesituationafeatureisbrokenduetoitsintersectionwithotherfeature(s).Anexampleisshown asinFig.29.Thethruholeintersectswiththethrupocketonthesidefaces.Becauseofthis,twoseparate holesareextracted.Thelinkingapproachissimilartotheoneforcompoundfeaturegrouping.During linkingofbrokenholes,theco-axialrelationshipandthesamevalueofselectedparameters(thehole diameterinthiscase)isusedasthelinkingcriteria. Inaddition,theapproachtogroupsimplefeaturesintoreplicatefeaturesissimilar. Fig.29Linkingbrokenfeatures 7. Casestudy TheproposedmethodsforfeaturerecognitionandreverseengineeringofIPMwereverifiedby developingthesoftware.Theinputdata,thepart’sIPM,wasgeneratedbyNCSimul9.0,whichusesaGcodeprogramrunningontheSiemens840DCNCcontrollers.TheIPMwasoutputaftertheNC simulationasanSTLfile,andthenwasconvertedintoanOFFfile,whichunifiedduplicatedverticesand thereforewasmuchsmallerinsize.ThesoftwarewasdevelopedwithMicrosoftVisualStudio2012(C++). ItsinterfacewascreatedwithQt,andOpenGLgraphiclibrarywasusedforthevisualization.For processingthetrianglemesh,OpenMeshandCGALdevelopinglibrarieswereused.Thesoftwarewasrun onacomputerwithanIntelCoreCPU2.4GHzand4GbRAM. FortheexamplepartshowninFigures6-9,itsIPMhas631verticesand1256triangles.Thetotal processingtimeafterfeaturerecognitionis23ms,andtheresultisdisplayedinFig.30. ab Fig.30Resultfortheexamplepart:a)segmentationresult;b)featuresgotfromtherecognition Thetestsoftware’sinterfacesandanothertestpartareshowninFig.31.TheIPMtreatmentfunctions areundermenu“Meshes”.Themachiningfeaturerecognitionfunctionsareundermenu“NC-Features”. Thispart’sIPMshowninFig.2ahas1556verticesand3112triangles.Thetotalprocessingtimeis57ms. TheregionsegmentationresultforthetestcaseisshowninFig.31.Themeshsegmentsofthepart “Pièce_test”include1sphericalcap,1ridge,2saddles,9sphericalcups,28rutsand19planes. Fig.31Screenshotofthesoftwareforregionsegmentationofthetestpart Afterthefeaturerecognition,wecanknowthatthemodelhas20featuresintotal,presentedontheleft treelist(Fig.32)—1squarepocketwith1boss(sphericalcap);1three-axispocket;3counterboreholes;1 planarface(i.e.thepart’stopface)with2bosses;1chamferonthesquarepocket’sentranceborder;9 holeswithdifferentbottomconditionsonthepart’sinclinedfaces;and1slotwithwoodruffendsona sideface.Whenthefeature’snameintreelistisclicked,thefeature’sparametersareshowninthe bottom-righttable. Chamfer13 RoundHole1 Boss1ofPlanarface17 Pocket16 CounterBoreHole10 Planarface17 Boss1ofPocket16(sphericalcap) Pocket14 Fig.32Screenshotofthesoftwareforfeaturerecognitionofthetestpart(annotationsaddedmanually) Aquantitativeanalysistothereconstructionwasperformed.Wechosesomeparametersfromthispart’s CADmodelasastandardreferenceandcomparedthemwiththerecoveredonesbytheproposed approach.ThreefeaturesintheCADmodelshowninFig.33areselectedforthecomparison.FromTable 1,wecanseetherecoveredvaluesareveryclosetothoseoftheCADmodel,especiallyforfeatures placedhorizontallyorvertically.Incolumn“Error”ofTable1,theerroriscomputedasthedistanceof twopositions;andfortwovectors,theerroriscomputedastheirangleinradian.Theseerrorsare deemedtoberesultedmainlyfromthesimulationdiscretization,andnotfromthereverseapproach. Planarface17 RoundHole1 Boss1ofPocket16 Fig.33CADmodelofthetestpart Table1:Quantitativecomparisontothereconstruction Features Checkedvalues Valuesgotfrom CADmodel ValuesgotbyREofIPM Theerror