The Vegetation of Salt Marshes at Some Coastal Sites in Arctic

J. Ecol. (1977), 65, 661-672
THE VEGETATION OF SALT MARSHES AT SOME
COASTAL SITES IN ARCTIC NORTH AMERICA
R. L. JEFFERIES
of Toronto,Ontario,Canada
of Botany,University
Department
SUMMARY
The vegetation
of salt marsheswas examinedat sevensiteson theArcticcoast of
ofsea
weremadeofthesalinity
Alaskaand Canada,at someofwhichmeasurements
ofbiomass
and thedistribution
cropofthevegetation
water,theamountsofstanding
and Cochleariaofficinalis
Stellariahumifusa
phryganodes,
withinplants.Puccinellia
baysand inlets,
on opencoasts,butin sheltered
formthepioneerplantcommunity
fisheri,
speciessuchas Arctophila
coveriscontinuous,
wherevegetation
fulva,Dupontia
sea water
ofinshore
Thesalinity
arefrequent.
andCarexramenskii
tetraphylla
Hippuris
valuesdo notexceed0 27 M Na+ (c.
at mostsitesis verylow.In thissurveysalinity
Thetotalbiomassforstandsofthepioneerplantsalso is low (96-284g m 2).
18%/,).
ratiosof drymatterlie between1:0 11and 1:3340.
:below-ground
The above-ground
indiproductionof Puccinelliaphryganodes
A tentative
estimateofthenetprimary
catesthata valueof 10 g m-2 perannumappearsto be an upperlimit.The results
are comparedwithsimilardata fromPolarregionsin NorthAmericaand Eurasia.
INTRODUCTION
ofcoastlinesintheeastern
Polunin(1948) and Hanson(1951)havedescribedthevegetation
Canadian Arcticand westernAlaska, and recentlyKershaw(1976) has describedsome
Hudson Bay salt marshes.Similar studiesof the vegetationalong the coastlinesof
is confined
Alaska and thewesternCanadian Arcticare scantyand information
northern
largelyto reportspresentedin the florasof the Arctic(Polunin 1959; Porsild 1964;
Alaska and
Hulten 1968). This paper describesthevegetationat sevensitesin northern
Canada (Fig. 1) and theresultsare comparedwiththoseobtainedelsewherein theArctic.
This preliminary
studyprovidesnot only a descriptionof vegetationbut also data on
prevailingsalinitiesand amountsof standingcrop at fiveof thesites.On open coastlines,
marshesoftenoccupyareas of less than20 x 20 m and thereis a discontinuousdistributionof vegetation.Marsheswhichoccurin shelteredbays and inlets,in contrast,are exfeeding
tensiveand thevegetationalcoveris continuous.These lattersitesare important
groundsforwildfowl.At mostsiteson open coasts,forexample,Cape Bathurst,North
and PointBarrow,Alaska, themarshesappearto be in an earlystageof
WestTerritories
vegetationalcoveris poor and c. 80% of the shoreconsistsof bare mud
development,
and sand devoid of higherplants.The shorelinesare continuallybeingreworkedby sea
ice duringmuchof theyearand, in addition,thetidalamplitudeat manycoastal sitesin
theArcticis small; hencetheinfluenceof thetidesin theformationof coastal marshes
and in thedevelopmentof vegetationalzones withinmarshesis limited.The mean tidal
is only0 305 m,whileat Resolute,CornNorthWestTerritories,
rangeat Tuktoyaktuk,
wallisIsland, c. 1700 km away,it is 1 28 m. The estuariesofthelargenumberof rivers
661
Salt marshesin ArcticNorthAmerica
662
Alaska
PrudhoeBay rnwdiris'
HerschelI ca'.e
Tusktuaries.
Bathurs esoluti
.~E~eon
.
Island
Mackenzie
>..
..
.River'.'.
1000Mkm
FIG. 1. Map
location
ofcoastal
siteswhich
inArctic
wereexamined
velopment
~satmrse
~ - then
ht
North
pncoss
showing
America.
whichflowintotheArcticOceanarean important
feature
ofthecoastphysiographic
lineandlargequantities
inthevicinity
ofthese
ofgravel,
sand,siltandclayaredeposited
estuaries.
