Normal Exercises

Things that you should know before starting these exercises
1. X - N(p,o) refers to a random variable
X
with
a
mean of p and a standard deviation of o.
*
N(3.1 ,1.231refers to a random variable X
whose mean is 3.1and whose standard deviation is 1.23.1
[Thus, X
2.
/\
X
iu*
g:3,t
Z-scores refer to the standard normal distribution
...the normal with mean=0 and standard deviation=1.
[That is, Z - N(0 , 1] l
STfiNDA$
NA?-rnflL
i:T_*-e
Z-scores are in standaid deviations from 0 (the mean).
[For example,Z=L.S means 1.5 standard deviations from 0 (the mean).]
ln:o t= 1"5 is l.S gfh^.\,,J dtt'u\oJi,rv {.oor" {\" n's'^
4.
(t)
The standard normal table ALWAYS gives the area
under the normal curve to the left of the given z value.
E"rc.^Btt-:
*\.s
G.r
tc,. i s
0S\ lJ
-__)
(*'.,..,; $\* Sh,rh,i,q
nsr "L\ t"\"Q*)
L
The area under a normal curve represents a probabilityfor example , P(7 < 1.2) is the probability that the standard
normal random variable Z is LESS THAN 1.2.
u,'t1\1
$t*-Vth)
So TQz l-D= st\q
.
t.:1,1
,,\
t[,\g 7.
:
6. To use the standard normal table to calculate
a probability
for a GREATER THAN, you must use the fact that
P(Z > a) =
1-
P(Z <a).
[So, for example, PIZ>
Il = 1-
P(Z < 1)
...and you can look up P(Z < 1) in the standard normal table,l
(u ur"-Fo +'-IQa,
I'(e'D= s-\T 13
5o P(z'D= t-.1 ,tLrlJ:0,1S\l
7. To calculate the probability
that a standard normal random
variable is between two numbers, you (a) look up the larger
number in the standard normal table, (b) look up the smaller
number and (c) subtract the smaller number from the larger.
ff:t
zLr .ro):?(t:1,',1.) , P(t';?'56)
ar
=
B.
\.rli'-p
' Jt
lc't-tl"s-i
c,\;6s --
o,,)
r
fi+
\
-C-tS
:*
To calculate a probability related to a normal random
Ll
t
variable X with mean p and standard deviation o
IX
*
N{p, o) ], it must first be converted to a standard
normal random variable Z using
,
=
T.
Once converted, the probability is
[1a"'.,frQt-'.
Ld X* N
'?(f.xz-tt):f';(
=',P
9.
L? z-C.5)
(-J,S
\
lf you must find a z-score corresponding to a certain probability,
you have to find the number in the body of the standard normal
table that is closest to the given probability and then crossreference that number back to the correspondipg
value. .
)
r. T\
t \
luc\']t-.+ 6J/" ct YLt T*Ts!, $1(tr
I [ ,"q t!.
exo-#fo
L-/\.
Ls i" h*,:K.1.I'*..1^
o1r LJ.J
';
z
? -Sc"rre-
+;\I*'
c.t,s-o-$
+*
c"
r
99
ft
\ot*_
Find the percentage of area under a normal curve between the mean and the given n r*ber of
standard deviations from the mean. This problem can be solved using technology or the table for
the standard normal curve from your text.
5o\*,w
U:e sll-
tltl0f ll 4ll0RtilAt (UllVI r'rrrtinrrrd
iltlil
.03
.00 ,01 .0:
_J
-_i
-l
-i
-0
il
I
,]
_i
I
5
-::16
isll
.lliil
lS-l
-j
-i-r6
-u:
l,let
-ii 65
."15[]
t'-1r:i0
"196,"1
-lssii
rf -l,l
illir
@
r -i9S
$sl
irlj
ir:Q
.i 910
.:'9-:
6: r9
.6r
!-l
691
:
::
:
t:8
3
:8S I
lir
_i
_i
ji6:
6
I
lli9
5:1'
f.:i9 i
(0
6561
i.ilQ
-:.^
t-i:r
51
tt
@)
si1-r
'9
S
1,1
1S5
J-i_! J
LJcy
-ills
-illl
i\t
t -Yi
_ils_l
1,11-t
-i9.-:
-iSl9
r:,r
]]0_l
S*^tlro"|{
16-11
i:99 ili9
i :'v6 )6-15
:9Sr f0tf
6165 5lrl5
6-16 s-jl
j.;ss - I l-1
i-:
.
j-_:l
ea'I
i!
i r.,i
tt.