Boss1of Pocket16 Center(x,y,z) (-34,-16.5,20) (-34.000,-16.501,20.000) 0.001 Radius 16 16.000 0.000 Planarface17 (nx,ny,nz)-normalvector (0,0,1) (0.000,0.000,-1.000) 0.000 p-distancefromorigintoplane (xnx+yny+znz=p) 36 36.000 0.000 Axisvector(nx,ny,nz) (0,0.5,0.866) (0.000,0.498,0.867) 0.014rad Axisposition(x,y,z) (12,46.8,31.5) (12.000,46.789,31.504) 0.012 Diameter 10.3 10.369 0.069 Depth 32 31.886 0.114 RoundHole1 8. Conclusions Thepresentedmethodinthisresearchforfeaturerecognitionandreverseengineeringofanin-process modelhasthefollowingfeatures:(1)Itusesshapeindextosegmentameshforthefirsttime,toourbest knowledge.Todecidethelocalsurfacetypeofamesh,onlyonevalue,theshapeindex,issufficient, whereasothermethodsusuallyuseacombinationoftwoormoretypesofcurvatures.(2)Itadoptsa progressivesegmentationmethodaccordingtotheIPMcharacteristics.Inthiswayeachregionofthe IPMcanbepartitionedusingthemosteffectivealgorithm.(3)Theproposedformfeatureclassification approachisonlydependedonthesolid’stopology,anditcancoveraratherlargescopeofforms. Degeneratedandcompoundformfeaturescanalsobehandled.Basedontheclassifiedforms,STEP-NC featurescaneasilyberecognized.(4)Twonoveltiesarepresentedinthefeaturerecognitionapproach: EulercharacteristicisappliedtoaidtheextractionSTEP-NCpassagefeatures(thruholesandclosed pockets,etc.),andthemodel’scurvedness,ashapedescriptor,isusedtoextracttransitionfeaturesand edgerounds.Therecognitioninputdataisthesegmentationresult-regionswiththeirshapetypes.The outputisSTEP-NCfeatures,includingthefeaturetypes,theirdefiningcomponents,suchasprofiles, placements,scalarparameters. The key advantage of our method comes from the adoption of the shape index derived from the two principal curvatures for mesh segmentation. Other curvature based methods usually use the Gaussian and mean curvatures, or the principal curvatures, or combination of them. Some problems of other methods are: size and local shape are coupled; rules to classify the local shape is complex; surface shape variation is hard to be shown by only one type of curvature in a color scale. Whereas, the shape index is scale invariant, and is quite consistent to the intuitively distinct shapes, which may facilitates a user interface design by this single parameter instead of two. Besides, parabolic curves on a surface can neatly be distinguished, but the Gaussian or mean curvatures cannot. Thefutureworkforimprovementsofthemethodmayimplythefollowing:(1)improvingcurvature accuracyofverticesonboundaries.Verticesofthemeshshouldbefirstclassifiedasverticesoftheform, verticesonedgesandverticesinsidefacesbyapplyingtensorvotingtheory[13];(2)regionboundary smoothingapproach.Bothglobaldirectionandlocaldirectionoftheboundaryshouldbeconsidered, especiallyattheintersectingpointofseveralboundaries.Currentlyonlylocaldirectionishandled;(3) refiningclassificationrulesofformfeatures,anddetailingthegraph’stopologicalpropertiesfor degeneratedandcompoundformfeatures,aswellastherelevantgraphoperationmethods.For example,thenumberofconcaveorconvexedgesofgraphG-vdecidesadepressionorprotrusion,which isnotpreciseinsomerarecases.Considerusingedge-xityinsteadofnumberofconcaveedges;(4) refiningapproachestoextractopenpocketsandprofilefeatures,andemploymentofmanufacturing knowledgetosupporttheextractionalgorithm.Anopenpocketcanberathercomplex,needingfurther manufacturinginformationtodecideitsexactSTEP-NCfeaturetype.Similarsituationexistsfortransition features. ACKNOWLEDGEMENT ThisworkisapartoftheANGELFUIprojectfundedbytheFrenchInter-ministerialFundand endorsedbytopFrenchcompetivenessclusters(SYSTEMATICPARISREGION,VIAMECAandASTECH). REFERENCES 1. Altintas,Y.,Kerting,P.,Biermann,etal,“Virtualprocesssystemsforpartmachiningoperations”,CIRP Annals–Manuf.Tech.,Vol.63,pp.585-605,2014. 