ERTH430: FluidDynamics inEarthSystems TheSineandCosineFunctions Dr.DaveDempsey andtheirDerivatives Dept.ofEarth &ClimateSciences,SFSU I.Functions Afunctionisarulethatassociateseachmemberofonesetof values(theindependentvariable)toavalueinanothersetofvalues(the dependentvariable). II.SineandCosineFunctions Forthesetwotrigonometricfunctions,wecanask,whatisthe independentvariable,andwhatistherulethatassociatesvaluesofthe independentvariabletovaluesofthedependentvariable? First,somecontext.Setupatwo-dimensionalrectangular coordinatesystem.Pickapointanywhere,anddrawalinefromthe originofthecoordinatesystemtoyourpoint.Callthecoordinatesofthis pointxandy.Callthedistancefromtheorigintothispointd.(Seethe diagrambelow.) Thex-axisandthelinefromtheorigintothepointintersectand formanangle.Callthisangle,measuredcounterclockwisefromthexaxis,θ. [Note:Althoughwedefineunitsformeasuringangles(namely, degreesorradians),anglesaredimensionlessquantities.Whowould havethoughtit:adimensionlessquantitythathasunits!] So,forthesineandcosinefunctions,whatistheindependent variable?Answer:theangle,θ. Forthesinefunction,whatistherule d y thatassociatesθwiththevalueofthe dependentvariable(thatis,thesineofθ,or θ sin(θ))?Itisasfollows:Givenavalueofθas x definedabove,dividethey-coordinateofthe pointbythedistanceofthepointfromthe origin,d.Mathematically:sin(θ)=y/d. Thisshouldmakeitclearthatsin(θ)isdimensionless(becauseitis definedastheratiooftwoquantitieswiththesamedimensions). Forthecosinefunction,theruleis“givenavalueofθ,dividethexcoordinateofthepointbythedistanceofthepointfromtheorigin,d. Mathematically:cos(θ)=x/d. TheSineandCosineFunctionsandtheirDerivatives Youmighthavelearnedaboutthesineandcosinefunctionsin termsoftheratioofthelengthsoftwosidesofarighttriangle.The problemwithdefiningsineandcosinefunctionsinthiswayisthatit worksonlyforpointsintheupper-rightquadrantofthecoordinate system.Inanyoftheotherthreequadrants,eitherthex-coordinateor they-coordinate,orboth,isnegative,whereasthelengthsofthesidesof atrianglearepositivequantities(becausetheyarelengthsordistances, notcoordinates). Considerthepointinthediagramat right.Inthiscase,y>0butx<0,sosin(θ)= y/dispositive(and<1)butcos(θ)=x/dis negative(and|x/d|<1).(Becausedisa distance,notacoordinateintherectangular coordinatesystem,itisalwayspositive.) Forthepointinthediagramatright,y andxareboth<0,sobothsin(θ)andcos(θ) arenegative(andhavemagnitude<1). Forapointinthelower-righthand quadrant(notshown),sin(θ)wouldbe negativebutcos(θ)wouldbepositive. y d θ x θ x y d Forthecaseswherethepointliesdirectlyoneitherthex-oryaxis,sothatthey-coordinateorthex-coordinateofthepointiszero,the rulestillappliesinaverystraightforwardway. Forexample,whenthepointlieson y=d they-axiswithy>0,asinthediagramat right,sothatθ=90°=π/2radians,the θ x-coordinateofthepointiszeroandthe x=0 y-coordinateequalsthedistanceofthe pointfromtheorigin,d.Hence, sin(θ)=y/d=1,andcos(θ)=x/d=0. θ Whenthepointliesonthex-axiswith d x<0,sothatθ=180°=πradians(asinthe y=0 diagramatright),thex-coordinateisequal x=−d inmagnitudetothedistanced(butunliked, isnegative)andthey-coordinateiszero. Hence,sin(θ)=y/d=0,and cos(θ)=x/d= −d/d=−1. 