6S'!
__+
- ri'
-:i9
.r6j
-si
qiri'
5I_1-r
c1:(
sts9
s-r
.rsi
S)-:1
Sr).:
-)
#,
-:_r6j
.1E01 :-6:
.(l5g
o,O -i;.5ooo-
o.ot
,09
lt6l
l
5-i
.:96:
'61:
L*k \p
,.%#
.6:9.1
.0'
'CI"|
1i
si
l
s!
s6t
1
Find the percent of the total area under the standard normal curve between the following z-scores.
This problem can be solved using technology or the table for the standard normal curve from your
text.
z= -1.5 andz= -0.5
(Round to the nearbst whole percent
as*
needecl.)
-).5 -0.S
*il[A tlililttl
\t r.
+J naryn&t"Uq+
L"Je'j -O.S
- Loo
Sr^tlr..-1
ll0lit'!31 iiJlivt lt] fHf lf
n:
.01
l tlf:
.0{
03
i1']{tt{f
ll5
.(16
.
l.l
.0s
.09
irr,ll
.1ti
irl-rj
.rt,iil.l
iriri
ir'ir:r-
.rr,iir6
iirl
ir]1i]
0:i!
i;ti;
,-r- I
:.',i_:
l_l
i.r: r:r.l
.1.'
: -:6
I
,t
_
-1
-i
-1:i
I ll_l
-
- '.i
ilrl:.1
l-l_
l
^tir
l
l
ii[r - y
irtlld
rrrj_if
l-l: i-'
l
3:;
irirS
-:
.r.t,i
rjt't5"1
r_r'i\r9
[irlS -l
lP
iil:ti
i6i
ir
I
-l
.il:':
tr,il:
rr
'.1
r.r"l
c\
.i'-'ll:'
,
f
t"r,lLl_l
ir'"11-i
-l'5
*-1*
.00
A
r-r
.
r.ti
i:'.1
t:l:66
illll
irlIl
r.;Ig-j
r"rl6S
r_r
i'1t
I
;-l_1- _
tL-i
l_r-_.0
.ir:i
-i6
l
-i _i
,-,_:+
S
I
.i1-l-l:
rrii6
i).tr
ir5r r
0f -irl
l
u65
1
rit:1
ir-61
lrll,)
i;Sl
-i
1:ll
l:!l
i9s
i
l:'-!
l-r-::
.1
r6l
1u.l
I
.l-:-
li1:
1
'61
"191.,
--_1_'
-itQ
:...
tisl
1
r-l-i
-:+-'
i
ir19
r
l-i:
il-9
lQ. i
i
s5l
-l-)
l.r: i
Find the z-score that best satisfies the condition. This problem can be solved using technology or
the table for the standard normal curve from your text.
20o/o
of the total area is to the left of z.
(Round to the nearest hundredth a:; neetied.)