The physical
characteristics
ofcoastlines
described
abovepreclude
thelongtermdeofsaltmarshes
on opencoasts.
velopment
METHODS
ofthesitesat ResoluteBay,Cornwallis
Islandand Herschel
Withtheexception
Island,
NorthWestTerritories,
whereonlynoteson thevegetation
weremadeand samples
thevegetation
whichwereoriented
wasrecorded
collected,
alongtransects
perpendicular
to theshoreline,running
fromneartheprevailing
lowwatermarkto a pointwellabove
thehighwatermarkofthehighest
tides.Contiguous
quadratswereplacedalongeach
covercontributed
transect
andthepercentage
byeachspecieswasestimated
subjectively
to thenearest1a0%.The sizeofthequadrat(30 x 30cm,50x 50cmor 100cmx 100cm)
in relation
was selectedsubjectively
to thepattern
at a
andtypeofvegetation
observed
nomenclature
site(cf.legendsto Figs2, 3 and4). Thetaxonomic
follows
thatofPorsild
in theeasternCanadianArctic
and
Hultln
(1964)forvegetation
(1968)forthewestern
Arctic.
In orderto measure
thedistribution
ofdrymatter
between
different
organsofplants,
at randomat a siteand
fiveturfs
(25x 25 cmin areaand35 cmin depth)wereselected
to thefieldlaboratory.
Plantsin thecentreoftheturfs
into
wereseparated
transported
dead litterand below-ground
livingmaterial,
material.Living
above-ground
standing
material
wasfurther
subdivided
whereapplicableintoleaves,stolons,
and sexualreproductiveorgans.The below-ground
biomasswas separatedintorhizomes
roots.and/or
but subsequently
at 80 'C
Initiallythe sampleswereair-dried
theywereoven-dried
beforetheywereweighed.
At leastfiveplantsofthespeciesexamined
at eachsitewere
driedandweighed.
Atmanysitesthedistribution
ofvegetation
ontheforeshore
ismarkedly
heterogeneous
andextensive
wasnotpossibleattheseremote
sites.However,
biomassestimasampling
663
R. L. JEFFERIES
tionsweremade between15 Julyand 10 August1973in areas of vegetationwhichwere
composedof a singlespeciesand throughwhicha transectline passed. Five 20 x 20 cm
turfswere cut at randomwithinthese areas. The materialwas separatedinto leaves,
reproductive
organs,standingdead and groundlitterofthecomponentspecies,and then
of drymatterwithin
driedand weighedas describedabove. The ratiosofthedistribution
plantsof each specieswereused to obtainan estimateof thebelow-groundbiomass.
on thesalinityofthesecoastalwaters,waterfrombelow
In orderto obtaininformation
thetidelinewas collectedin polythenebottlesduringthesameperiodof timeand stored
of
at 2 'C. At each siteduplicatesamplesweretaken.At a laterdate theconcentrations
sodium,potassium,calcium and magnesiumin the waterswere measuredby atomic
in salinitybetweenduplicatesamples
and no differences
absorptionspectrophotometry
wererecorded.
RESULTS
Salinity
Althoughthe resultsof the analysisof the watersamples(Table 1) are based on a
singleset of samplescollectedduringa shortperiod of time,theyreflectthe salinity
regimeswhichexist duringthe active phase of plant growth.At no localitydid the
salinityapproachthatusuallyquoted forsea water(c. 0 5 M sodium).At sitessuch as
low (2 9 x 10-2 M sodium)and it was
thoseat Tuktoyaktukthe salinitywas extremely
of largeriverssuchas at HerschelIsland and Cape
onlyat sitesaway fromtheinfluence
Bathurstthathighersalinitieswererecorded(0 25 M and 0 1 M sodium respectively).
Even at thesesitesthemeltingof sea ice lowersthesalinityofthewater.Grainger(1965)
has reportedthatat inshoresitesalong the southernedge of the BeaufortSea, summer
mayreach9 'C and thesalinityis usuallyless than 10%0(c. 0 15 M
surfacetemperatures
sodium). There is a wedge of freshor brackishwaterwhichlies above the sea water
duringthesummermonthsat theseinshorestations.