2 TheSineandCosineFunctionsandtheirDerivatives Similarly,forthepointonthex-axiswithx>0(notshown),so thaty=0,x=d,andθ=0,thensin(θ)=y/d=0and cos(θ)=x/d=d/d=1. Andfinally,forapointlyingonthey-axiswithy<0,sothaty=−d, x=0,andθ=270°=3π/2radians, thensin(θ)=y/d=−d/d=−1and cos(θ)=x/d=0. Foranglesgreaterthan360° (2πradians),thefunctionvalues repeatthemselves,sothesineandcosinefunctionsareperiodic. Forangleslessthanzero(thatis,anglesmeasuredclockwisefrom thex-axis),thefunctionvaluesalsorepeatthemselves. Ifweplotthevaluesofthesinefunctionvs.theindependent variable,θ,thenwegetthefollowing: sin(θ) θ -360°-270°-180°-90°0°90°180°270°360° Noteagainthatthemagnitudeofthesinefunctionneverexceeds 1.Itsmaximumvalueis1anditsminimumvalueis−1.Itiszeroat0° (0radians)andatintervalsof180°(πradians).Thesinefunctionforms apatternthatrepeatsitselfwithaperiodof360°(2πradians),sothat sin(θ)=sin(θ+2π)forallθ. 3 TheSineandCosineFunctionsandtheirDerivatives Theangle,θ,iscalledthephaseoftheperiodicpattern.It determinesthepartofthepatternyouarein(apeak,atrough,or somewhereinbetween). Aplotofthecosinefunctionvs.θlookslikethis: cos(θ) θ -360°-270°-180°-90°0°90°180°270°360° Notethatlikethesinefunction,themaximumvalueofthecosine functionis1anditsminimumvalueis−1,sothemagnitudeofthecosine functionneverexceeds1.Unlikethesinefunction,thecosinefunction hasavalueof1at0°(0radians)and−1at180°(πradians),andiszero at90° (π/2radians)andat270° (3π/2radians). Likethesinefunction, itformsapatternthatrepeatsitselfwithaperiodof360°(2πradians), sothatcos(θ)=cos(θ+2π)forallθ. Theplotofcos(θ)vs.θisthesameastheplotofthesinefunction shiftedtotheleft(phaseshifted)by90°(π/2radians).Asaresult,we canwritecos(θ)=sin(θ+π/2).Thatis,thesineandcosinefunctionsare “outofphase”by90°(π/2radians). III.DerivativesoftheSineandCosineFunctions Youlearnedinfirst-semestercalculusthatthederivativesofthe sineandcosinefunctionswithrespecttotheirindependentvariableare: d sin (θ ) = cos (θ ) dθ d cos (θ ) = −sin (θ ) dθ 4 TheSineandCosineFunctionsandtheirDerivatives (Youmighthavelearnedthiswithadifferentnotation,wherethe symbol“x”representstheindependentvariableratherthanθ,butthis justchangesthenameassignedtotheindependentvariable,andthe namecanbeanythingyouwant.Changingthenamedoesn’tchangethe factthattheindependentvariableisanangleandisdimensionless,nor doesitchangethefactthatthesineandcosinefunctionsaredefinedas ratiosofapositioncoordinate(xory)toadistance(d)andhenceare alsodimensionless.) Howdoweknowwhatthesederivativesare?Thatis,howdowe knowthat d sin (θ ) dθ = cos (θ ) ,forexample?Toanswerthat,weneedto applythedefinitionofaderivative,atrigonometricidentity,andan approximation. First, d sin (θ ) dθ isjustashorthandnotationforthederivativeof