CEGEP CHAMPLAIN - ST. LAWRENCE 201-103-RE: Differential Calculus Patrice Camiré Problem Sheet #17 Logarithmic Differentiation dy 1. Find using logarithmic differentiation. In each case, mention if logarithmic differentiation is dx necessary or simply convenient. (a) y = xx x 2 (j) y = xe (b) y = xsin(3x) (d) y = (2x + 1)3x x+1 x (e) y = x−1 (k) y = [sin(x)]cos(x) √ √ 6x + 1 3 3x − 1 √ (l) y = 5 20x + 7 √ 6 2x − 1 (m) y = √ 3 2 x 3x2 + 1 (f) y = xln(x) (n) y = (c) y = [tan(2x)]x 2 sin(2x) cos(4x) x √ 2x + 1(x3 + 5)2 (h) y = e x2 (g) y = (i) y = 1)5 (2x 3)4 (6x − + 4 (x + 1) (8x + 1)3 (x2 + 3)8 (3x + 2)4 (x4 + 1)2 (5x − 1)3 s ex3 (x2 + 1)9 (o) y = (2x − 1)4 (3x − 5)3 (p) y = [sec(2x)]sec(2x) (q) y = xcot(3x) Answers 1. (a) (b) (c) (d) (e) dy 2 = x(2 ln(x) + 1)xx dx dy sin(3x) xsin(3x) = 3 cos(3x) ln(x) + dx x dy x sec2 (2x) 2 [tan(2x)]x = 2x ln(tan(2x)) + dx tan(2x) dy 2x (2x + 1)3x = 3 ln(2x + 1) + dx 2x + 1 dy 2x x+1 x x+1 − 2 = ln dx x−1 x −1 x−1 dy = 2 ln(x)xln(x)−1 dx dy 1 sin(2x) cos(4x) (g) = 2 cot(2x) − 4 tan(4x) − dx x x √ 1 6x2 2x + 1(x3 + 5)2 dy = + 3 − 2x (h) dx 2x + 1 x + 5 e x2 dy 15 4 2 12 (6x − 1)5 (2x + 3)4 (i) =2 + − − dx 6x − 1 2x + 3 x + 1 8x + 1 (x + 1)4 (8x + 1)3 (f) (j) (k) (l) (m) (n) (o) dy x = ex (x ln(x) + 1)xe −1 dx 2 cos (x) dy = − sin(x) ln(sin(x)) [sin(x)]cos(x) dx sin(x) √ √ dy 3 1 4 6x + 1 3 3x − 1 √ = + − 5 dx 6x + 1 3x − 1 20x + 7 20x + 7 √ 6 dy 1 2 2x 2x − 1 √ = − − 2 3 2 dx 3(2x − 1) x 3x + 1 x 3x2 + 1 2 dy 16x 12 8x3 15 (x + 3)8 (3x + 2)4 = + − − dx x2 + 3 3x + 2 x4 + 1 5x − 1 (x4 + 1)2 (5x − 1)3 s 1 18x 8 9 ex3 (x2 + 1)9 dy = 3x2 + 2 − − dx 2 x + 1 2x − 1 3x − 5 (2x − 1)4 (3x − 5)3 dy = 2 tan(2x)(1 + ln(sec(2x)))[sec(2x)]1+sec(2x) dx dy cot(3x) 2 (q) = − 3 csc (3x) ln(x) xcot(3x) dx x (p) necessary necessary necessary necessary necessary necessary convenient convenient convenient necessary necessary convenient convenient convenient convenient necessary necessary
© Copyright 2026 Paperzz