The marshesreceive,in additionto sea water,drainagewaterfromthe surrounding
of major
of six studysitesand theionicconcentrations
Table 1. Latitudesand longitudes
ionsin samplesof inshorecoastal watercollectedbetween15 Julyand 10 August1973
Latitude
Longitude
Truelove lowland,
Devon Island,
North West Territories*
75040'N
84040'W
Cape Bathurst,N.W.T.*
70034'N
128000'W
Tuktoyaktuk,N.W.T.*
69027'N
133000'W
Herschel Island, N.W.T.*
69034'N
138055'W
Prudhoe Bay, Alaska
Point Barrow, Alaska
70019'N
148019'W
156034'W
71018'N
Na
1.2
3-1
3.8
50 0
23-0
100 0
1000
29-0
28 0
33 0
28-0
250 0
270-0
72-0
134 0
Ionicconcentrations
(mM)
K
001
0 04
005
0.20
0.15
1 00
100
0.23
0-25
0 25
0.20
1-75
2.00
0-58
1-08
Ca
09
22
1-3
1-3
18
4-6
46
1-3
1.0
0-8
09
70
70
40
Mg
20
4-1
3-8
4-7
45
24-0
250
12-0
12.0
14.0
11 0
50.0
50 0
15 0
6-2
34 0
* Wheremore than one value of the concentrationof an ion is givenfora locality it indicatessamples
were collected fromdifferent
sites.
664
Salt marshesin ArcticNorthAmerica
2 L:)--?
I
o
-i
o)
_
IU))0
L
2
E] 4)c
1
1UX
*
Q
s
X~~~~~~~~~~
(1)0
lo0
0(1
o8o
C
LO
_
-
_LL
I
~~~~~~~~~~~~~~~~0
ay
S~~~~~~~~~~~~r
a]
Lo
-
-~~~~~~~~~~
-
(j
~ ~ ~ ~ ~ ~ ~ ~
I
-
0)
Ti~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I
0
U
C
;
t |i t| giiSi
g
e Bx4
~~~~~~~~~~
0 4)~~~~~~~~~~~~
~~~~~~~~~~~~0~~
*15
0~~~h
t3
q)~~~~~~~~~~~~4
tN~~~~~~~~~
ZI
_ CL
0 CZU 0
cz
)
0
G)
N
665
R. L. JEFFERIES
0~~~~~~~~~~
m
(L)~
~ ~ ~ ~ ~ ~ ~ ~~~~*
a
5--
0
c
.~~~~~~~~~2
~ ~ ~~
0~~~~~j
L-0
4~~~~~~~~~~~~~~~~~~~~~~~~~~
u
0
>,
Salt marshesin ArcticNorthAmerica
666
o
c
r-7- mr-rrTi
:3~
I-)17
1
r-r7r,=
rm-r- mi
~
1 'II
riT-
mrm=
~~I
~
0~~~~I
0
I]
*
q
0
u
*~~~~~~~~~~~~
Ii
I
a)~~~~~~~~C
-~~~~~~~~~~~~~~~C
I
0
II
2
=7
r-T1rir
+I
I~~~~~~~~~~~~~~~~~~~~~0
U0
I
UI~~~~~~~~~~~~~~~~~~
i
r~~~~~~~~~~~~~~~~~~~
ajO~~~~~~~~C
I
I
0)
C
0
0
*
0~~~
0~~~~~~~~~~~
2too~~~~~~~~~
~
U)
~~~ ~
0
0
~~~~~~~~
~ ~
j1
~
"
tn
0LC)~~
LC)
CD
-D
Q
C)~~~~~~~~~~~~~~~~~~~~~'
0L
-
~ ~
-
-
~~~~~~~~ '~~~~~~~
0
~
Q
Cd
0
u0
o0
0
.
-
0
>
l~C
R. L. JEFFERIES
667
thetransiland.The low salinitiesrecordedat Devon Island (3.1 x 10-3 M sodium)reflect
tionfromsalt to freshmarsh.