S\*',*r
7=7
!-^.k"*-\s
ru,n
!^K
nu.t{^,
$\{
'\\^ {.rboAr
6\9\$LJ
tatQ.{&-A L.tooo,
N.JG^tr
(= - -t\
(r..rori'. .aoqs ls Tro--
(Lt"a\ nw''\o' it-t
qt*\"U" \u '2ooo
G,^A q\*t$t\l^.L
$\$ n^J*O;l
ls _.q)
,
+
-l I
-l:
--l I
--, r.r
-:9
-: s
-l -:6
-: r
-: I
-l j
-::
-l I
-l rj
-19
*1S
-l -1 6
-1:
-11
-l I
-l I
-1 I
-l r,r
-e
-_l
[:T1
L-.--r
-d
-:
ilif ,l l!l'{tif ti & Flill!tdAl i llll'r[ Ti] Ii.tf lf Itr ilt " iftlll?l
,|}t| .,rr .{.,, .0, Fil .os .o6 .r' .os
jr.tlli
rliJi-: rJ:jr:r.-l :irir-i .riir-;_l
rlii,::' .iiir: ilrlr-,r r:Cill ir"ri-:
riir;- ijjrl' ,jr.tlrs r-r'3ir6 iuljf
rlil:ri i,:r.r!, jt.rr.i! rii,-;0 iitl'rs
ir:il
lr,rll
i'l_,:_r i:r:ll-l :iri j
r:|.,'n rrlls :jr.rl- if:.i' i,r:rlf
riirlf rr,:lr r.l4ll: ir:l-l irjl-l
ir'.'-i-. 1,';_ll ir.r-i-i r.rirl ir.r_i I
r.ri,-:- 1,,,:lr ;ir-lj r.r:-l-i ,lr1"ll
r-r!a: l.'i6i i:t.tj! it'j:i' :l'r-r::-i
.rliSl l:':S::, il:r:S l-r:-:i iu.-i
.i.rl,i- ir.r.rl ;111.,1 r-r:!r! :,t.tlf
r.r:19 l1l:
r:rl-l! i:16 llll
r:r1-! rj:-] ;1-: r.r:66 :16l
r.tlil ilirr.rllS irlll
illr:rlts jl6l
r,rlS- i,lsl i:-i
r.rl)! ir.irl ilf
.r.t-i-i6 jlli
,lllr-rj:6 i:16
ir:is l]r.,i
'g r,ij_r- l:lf
rjjl6 l:irj
rif-ir.r 1615
u055 .!f::, i6ll
r.rsiS r.,-lt_l :--S r_r-61 "1'1i
r,r.i5S iqr I
r.riiS l9i:
i9l:
l,jirl lr.t:j
l1jl
1:11 :lll
:l-:
llj'
l-ilr ::l:
llgl
:"1!l
lrs- 116l :r-i! lli:'
ls:l
1S1l :'SS l-C: :-i5
:r:y ]:!:, tr.,r. t:i_r 6)
\rFd
:llt.t IJS!j ll. S lil- l:!,5
r'r,1
.os
tii'"j_l r'rNtlj iir],"-i .ti,l,-:-l 'jr:ril
r-rill-1.{ ir,'ifr] r.lr-ri.l tii,';1 ,'rr'l|1-i
.it!j6 liiro iir-rii rii,'ji [lrli:l
r:rir:E ir,tr't! ,'ir-r:rs rl:'i:' i;rl:r'ri'r: I
iirll iir_r:l rijirl irl',"]
iril6 r'r'rl j t;r_r:-i r"r'iil iltil1
iri,l: itrll r-ir-rli i,tilt.t ,.lt.t.tt
i|j-irl lirjl i;rjlS r:rill- ilrlld
t_tir*t_t irit_l! tir'!-;S t.li-i- r'rtild
.r]::t':J itil:'l tlt-t:l r,f:J! r'ltljs
t-rii-1 i'ii6l ,'ltlfS r:f:;Cf '-rt.tfJ
|,rli] t.,ir9l itirS9 r.riS' ilrls-l
r"rlll r_ril! irl.c .r:r:i_: ,r1:r:;
r.rlts rrl:-l ill":t.; U:-i6 ,";1;:
r:tl:: r',i0- r.ii:ll t-tlSS .ilsi
i-.:l r-rl-r! ,,r--i-i
.r:rl)6 tl:'i
t.r-ll- rr-ill il:,- ri-i''rl '.r:il
r"r.l:11 iill
i;-:S.l rr-i-: illir_r]i:' iJSr irl-j .r.ti6r ii.l:-;
tL.i-l ir::jy
r.r6i6 iri9"l irsl
r]--i:, rr-ll i-13 r:rfyl '.1631
rlsgr is6ir ,.rslr r.rs_is irsl_i
lir.r-: irgs-i
l!16 l|1S lirli
llil
ll-:i' i::,,r 1:9ir il-ir
l:,,r1 1i-!
ll5!
11-16 tjl-i
l.:l
lasr ltist.r li-i: 16:i
l!--
lyl.i :yI
lsyl
:Sr-
1156 1116 l:!.14 :: -' il;S
lr-:-: l-r.r1 16.5 l5-ll 16l I l:-S l)15 lr:i :jsl l]il
l!-15 lt:: ls-' liirl llir.r l--,1
_ri.'s_: .r,l:,i _ir,rl:i :!sl
Find the z-score that best satisfies the condition. This problem can be solved using technology or
the table for the standard normal curve from your text.