thesinefunctionwithrespecttoitsindependentvariable: d sin (θ ) sin (θ + Δθ ) − sin (θ ) ≡ lim Δθ →0 dθ (θ + Δθ ) − θ = lim Δθ →0 sin (θ + Δθ ) − sin (θ ) Δθ Second,ausefultrigonometricidentity(whichwewon’ttryto provehere)is: sin ( a + b) = sin ( a) cos ( b) + cos ( a) sin ( b) Applythisidentityto sin (θ + Δθ ) inthedefinitionof d sin (θ ) dθ above: ⎡⎣sin (θ ) cos ( Δθ ) + cos (θ ) sin ( Δθ )⎤⎦ − sin (θ ) d sin (θ ) = lim Δθ →0 dθ Δθ Reorganizethetermsinthenumeratorandbreakintotwoterms: sin (θ ) cos ( Δθ ) − sin (θ ) cos (θ ) sin ( Δθ ) + lim = lim Δθ →0 Δθ →0 Δθ Δθ 5 TheSineandCosineFunctionsandtheirDerivatives Factorsin(θ)outofthenumeratoroftheleft-handterm,and recognizethatsin(θ)andcos(θ)don’tvaryaswetakethelimitas Δθ → 0 (becauseθandΔθareindependentofeachother), sowecan pullsin(θ)andcos(θ)outofthelimit(becausetheyareeffectively constantsasfarasthelimit-takingoperationisconcerned): sin (θ ) (cos ( Δθ ) −1) d sin (θ ) sin ( Δθ ) = lim + cos (θ ) × lim Δθ →0 Δθ →0 dθ Δθ Δθ cos Δ θ −1 ( ( ) ) + cos (θ ) × lim sin (Δθ ) = sin (θ ) × lim Δθ →0 Δθ →0 Δθ Δθ Finally,weinvokeanapproximation.Itispossibletoshowthatif θissmall,thensin(θ)≅θ(consistentwiththefactthatsin(0)=0).You canseewhythisapproximationmightbetrueontheplotofsin(θ)vs.θ onpage3.Forvaluesofθclosetozero,theplotisalmostlinear,withan interceptof0andaslopeofabout45°.Thesearecharacteristicsofa plotofthefunctionf(x)=xvs.x,thatis,aplotofavariableagainstitself. Hence,forvaluesofθclosetozero,thevaluesofsin(θ)areverynearly equaltoθ,andtheygetcloserandclosertoθasθgetssmaller.Thatis, theapproximationgetsbetterandbetterthesmallerθgets(and becomesexactinthelimitasθgoesto0).(Itispossibletoshowthis moreformallybyusingaTaylorseriesexpansionofthesinefunction.) Similarly,itispossibletoshowthatforsmallvaluesofθ, cos(θ)≅1–θ2(consistentwiththefactthatcos(0)=1).Youcansee whythisapproximationmightbetrueontheplotofcos(θ)vs.θonpage 4.Forvaluesofθclosetozero,theplothasashapeverymuchlikean invertedparabolawithinterceptof1,whichiswhatcos(θ)≅1–θ2is. Hence,forvaluesofθclosetozero,thevaluesofcose(θ)arevarynearly equalto1–θ2,andtheygetcloserandcloserto1–θ2asθgetssmaller. (ItispossibletoshowthismoreformallybyusingaTaylorseries expansionofthesinefunction.) 6 TheSineandCosineFunctionsandtheirDerivatives Applyingtheseapproximationstosin(Δθ)andcos(Δθ)asΔθ becomesverysmallintheexpressionforthederivativeabove,weget: ( 2 ) 1− ( Δθ ) −1 d sin (θ ) Δθ = sin (θ ) × lim + cos (θ ) × lim Δθ →0 Δθ →0 Δθ dθ Δθ = sin (θ ) × lim − ( Δθ ) 2 + cos (θ ) × lim 1 Δθ →0 Δθ = sin (θ ) × lim (−Δθ ) + cos (θ ) Δθ →0 Δθ →0 = sin (θ ) × 0 + cos (θ ) = cos (θ ) Wecandothesamesortofthingtoshowthat d cos (θ ) dθ = −sin (θ ) . IV.DerivativesofCompositeFunctionsInvolvingSineandCosine Functions Inmanyapplications,theindependentvariableofthesineand cosinefunctions,theangleθ,itselfdependsonsomethingelse,suchas timeorlocation(position),orboth. Inthosecaseswewouldwrite θ=θ(t)orθ=θ(x)orθ=θ(x,t),wheretrepresentstimeandx