Descriptionof vegetation
is the firstangiospermto colonize open muddyand sandy
Puccinelliaphryganodes
areas at all thesites(Figs 2, 3 and 4). Polunin(1940) has statedthatthespeciesis also an
importantcolonizerof mud flatsin the easternCanadian archipelago.Plants of this
and the stolonsgrowacross the surfaceof muddy
speciesundergoclonal reproduction
shores. Oftenthe plants are yellow-brownand stuntedbut wheretheyare partially
coveredby a decayingalgal matleftby a hightidegrowthis vigorousand theplantsare
growth.In some Europeansaltdeficiencies
restrict
green.This suggeststhatnutritional
thegrowthof
marshes,forexample,thelack of theavailabilityof nitrogenmayrestrict
plants(Tyler1967; Pigott1969; Stewart,Lee & Orebamjo 1972,1973).
rarelyflowersand apparentlyat Arcticcoastal sitesin both
Puccinelliaphryganodes
Eurasia and NorthAmericaplantswhichflowerdo notsetseed(Holmberg1926; Polunin
1940; S0rensen1953; Porsild 1964; Hulten 1968). Only at the upperlevels of marshes
wherethe plantsare rarelyor not at all submergedby sea waterdoes the plant form
Porsild's(1920) earlierobservaculms.This confirms
cushionswhichmaybearflowering
tion.
agg.
In additionto Puccinelliaphryganodes,
Stellariahumifusaand Cochleariaofficinalis
are presentat theseawardendofmostmarshes(Figs 3 and 4). Althoughthesetwo species
to this typeof habitat.For
occur in saline sitesin the Arctic,theyare not restricted
example,on CornwallisIsland both grewat least 2 km fromthe coast at the edge of a
and Papaverradicatum.
seepagezone associatedwithSaxifragacernua,S. oppositifolia
ssp. arctica has colonized bare areas of
At PrudhoeBay,Alaska, Cochleariaofficinalis
tundradevoid of vegetation.These areas werefloodedby sea waterduringa stormin
died. Withtheexceptionof plantsfromDevon Island
1969 and theplantssubsequently
all thematerialappearedto be Cochleariaofficinalis
ssp. arctica.The plantsfromDevon
Island weremuchsmaller(c. 1-5cm in diameter)thanthosefromthecoastal sitesof the
westernArctic(3-8 cm diameter)and belongedto ssp. groenlandica(Porsild 1964).
cover
wherethevegetational
Primulaborealisand Carexursinaalso growin salt-marshes
is small,althoughthese species are not foundat the seawardends of the foreshores.
Porsild(1955) considersthatPrimulaborealisis a memberof a groupof speciescharacteristicof east Siberia. In the presentstudy,this specieswas not observedeast of the
HerschelIsland and PrudhoeBay, it grows
MackenzieDelta, althoughat Tuktoyaktuk,
to the shore.Carex ursinais
at the base of earthcliffsor on tundrain close proximity
and easternArctic(Figs 3 and 4) and in contrastto thespecies
commonto boththewestern
caespitosegrowthhabitso
discussedabove, plantsof thisspecieshave a well-developed
thatindividualtussocksmaybe ofconsiderableage. The otherspeciesare eitherbiennials
or short-lived
perennials.BothPrimulaborealisand Carex ursinagrowin siteswhichare
and Stellariahumifusagrowin
relativelywell drainedwhereasPuccinelliaphryganodes
siteswheresurfacewateroftenis present.
At TuktoyaktukSite A (Fig. 2) wheretherewas a considerableamountof graveland
sand, other species such as Elymusarenariusssp. mollis var. villosissimus,Armeria
maritimassp. arctica,Juncusarcticusssp. alaskanus,Plantagoeriopodaand Honkenya
ofthetransect.
Two
peploidesssp.peploidesgrewabove thelevelofthetidesin thevicinity
668
Salt marshesin ArcticNorthAmerica
of
of thesespecies,Elymusarenariusand Honkenyapeploides,are more characteristic
strandvegetationthansalt marshplantcommunities.