?3o/o
of the total area is to the right of z.
(Round to the nearest ltltndredth as
neecleci.
)
t,
S"\G''"^,
N+ri
d..;\
+aLl*?nws Grqx to
-.-a
tu d$
\*
\A"^* tt sul{-n*-*
G^^rtqs^,^
.ilt
:
ts'-+
\F!- y*
Ctfe.- q^W"a- C,rre.. O,{{c\
+" F\*.-dil"\, u.Nu:
Fs{ \".i S,^'\
Itr"T*'pt$x
)" SrGrq-c^
2Ti" |'T*
r-NaAns ll t, |o 9*
tr^qht
-.1
- i
-I
-i
- i:t
,.:
1
I
-i
-l
i
a
t., .'4il t i,ll!t ,il!iiilri;*i!
,01 .rr: .03 fU
-iir,,r
i-S-i
;ifs
:ti6:
':,1''ir1 r!n,]
-.,lr.tr-r j,.:li
r-itrs :j.is
rsll
:-tl
6:-9 :116i-i,l ii!:
6ii-' flr:
'l-i- --ir:
-::;6
lsll
ll,,r.15,-;l
l-ild
-i-t-t.
.li!,i
-{:S.i
.-lSSi'
''r',Sr-r l::1,,
rJ-S ::1ri-l
: ill.'
6l:1 6l!1
r,ils t't61
6i)Sr ''ll.r'
'll.l
:-i:''
lr-l
-:-i.'
1119
.lrli
1!lr.r
-'i-r'.]',
-i6i!
Jr.r-rl
il:-i
lS-',r
i15,.1
.i::l,e:i
6-:-ii
6'l'.:
-r-r-i'i
-lS9
.0s r:td 'ri'
116l
-la-rl
-lill
l:ir-l
"lSr-rl
l:9!
. rl5
:ii'
tir6s
D-lr'
-:rSS
..1:l
-rt: i:r
n-:j,.r
-i{- Ii:
-T
'ssr -vl- -ii! _l--;@--,-t
i:ll
tr s--i! s1s5 sl::
tlls
-ills
i:!:
rF-':
:-:h:
l-6:
ilji
:6la
ir.rll
i1r.'5
i'-l
-llj
-J-':
llll
l::-r!'i6
lll:
1-ll
rl-!
rf'-:
6l:'ll
6+:-r
6tis
'l-i-136
--d:'-:l
srj''
sl5'l sls!' sll:
'ls
li:r
"lj:r-'
ii9llsh
lisl
i1l
.-l'l
niir-]
bJJr'
dsl-l
'1!r''
-]'l-
-i-r
nN, \,.r$rb* .b*.kt^n^),s, w 0t# $orful\\t;t{" i^ $\*b*f1 \9\*-tddq- qj,"r",# J" tloo
S"
-illl
i-ls-i
ig-iv
-ll':i6':1
jl:y
)-:-i
6i:i
f::ts-v
-:ll
--'*!1
-sr:
ili:
ii -'i i'r;
ii':rr !-ih' ils!
N
.
i'9
Suppose that the life expectancy of a certain
brand of nondefective light bulbs is normally
distributed, with a mean life of 1100 hr and a
standard deviation
of
150 hr'
30,000 of these bulbs are produced, how many
can be expected to last at least 1100 hr?
If
S:\"ii"^, K- N ( I lop, SS
)
o^th t'$,
*
i$\.fr,
Fl.s\ \nl..e.* n"\^il fi"a
A-dr G$ rqd \lor
P(x>\too) =p(z>
- P(z >")
?k.o)
=)-
= l-
:
o.5ooo
horn.x]
rl oo
- lloo \
f 5o
ii[': :itiijri;
.r
ti?,iir.l.i
.00 ,01
=f (a'h)
/
llii - 1
,0:
r.ra!til1rrftl
.03
il':
:*::
lllf
I j ll
l9lr,r
-lil1
-rla
-i
-11!l:'
lls-l
-lSSi
:il,Sr.r :':li.i
_l
rl-S ::l-
o.5
.01
-l,riii 116l
i6iy
5: l
jiri:
"l'ill
$t.t1
il:-i
.is.:ii -lsr-rl
jl5,-l ::9!