2. Anwer,N.,Yang,Y.,Zhao,H.,andComa,O.,“Paul,J.:ReverseengineeringforNCmachiningsimulatio n”,IDMME’2010-VisualConcept2010,Bordeaux,France,pp.1-8,2010. 3. Zhang,X.,Nassehi,A.,Newman,S.T.,“FeaturerecognitionfromCNCpartprogramsformillingoperati ons”,IntJAdvManufTechnol,Vol.70,pp.397–412,2014. 4. Attene,M.,Falcidieno,B.andSpagnuoloM.,“Hierarchicalmeshsegmentationbasedonfittingprimiti ves”,VisualComput.,Vol.22,pp.181-193,2006. 5. Shamir,A.,“Asurveyonmeshsegmentationtechniques”,ComputerGraphicsForum,Vol.27,No.6,p p.1539-1556,2008. 6. Shamir,A.,“Aformulationofboundarymeshsegmentation”,3DPVT,Vol.4,pp.82-89.2004. 7. Benko,P.andVarady,T.,“Segmentationmethodforsmoothpointregionsofconventionalengineerin gobjects”,Computer-AidedDesign,Vol.36,pp.511-523,2004. 8. Sunil,B.andPande,S.,“AutomaticrecognitionoffeaturesfromfreeformsurfaceCADmodels”,Comp uter-AidedDesign,Vol.40,pp.502–517,2008. 9. Xiao,D.,LinH.,XianC.andGaoS.,“CADmeshsegmentationbyclustering”,Computers&Graphics,V ol.35,pp.685-691,2011. 10. Kim,S.-K.andKim,C.-H.,“FindingridgesandvalleysinadiscretesurfaceusingamodifiedMLSappro ximation”,Computer-AidedDesign,Vol.37,pp.1533-1542,2005. 11. Sun,Y.,etal.“Trianglemesh-basededgedetectionanditsapplicationtosurfacesegmentationanda daptivesurfacesmoothing”,ProceedingsofInternationalConferenceonImageProcessing.Vol.3.IEE E,pp.825-828,2002. 12. Bénière,R.,Subsol,G.,Gesquière,G.,Breton,F.andPuech,W.“Acomprehensiveprocessofreverse engineeringfrom3DmeshestoCADmodels”,Computer-AidedDesign,Vol.45,pp.1382-1393,2013. 13. Kim,H.-S.,Choi,H.-K.andLeeK.-H.,“Featuredetectionoftrianglemeshesbasedontensorvotingthe ory”,Computer-AidedDesign,Vol.41,pp.47-58,2009. 14. Wu,J.andKobbeltL.,“Structurerecoveryviahybridvariationalsurfaceapproximation”,Eurographic s2005,Vol.24,pp.277-284. 15. Besl,J.andJainR.,“Segmentationthroughvariableorderofsurfacefitting,”TransactionsofIEEEonP atternAnalysisandMachineIntelligence,Vol.10,No.2,pp.167-192,1988. 16. Yan,D.-M.,Liu,Y.andWang,W.“Quadricsurfaceextractionbyvariationalshapeapproximation,”Ge ometricModelingandProcessing-GMP.SpringerBerlinHeidelberg,pp.73-86,2006. 17. Lavoué,G.,DupontF.andBaskurt,A.,“AnewCADmeshsegmentationmethod,basedoncurvaturet ensoranalysis,”Computer-AidedDesign,Vol.37,pp.975-987,2005. 18. Razdan,A.andBae,M.S.,“Ahybridapproachtofeaturesegmentationoftrianglemeshes”,Compute r-AidedDesign,Vol.35,pp.783-789,2003. 19. ZhaoH.,AnwerN.andBourdetP.,“Curvature-basedregistrationandsegmentationformultisensorc oordinatemetrology”,ProcediaCIRP,Vol.10,pp.112-118,2013. 20. Nalluri,S.,“Formfeaturegenerationmodelforfeaturestechnology”,Ph.D.thesis,IndianInstituteof Science,1994. 21. Shah,J.J.andRogersM.T.,“Expertformfeaturemodelingshell”,Computer-AidedDesign,Vol.20,pp. 515–524,1988. 22. Han,J.H.,PrattM.andRegliW.C,“Manufacturingfeaturerecognitionfromsolidmodels:astatusrep ort”,IEEETrans.onRoboticsandAutomation,Vol.16,No.6,pp.782-796,2000. 