In shelteredbays and inletswherethe shorelineis stable the groundis usuallycompletelycoveredwithvegetationand, dependingon thestateofthetide,theplantcommunitiesmaybe floodedmuchof thetime.At sitesnearTuktoyaktukwherethesalinityis
of the
low and brackishconditionsprevail(cf. Table 1 and Fig. 2) speciescharacteristic
coastal freshwater
lagoons grow along the sea shore. For example,Arctophila
fulva,
Dupontiafisheriand Hippuristetraphylla
werefoundgrowingin the sea. The dominant
speciesof thistypeof marshis Carex ramenskii(Fig. 2) whichformslush swards.The
to areas ofbaremudwheresecondary
closelyrelatedspecies,C. subspathaceais restricted
erosionhas occurred.Anothersedge,C. glareosa,is foundin similarsitesin theupper
reachesof marshes,above the normalhighwatermarkof tides.Withtheexceptionof
plantsof Puccinelliaandersoniiand Calamagrostis
neglectaand some plantsof Stellaria
otherspeciesofhigherplantsareabsentamongsttheswardsof Carexramenskii.
humifusa,
These plant communitiesare importantfeedingsites for migratorypopulationsof
eider(Somateriamollissima
L.), pintail(Anas acutaL.), mallard(Anas platyrhynchos
L.),
and old squaw (ClangulahyemalisL.).
Determinations
of biomass
Althoughthesemeasurements
are based on samplescollectedat one pointof timeat a
site,theyweremade duringtheperiodof theyearwhenthestandingcrop of thetundra
is eitherat or close to its peak.
Values fortotalbiomassforstandsofPuccinelliaphryganodes
sitesare
at thedifferent
between96 and 284gm-2 (Table 2) and theserepresent
someofthelowestvaluesobtained
forbiomasswithintheArctic.Habitatswherethereis no continuouscoverofvegetation
have similarvalues,Polar desertsitesin theU.S.S.R., lichenheathand snowbed habitats
in Norwayand beach ridgeson Devon Island, Canada, are otherexampleswherethe
totallivingbiomassper unitarea is low (Wielgolaski1972).
Wherethevegetationalcoveris continuous,higherbiomassvalueswererecorded.The
communitiesof Carex ramenskiiat Tuktoyaktukhad a biomass of 445+251 g m-2
whilethe biomass of standsof Dupontiafisherion Devon Island was 332+29 g m-2
Table 2. The dryweightof thelivingparts (g m-2 +s.e.m.) at or near thetimeof peak
above-ground
standingcrop(samplescollected15 July-10August1973)
Grasses
Dupontiafisheri
Puccinellia
phryganodes
P. phryganodes
P. phryganodes
P. phryganodes
Sedges
Carexramenskii
C. subspathacea
C. ursina
C. ursina
Eriophorum
angustifolium
Dicotyledon
Stellariahumifusa
Site
Above-groundBelow-ground
biomass
biomass
Total
Devon Island
Devon Island
Cape Bathurst
HerschelIsland
PointBarrow
61-4? 5 4
86-4? 5 8
77 5 ? 32-9
56 5
145-1
270-6? 23-8
82-7+ 5 6
63-7? 27-6
102-5
138-8
Tuktoyaktuk
PointBarrow
Devon Island
HerschelIsland
PrudhoeBay
155-7?89-4
94-2
120-9?16-7
67-7
13-5
2895? 161-2 4452?+2506
178-8
273-0
229-3? 31-8 3502? 42 5
143-7
211-4
25 7
39-2
PointBarrow
72 5
45 2
332-0? 29-2
169-1? 11-4
141-2? 46-6
159-0
283-9
117-7
R. L. JEFFERIES
.o t
rrto
c
t,>=a
O33
Fm0
U
Cq ,R,
D
OO
m
+l~.2
Q
+l +l
+l
W~~~~~~~~~~~~~~~~~~~~I
.t
X
>
X
w4
669
+l
~~~~~+l
Cq
O
b
0
o~~~~
> E
s-
O
+l
=Q1
8 X
?