-l
irr-
rs-l :qli.' .ig:S
6l:1 6lel 6l-ii
6t,ls b56l 6r:ii
---'-
S. - r \*a- qe^^q/^fl{ei- 5t>%(o.9 q\
to tc* ct
.05
0'
,rro
_1_ _
-j:' !
il9
)
j
-l9l:
:-:6j
-'_
_i
:
::vr
:tr-ii
:iSfi6s
f r:tl5
ll:.,:
r:;-ir
n*
}ooSo t,JL
"torrst Uco hov,rs:
-o.s)=@kffiH*
3OaoD (o.s)
ll oo
hn,rr,rl
Suppose that the life expectancy of a certarn
brand of nondefective light bulbs is normally
distributed, with a mean life of 1800 hr and a
standard deviation of 150 hr.
If
30,000 of these bulbs are produced, how many
can be expected to last less than 1995 hr?
Use the following hnks to view the Standard
Normal Distribution table.
.So\,*',*l X^, N ( tto\
r I SeD
AdE .h*r*|oo lqls ho^rsi
?(x4'reqs)
=?(3asttrte) =P(e.i*)
,.ilif
=C,!oj2.'
_+
- -1
I o.tr/, to.qol4
q\a- 3oooo b,Jbs
t" ,t".st- Lt'-Pho^
lqgs hn^5',
- i;
1
1
- I
lil;ii[
t.i
l-i
,0J
-i-r.]il
llir'
I
1,l9rl
l<i,'
+-.r-
lr
l,:S-l
tl.:
l8Sir
+J-t
.-'iitil
-
-{ 5
:g-l
6l i::
66tS
695::
--i1.1
:6.:l
1q-i9
I
:
lir
r]'
.05
_1659
Y
s
.03
.1.h
l:!r
Ii
l9lr.r
:CS0
Q'-r.t
,rirrtiruprl:
r-;-
rsll
ir r lut"l
1 : -i9S
-.....-'.
-. .D.
J 6151
r 6v'1 :
6 -t-i- -lsr:l
I
tr$trCa^ W
A ll{.!R}lA{ r
lt.-.
_.-+0
So r"nq esf,, s+t {*
3oooo(.gor{
ttli[itli
.0[r ,01 .0:
:
-
A
=()
'
i 15t
._'-'l
:i:t:
t:"lll
i !.is
6l!l
dl-i1
6561
6:iir
ll1l!
rrli
116l
-lSlI
.l,ll.1
$ri1
lsr:rl
::Pl
:196
:'S-'
i:ls
-;I9,:
-i9'.1
:-16-l
l!16
l1:.6 -lill
l]:rl -i.lsl
-ls!r- -isr9
l-i_':i
t 10{
+-oL'
+--
l6sl
:r-il9
l6j1
_ l-l
_)
-r
l!,'l
-r:-.-
:-6: lrl1
il-il .:'l'v
r6.id ::o-:
5ul5 6tl5l
6-i6S 6.1115
6--16 Slrl
6l-:l
6S,iS
J_.-
clra
')-_'u\
S]5J
r,lss -ll_i '1r'
;::l 'Jj: jls6
l'l-l "6: .rl.i]
Srlll Stlt: St-S
jir
StS9 I j
S]51
S:S:
f,-:J
S:i-l
D!t-
S6Sd
S'uS
o-\{:
SSSS
S!u:
9,isl
5 _v
s!t i
piF9
9t,r6
!:i
.'ssl
S:re
/-:-
111r.
'-._li,'J
srl6aJao\
9t56
pt:i
l-i:
l
.r$--1
.:!6j
:_:
j
s!
--a
lP:"
r
l
1
I
S-:
S.i
8:.:;.:
S::
s-19 s-r,j
s!11 sqdl
-1
s:!ir
s9srj
9:1j 91.1: 9lj916: il'S 9l.il
J= Qcf le-"g\a.^
.0s
:i_rty
_i_r
61rj-l d1.:1
r:'+sil 6:': :
6SJJ iS-9
rllir -:l'i
rl:-l!r
iill
tsl-i -s)l
s10d sl-i-i
S-i6:' 3-:S9
s-\el s6l i
ss I
li
ss-ic
s99- vr,rl
_;
ll6l
!l--
a-ir_r6
!r I
lqqsho.*,.1
:9
Suppose that the life expectancy of a certain
brand of nondefective light bulbs is normally
distributed, with a mean life of 1400 hr and a
standard deviation of 50 hr.