representspositioninspacealongacoordinateaxis.Thevalueofthe sineandcosinefunctionsdependsonlyindirectlyontand/orx,orboth, andwecouldask,howmuchdoesthesineorcosinefunctionvaryper unitchangeintorx?Sincethesineandcosinefunctionsdependonθ directlyandontorxonlyindirectly(throughthedependenceofθont and/orx),wehavetoanswerthequestionbyapplyingthechainrule. Thechainrulecanbewrittenlikethis: df (g(x)) df ( g) dg ( x ) = × dx dg dx wheref(g)isafunctionof(thatis,dependsupon)theindependent variableg,andg(x)itselfisafunctionthatdependsuponthe independentvariablex.Thechainrulesaysthatthechangeinthe functionfperunitchangeintheindependentvariablexdependsupon howmuchgchangesperunitchangeinxandalsohowmuchfchanges perunitchangeing.Thisshouldmakegood,intuitivesense! 7 TheSineandCosineFunctionsandtheirDerivatives Ifthesineorcosinefunctiondependsupontheangle,θ,and θ dependsupontorxorboth,thenwecanapplythechainruletoanswer thequestion:howmuchdoesthesineorcosinefunctionvaryin responsetoaunitchangeintorx? d sin (θ (t )) d sin (θ ) dθ (t ) = × dt dθ dt dθ (t ) = cos (θ ) × dt orinthecasewhereθ=θ(x,t): ∂sin (θ ( x, t )) d sin (θ ) ∂θ ( x, t ) = × ∂t dθ ∂t ∂θ ( x, t ) = cos (θ ) × ∂t andsimilarlyforaderivativewithrespecttox,andderivativesofthe cosinefunction. Acommonrelationshipbetweenθandtmightbe: θ (t ) = 2π t T , whereTistheperiodoftheperiodicsineorcosinefunction.(Thas dimensionsoftime,justastdoes,sot/Tisdimensionless,andhenceso isθ,whichinthiscaseisexpressedinradians.Theversionbasedon unitsofdegreeswouldbe θ (t ) = 360° × t T .Eitherway,astvariesfrom 0toT,theanglevariesfrom0to2πor360°(onefullcycleofthe periodicsineorcosinefunction). dθ (t ) d ( 2π t T ) 2π dt 2π 2π = = = ×1 = So,wecouldwrite: dt dt T dt T T andso: d sin (θ (t )) d sin (θ ) dθ (t ) = × dt dθ dt d ( 2π t T ) = cos (θ ) × dt = cos (θ ) × ( 2π T ) = ( 2π T ) × cos ( 2π t T ) 8 TheSineandCosineFunctionsandtheirDerivatives Acommonrelationshipbetweenθandbothtandxmightbe: ⎛x t ⎞ 2π θ (x, t) = ( x − ct ) = 2π ⎜⎝ − ⎟⎠ L L T whereListhewavelengthofspatiallyperiodicvariationandc=L/Tis thephasespeed,thespeedatwhichtheperiodicpatterntravelsparallel tothex-axis).Thesineandcosinefunctionsinthiscasevary periodicallyinbothspatialpositionandintime. (Notethatforthephase,θ,toremainconstantastprogresses, thenxmustalsovary—thatis,thepositionatwhichthephase(the particularlocationrelativetotheperiodicpattern)remainsconstant varieswithrespecttotime,anditmustvaryattheratec.) ⎛x t ⎞ 2π When θ (x, t) = ( x − ct ) = 2π ⎜⎝ − ⎟⎠ ,then: L L T ∂sin (θ ( x, t )) d sin (θ ) ∂θ ( x, t ) = × ∂t dθ ∂t ⎛ 2π ⎞ ∂ ⎜ ( x − ct ) ⎟ ⎝ L ⎠ = cos (θ ) × ∂t 2π ∂ ( x − ct ) = cos (θ ( x, t )) × L ∂t ⎛ 2π ⎞ 2π ⎛ ∂t ⎞ = cos ⎜ ( x − ct ) ⎟ × ⎜ −c ⎟ ⎝ L ⎠ L ⎝ ∂t ⎠ ⎛ 2π ⎞ 2π = −c cos ⎜ ( x − ct ) ⎟ ⎝ L ⎠ L ⎛ 2π ⎞ 2π =− cos ⎜ ( x − ct ) ⎟ ⎝ L ⎠ T ∂sin (θ ( x, t )) ∂cos (θ ( x, t )) Applyingthechainruletodetermine , , ∂x ∂x ∂cos (θ ( x, t )) and isanalogous. ∂t 9
© Copyright 2026 Paperzz