]
8
X *%z
.t,
ct
~
o
+
+l
00
+1
en
+l
> tE
+1
ON
cl
+l +l
W)
O
Q6
l
CA0
en WI
+1 +1
t-- \c
:4 6C;
5,'g
+l
8
taJ
+
\D
+1
~~~~~~~~+l
00
14
!q<o5g%-2or,,Et
o
oIf
6
+l +l
I ..
+l
0
0
6 666^X
z
sr
+l
+l
06
C14CA
o
+l +l
~~~~~~~~11-1
+1
I-'1
---\D
18~~~~~~~e
?) 1O1, r-x
?
oo
(
~~4jI~~~j
+l
_
4
s
+l
+1 + 16
Ut-
9z
+l +l
~~~~~~+1
Q
CA CA
+l
+l
00
~~~O'
A
e
_00
J
670
Salt marshesin ArcticNorthAmerica
(Table 2). These values are comparablewiththoseforotherwetlandsitesin the Arctic
witha continuouscover(Wielgolaski1972).
The percentage
distribution
ofdrymatterbetweentheabove-ground
and below-ground
portionsof plantsof different
species are givenin Table 3. The above-ground:belowgroundratiosare not as low as thoseprovisionally
quoted forsomeArcticcommunities
wheretheratiomaybe as low as 1:23 butusuallyitliesbetween1:3 and 1:10 (Wielgolaski
1972). The relativelylargeratio of above-groundbiomassto below-grounddrymatter
reflects
thegrowthhabitof plantswhichlivein thisnarrowcoastal strip.Theyare either
short-lived
perennialsor monocotyledonous
plantswitha rhizomatousor stoloniferous
habitwhereindividualtillersmaylive fora fewyears.K. Bell (privatecommunication)
has estimatedthe growthratesof plantsof Puccinellia phryganodes
sitesin
at different
theArcticand herresultsindicatethatbetweenone and twoleavesare producedbyeach
tillerper year.The leaves are relatively
short-lived
as only20% of the tillershad living
leaves morethantwo yearsold. Individualtillersare approximately
eightyearsold, an
estimatewhichis based on the numberof dead leaves along the entirelengthof each
tiller.If the above-groundlivingbiomass for this species is assumedto be 80 g m-2
(Table 2), a value fornet primaryproductionof 10 g m-2 per year appears to be the
upperlimitforstandsof P. phryganodes.
In additionto thelow netproductivity
of thesepioneerseashorecommunities,
there
is a paucityof species.Althoughthisis well knownforterrestrial
in
plantcommunities
the Arctic,it is particularly
strikingin thesecoastal sites.Annuals,such as species of
Salicornia,Spergulariaand Suaeda, presentin temperatesalt marshes,are absentin the
Arctic.Certainwell-known
saltmarshperennials,suchas Triglochin
and Limonium,
have
notbeenrecordedfromtheforeshores
alongtheArcticOcean. Most oftheabove genera
are representedin coastal marshesin southernand westernAlaska (Hanson 1951:
Hulten 1968) and Triglochin
palustrisgrowsin Hudson Bay (Kershaw 1976).
DISCUSSION
Thereis a striking
uniformity
of thepioneerplantcommunities
presenton the seashore
at thedifferent
sites.Puccinelliaphryganodes
and Stellariahumifusa
are widespread.The
formerspecies occurs both in the North AmericanArcticand in the Arcticareas of
Eurasia (S0rensen 1953). It shows considerablevariationthroughoutits range and
S0rensenhas distinguished
fourraces based on morphologicalcharacters,and one of
theseis characteristic
of the NorthAmericanArctic.As S0rensenpointsout, the wide
distribution
of P. phryganodes
is of interest,
as the plantfailsto set seed and therefore
spreadsas a resultof vegetativereproduction.The shoot systemsmustbe capable of
and considerableperiodsimmersedin sea water.Both this
toleratinglow temperatures
grassand the Stellariaare able to colonizea varietyof substrata.They grow on sandy
shoresand wheremud predominates.At the Truelovelowland on Devon Island, both
speciesoccurin smallrockypools whichare wellabove thelevelof thetidesand which
are fedby ice-meltwater.