If
70,000 of these bulbs are produced, how many
1330 hr and 1465 hr?
will last befween
s-\,tt*:
X^ N (lvoo rSo)
S;^J +U ffJJJ,+r$\d c !i^th.t^tL
Fi.+\.a*
'd:#j,n5^p*- l33o r'h t.tbr \0o-,6 i
**I
?(r3la 4xc\tl6s)
: Pt 33!'-l
LroD,
/-
V. rydllg
=P(C &<S)=0ktur?4).3)
+ \,rss.- *a norr^,,!- t*t&
LouL
t1p
1,3
+
Q'q 03 1
f
of
louk yt -l.Y + o. ot
Sr"Hr.*
t F,
v
-l S
-f
-I6
- 1 :;
-1
r-rlS-
I
I oo oo (,tlr$ : s756
bq "r}B&jta[ 1*
br"lts
b{bt ca,-,
!cr,,", bl
ho,urs.
ll
l!
r_Ull
"11!i
,ll
l .
l
l.l
l
r.r_i_i6
iir_r 6
rl.: I S
r:r-:s
i]
_l:
l.'ri i 6
tL6lS
trar
l
r'tf -iit
;1615 ir6,:,6 j9l
:r-!
l
r"r"{.1
,:-l!
-i
:,i:
il:Is
I
I
.0[
.01 ,0:
_r:t6
-ijl:,!
t.tl
"llirlSir:
: lfrr-t
:il,-ri
-',igs
)
lt _.4
r:'i:
:ilrl ;r !lliJll i, ri lil![iillii
S. rnPqs^- -+pl$ te"fV% (.ttfV\/
6\-fulOooo b,^ltat" {"st
tXh^*r^- )33o4 ltl65 hou"5 ;
''h,
i'rJ-:6
illjfs
-1
:",1S
.r.tl
r.tl4S
ri-rJ9
-'II*
.:
o.t?.1\
---
{*} h"t*'- riio4 rlbs
Itt
0l
-is,.,
"ss
1
'u r'
.03
_i
-i
,,;g,i
r:;6:
-l-b'
;96i
JSSi
tir.l':
:::lll
i-r-i
::-;I:
:ilrj
6lel
ii:s
6,i61
6!S )
-ll y
--ill -lSY
: _:
;-+
:i6- -9!r
S::]S
5:
S.-irS
SrlY
-'
SS.l!
,{;\
t6.l
J,jl_i
Itrirl
lsirl
i:y'i
i:!,6
::9S.
6-i6S
6-lb
c'!:
-+
ll\\'
'\hq
.0t
-i-:6
:1tis
s
l',JS'l
r:t-_ii !-ll
-'l-'-
'\.
i_i!,]
lll]! i ,,.r:rt$i,rli
st-r8
S:S:
s:19
irlii
r:,-i
rj
i-s-j
6:-q f:l'
6i:il f-i9i
6:-rli 59ii
6
^iir'i
t.t-i
.Siir.
!!1Sl
.3li d
s:5.1
S9l)
9r.$P
glr i
;\\
jt
I
-r-
!-
s
-i9-i
:_l
b:
;-5:
)lit
i6l:
lr,tl f
ilirS
i':l
l--1
The chirkefls at Cnlcnel Thcmps*n's F.aflch har,e a ffiean e'eight ot- 1S5tl s. '.lith a standard
deriation of 160 g" The li-eights of the chickrnE are close!' approilmattd bv a narmal ctul'e.
Find the percerlt of all chickens haring rr-eights rRore than 116l s or less thatr 1350 g
Sn$q. X*t't(tso,lbo)
-
(l(x')rt\+ ?(x.tlto)
=
1'(a>13%y')+
P(z.W)
-fltz'H)+f (r.-ff)
--?
(atf.
+bo/&
ls)
L*s
.