23. Joshi,S.,“Graph-basedheuristicsforrecognitionofmachinedfeaturesfroma3Dsolidmodel”,Comp uter-AidedDesign,Vol.20,pp.58–66,1988. 24. Vandenbrande,J.H.andRequicha,A.A.G.,“Spatialreasoningfortheautomaticrecognitionofmachin ablefeaturesinsolidmodels”,IEEETrans.PatternAnal.MachineIntell.,Vol.15,pp.1-17,2000. 25. Rahmani,K.andArezoo,B.,“Boundaryanalysisandgeometriccompletionforrecognitionofinteracti ngmachiningfeatures”,Computer-AidedDesign,Vol.38,pp.845-856,2006. 26. Rahmani,K.andArezoo,B.,“Ahybridhint-basedandgraph-basedframeworkforrecognitionofinter actingmillingfeatures”,ComputersinIndustry,Vol.58,No.4,pp.304-312,2007. 27. Sundararajan,V.andWright,P.K.,“Volumetricfeaturerecognitionformachiningcomponentswithfr eefromsurfaces”,Computer-AidedDesign,Vol.36,pp.11-25,2004. 28. GeometricLtd.,http://feature.geometricglobal.com. 29. Sunil,B.andPande,S.,“AutomaticrecognitionoffeaturesfromfreeformsurfaceCADmodels”,Com puter-AidedDesign,Vol.40,pp.502–517,2008. 30. KiswantoG.andAzkaM.,“Automaticpartprimitivefeatureidentificationbasedonfacetedmodels”, IJCSIInt.J.ofComputerScienceIssues,Vol.9,Issue5,No.2,pp.126-132,2012. 31. Karunakaran, K. P. and R. Shringi. 2007. “Octree-to-BRep conversion for volumetric NC simulation” Int J Adv Manuf Technol. 32:116-131 32. S.Xu,N.Anwer,andC.Mehdi-Souzani,“MachiningFeatureRecognitionfromIn-ProcessModelofNC Simulation,”Comput.Aided.Des.Appl.,vol.12,no.4,pp.383–392,2015. 33. CIOANĂ,C.,D.STAN,C.COSMA,andV.ŢUŢ.2010.“DevelopmentofvirtualobjectsusingNCprogram s”Proceedingsofthe2ndInternationalConferenceonManufacturingEngineering,QualityandProdu ctionSystems(ISBN:978-960-474-220-2)pp.133-138 34. Yan,X.,K.YamazakiandJ.Liu.2000.“Recognitionofmachiningfeaturesandfeaturetopologiesfrom NCprograms”Computer-AidedDesign,32:605-616 35. Shin,S.J.,S.H.Suh,andI.Stroud2007.“ReincarnationofG-codebasedpartprogramsintoSTEP-NCf orturningapplications.”Computer-AidedDesign39(1):1–16 36. Anwer,N.,“Méthodologied’analysederaisonnementpourlagénérationautomatiquedesgammesd’ usinageenfraisage”,Ph.D.dissertation,ÉNSdeCachan,France,pp.96,2000. 37. Cohen-Steiner,D.andMorvanJ.-M.,“RestrictedDelaunaytriangulationsandnormalcycle”,Proceedi ngsofthe19thannualsymposiumoncomputationalgeometry.ACM,pp.312-321,2003. 38. Razdan,A.andBae,M.S.,“CurvatureestimationschemesfortrianglemeshesusingbiquadraticBézier patches”,Computer-AidedDesign,Vol.37,pp.1481-1491,2005. 39. Kalogerakis,D.,Simari,P.,Nowrouzezahrai,D.andSingh,K.,“Robuststatisticalestimationofcurvatur eondiscretizedsurfaces”,SymposiumonGeometryProcessing,pp.13-22,2007. 40. KoenderinkJ.andDoornA.,“Surfaceshapeandcurvaturescales”,ImagingandVisionCompting,Vol. 10,No.8,pp.557-565,1992. 41. ISO14649Part10:Generalprocessdata,2002 42. ISO14649Part11:Processdataformilling,2002 43. ISO10303-242:2014:Applicationprotocol:Managedmodel-based3Dengineering. 44. WangJ.andYuZ.,“Surfacefeaturebasedmeshsegmentation”,Computer&Graphics,Vol.35,pp.66 1-667,2011. 45. Saarinen,K.,“Colorimagesegmentationbyawatershedalgorithmandregionadjacencygraphproces sing”,IEEEInt.Conf.ImageProcess,Austin,TX,USA,pp.1021-1024,1994. 46. Richeson,D.S.,“Euler'sGem:ThePolyhedronFormulaandtheBirthofTopology”,PrincetonUniversit yPress,2008. 47. PobożniakJ.,“AlogorithmforISO14649(STEP-NC)featurerecognition”,ManagementandProduction EngineeringReview,Vol.4,No.4,pp.50-58,2013
© Copyright 2026 Paperzz