Puccinelliaandersonii
and P. vaginata,whichare presentalso in thecoastalzone, occur
at sites well above the high water mark of the tides, but theirdistributionis local.
S0rensen(1953) has suggestedthat,at least in theeasternCanadian Arcticand Greenland, the distributionof P. vaginatamay reflectthe influenceof man, as the Inuit
(Eskimos)used thestrawofthisgrassin basket-making.
Hence thereasonswhichaccount
R. L. JEFFERIES
671
alongthecoastlinesare probablycomplex.The
patterns
forthepresentdistribution
of theseincipient
development
and no long-term
are transitory
pioneercommunities
lowland,
sites(e.g.Truelove
appearsto havetakenplaceexceptinsheltered
salt-marshes
As a resultit is notusuallypossibleto recognize
Devon Islandand at Tuktoyaktuk).
as Hanson(1951)hasdone
zonesintheArcticandplacetheminsequence,
vegetational
forthemarshesof westernAlaska and Chapman(1960) has done forthoseof north-west
Europe. Rather,thereis a vegetationalmosaic in thesenarrowsea-shorestripswhichat
any givensite reflectsthe timewhichhas elapsed since the shorewas re-worked.This
whichis clearly
development,
also impliesthatpedogeneticlong-term
physicalinstability
evidentat coastal sitesin moresoutherlylatitudes(Gray & Bunce 1972) and is strongly
dependenton past and presentedaphicand bioticconditions,is checked.Wherezones of
vegetationare clearlyrecognizable(e.g. Truelovelowland,Devon Island, Fig. 4) they
conditions
reflecta transitionfromsaline or brackishwaterconditionsto fresh-water
withina salineenvironment.
plantcommunities
and not thedevelopmentof different
The coastal vegetationdescribedin thispaper is similarto thatreportedby Polunin
(1948) and Chapman(1960), forthe easternCanadian Arctic,Greenlandand northern
Europe. In salt marsheson EllesmereIsland, Devon Island, North BaffinIsland, the
and Stellariahumifusa
Quebec,Puccinelliaphryganodes
MelvillePeninsulaand northern
and Carex ursinaalso grow
are presentand in mostof thesesitesCochleariaofficinalis
consistsofP. phryganodes
(Polunin1948).AroundHudson Bay,theprimarycommunity
In Finmark,Norway(Nordhagen1954),thisgrasscolonizesthe
and Stellariahumifusa.
open shore and in both Canadian and NorwegianArcticsites Carex subspathaceais
presentabove the highwatermark(Chapman 1960). At TuktoyaktukCarex glareosa
of
growsin the upperlevelsof the marshand Chapman reportsa similardistribution
thisspeciesin the WhiteSea and Greenlandmarshes.Even thoughmanyof the above
in thecompositionof the
theyindicatea considerablesimilarity
studiesare preliminary,
vegetationof salt marshesin polar regions.
the
The plant biomass data are based on a singlecollectionand theyoverestimate
The
into livingand dead.
below-groundlivingmaterialas tissuewas not differentiated
erroris likelyto be smallas unlikethewoody,long-livedperennialplantsof thetundra
whichhave much of theirbiomass below groundand accumulatelarge quantitiesof
below-groundlitter,the forbs and some of the monocotyledonssuch as Puccinellia
are short-livedperennialswith poorly developed below-groundstorage
phrtyganodes
organs,but capable of colonizingopen habitats.The ratio of above-groundto belowground biomass is least for the forbs and relativelyhigh for the sedge-dominated
communities
(Table 3). These resultsagreewiththosereportedby Wielgolaski(1972).
of
communities
Althoughtheestimateof net primaryproductionforP. phryganodes
this
of
it impliesthattheproductivity
type
under10 g m-2 peryearneedssubstantiating
low. The onlyothersiteswith similarmeasuredvalues are
is extremely
of community
lichenheathin Norway(9 g m-2 peryearabove-groundnetproduction)and polar semifigureis 26 g m-2 peryear(Wielgolaski
desertin theU.S.S.R. wherethecorresponding
cover
of vascularplants.
and
little
with
1972). All thesesitesare open
ACKNOWLEDGMENTS
I thankMiss K. Bell, who kindlygave me permissionto quote data fromher studies.