Xr^Oudh s 6tlccl)*to,^"+9\o-^ sld'
nof mc!. *o\,\c $N\ c1r<r t \dUa/
=
5$re-\*^AnlA$\-d"o
?G >1.5x)+ P(t1- ]s."l)
:h- P(tat,s\]+ f (?e-?st)
=[-
.tts [+ .oolb
:
.e o\1
:
.cob 5
t
:iliii lttlf:f ii i fllt{f'l:1! t!i;itI t{i]5{: iitl itl' ri'illili
.00
.01
r.rii',-: i.'::rl-r
r-r1.,,;: iit-tl'
.ootb
tji,,jr:l',:lj
t:rlr: _:
r:ri.,'t
,rll
itli-'-i
i;tli':
.li;-t-t- :,lli'
ij:.r:ri, :i:riri
!i I -l jt-tl -i
:r.rli:l!
-l S
- -
r.|irli
lr_-_.t-l*
rli-i'i
--6
-- I
rl''--
l.,l-r-1 iirl-i
','.1.1: , tl-l,,,ltf:., :.r r'r
-
t-rl'1';'
LrJ
.03
.B'
.0S
.riQ
tljr'i-l jrlli,i itl-'i_:
l]:irl
:1rll'i: ri1.,;r:"1
ir;]r'r{ jrjtrt rlil.6
tll-,iS
tl.l,'ln ii'l!!
r:ri:'' l
r.rjil
:irll
i,iri'@rrr.rr{
r.r.-rl_: jt-'l_i
r.r_1_il ,it.r_l I
r.r:j_r .:jr-r-l:
r.ri
_i
-
jr-t-t
i
tlt_,ll
ll:',-itl
r'rt-r-rl
t)l',r1
E :,ir;irtrrla:!
,
rr
I
,ri:
i9l i
:oi-l
:19-: 9irl6
i96i vi: !9-j ni -6
i'.-r$l gct:
0_1 .tj"l
:r-Ji
"rij:i rf;i
:r:l-i,i!j
.rl5
,r:'b
ffi.01,:'Vjt
!! jti
9p-rry!;
!,,:fr:r iyd.
r:- - ',
r!- !r:r-li in-;
ir::Sl i!i,:
.l.r'
.ils
*..', ,ffi--.0-.1
*i;-7
gial
!y6l
frl-l
9t-l
yir-,., !!Si.,
9!r!j
i,:,Sd
ygil
!0-l
99!l
:rg!r
-{ jar of peanrn buner contains -f 57 e rrith a standrrd dertation of 1t}"1 g- Find rhe probabilin
that a 1ar crntains Inftre than 1f 5 g. Assume a n'rrmal distributipn- Use a r-srsre r*unded t':
l
decimal places.
F N (gs),lo,L)
P(x>vGi=Fe'q*P)
_SJ*,"r.
=?(.t#\=(,(etor0
l* P (z.o.lil
.ri-
.il1
.u9
l1:
l-oJ\x3
i
-.
_\_:-r
-l
S!'
.l: s6
J63
1
il9
r'l-l
-
ol
rr-i
6.isi
6S-ll
- yt.,
i
-i 1'
4rFa
b :-.' t
t ' rlri
i.n:
ln nutriuon the recsffffiended da:lv allou'ance iRD-tl of a ritamin is a nrimber set bv the
gsl'ffrr$eflt ar a guide io afl indiridual's dailv ritamin intakn- -tcnrallv, ritamin needs 1.Er.r'
drasticallv frsm person to persorr- brrt the needs are rEr]- clasnlr' appraximated $ a nsrmal
cut.l'e- To calculate the RD-+* thr gor-ef,nffient iirst hnds the average need for ritaminr arnong
people in the population and then the sturdard deriatian- The RD-t is dehned as the mean plur
l-5 times rhe standard dertation. Find the recommended dailv allo'"r'aflce for a ritamin gir-en thi
600 rurits. and the standard dertati,rn ir -t3
51 units,
the meur is 8*0
600
\l'hat is the recorrrrnended
51
darlq-
alloti'aflce fsr
(rru DtvlqllsN)
KDA z, rnell) + 1.5
6oo + a,: (s r)
Ruff
:
= 6oo + t:n.5
Rl}fi= -)e?.5
?=1fl
The
ritamin?