Prof.L. C. Bliss,Prof.J.Dainty,L. Gay (BritishPetroleum,Alaska), F. Hunt and Prof.
672
Salt marshesin ArcticNorthAmerica
T. C. Hutchinsongenerouslyarrangedfinancialand logisticsupportforthissurvey.I
and Northern
also gratefully
acknowledgea grantfromtheDepartmentofIndianAffairs
Development.
REFERENCES
V. J. (1960).Salt MarshesandSalt DesertsoftheWorld.LeonardHill,London.
Chapman,
of the
Gray,A. J. & Bunce,1?.G. H. (1972).The ecologyof MorecambeBay.VI. Soilsand vegetation
saltmarshes-amultivariate
approach. J.appl. Ecol. 9, 221-34.
fromtheArcticOceanandadjacentCanadianwaters. J.Fish.Res.
Grainger,
E. H. (1965).Zooplankton
Bd Can. 22, 543-64.
Hanson,14.C. (1951).Characteristics
ofsomegrassland,
marshand otherplantcommunities
in Westem
Alaska. Ecol. Monogr.21, 317-78.
0. R. (1926).Hartmanns
Handboki Skandinaviens
Holmberg,
Flora,Hafte1. P. A. Norstedt,
Stockholtn.
Hulten,E. (1968).FloraofAlaskaandNeighbouring
Territories.
Stanford
University
Press,Stanford.
Kershaw,
K. A. (1976).Thevegetational
zonationoftheEastPenIslandsaltmarshes,
HudsonBay. Can.
J. Bot. 54, 5-13.
of salt and brackishmarshesin Finmark(Norway).
R. (1954). Studieson thevegetation
Nordhagen,
Vegetatio
5-6, 381-94.
Pigott,C. tb.(1969). Influence
of mineralnutrition
on thezonationof flowering
plantsin coastalsaltmarshes.EcologicalAspectsof theMineralNutrition
ofPlants.(Ed. by1. H:. Rorison),pp. 25-35.
BlackwellScientific
Publications,
Oxford.
of theCanadianEasternArcticPart1. Pteridophyta
and Spermatophyta.
Polunin,N. (1940). B3otany
Bull.natn.Mus. Can. 92.
Polunin,N. (1948). Botanyof theCanadianEasternArcticPartIII. Vegetationand Ecology. Bull.
natn.Mus. Can. 104.
ArcticFlora.OxfordUniversity
Polunin,
N. (1959). Circumpolar
Press,Oxford.
Porsild,A. E. (1955).TheVascularPlantsoftheWestern
CanadianArcticArchipelago.Bull.natn.Mus.
Can. 135.
Porsild,A. E. (1964).Illustrated
Flora of theCanadianArcticArchipelago.
2ndedn. Bull.natn.Mus.
Can. 146.
Porsild,M. P. (1920).ThefloraofDiskoIslandandtheadjacentcoastofWestGreenland
from660-710N.
lat. MeddrGr0nland,
58, 1-156.
Sorensen,
T. (1953).A rtvision
oftheGreenland
speciesofPuccinellia
Parl.AIeddrGr0nland,
136,1-179.
Stewart,G. 1R.,Lee, J. A. & Orebamjo,T. 0. (1972). Nitrogenmetabolism
of halophytes.
1. Nitrate
in Suaedamaritima.NewPhytol.71, 263-7.
reductase
activity
Stewart,G. R., Lee, J. A. & Orebamjo,T. 0. (1973).Nitrogenmetabolism
of halophytes.
It. Nitrate
and utilization.NewPhytol.72, 539-46.
availability
Tyler,G. (1967).On theeffect
ofphosphorus
and nitrogen,
suppliedto Balticshore-meadow
vegetation.
Bot.Notiser,120,433-47.
inTundra.TundraBiorne(Ed. byF. E.
Wielgolaski,
F. E. (1972).Vegetation
typesand plantproduction
and T. Rosswall),pp. 9-34. I.B.P. Tundra Biome SteeringCommittee,Stockholm,
Wielgolaski
Sweden.
(Received8 December1976)