Math 1720 - Trigonometry University of Memphis Instructor: Gábor Mészáros Central European University, Budapest 10.28.2013 Solutions I. 1. Solve the following trigonometric equations on (a) (b) sec4 x − 4 sec2 x + 4 = 0, 4 Introduce [0, 2π]! z = sec2 x 2 and solve the quadratic equation on z... 2 cos x”2 sin x − 1 = 0, Use the identity sin x + cos2 x = 1 z = cos2 x and solve the quadratic equation on z... to get rid of sin2 x. Introduce 2. Prove the following identities: (a) sec α sin α = tan α, (b) 1 + cot2 (−α) = csc2 α, Substitute cot2 (−α) = cot2 (α) = (c) cos2 α(1 + tan2 α) = 1. cos2 α . sin2 α sec x = Here 1+ 1 sin x . cos2 α sin2 α = cos2 α+sin2 α sin2 α = 1 sin2 α = csc2 α. Use the same technique as above. II. Recall the following trigonometric identities: sin(α + β) = sin α cos β + sin β cos α (1) sin(α − β) = sin α cos β − sin β cos α (2) sin(2α) = 2 sin α cos α (3) 1. Determine the exact value of the following functions at the given numbers: (a) π ), sin( 12 √ √ 2( 3−1) . 4 √ √ sin π6 cos π4 = 2( 43+1) . √ √ sin π3 cos π4 = 2( 43+1) . 7π 5π 12 ) = sin( 12 ) π sin( 12 ) = sin( π4 − π6 ) = sin π4 cos π6 − sin π6 cos π4 = (b) 5π π π π π sin( 5π 12 ), sin( 12 ) = sin( 4 + 6 ) = sin 4 cos 6 + (c) 5π π π π π sin( 7π 12 ), sin( 12 ) = sin( 4 + 3 ) = sin 4 cos 3 + Or one can simply say that (d) sin( 7π 12 ) = sin(π − sin 80◦ cos 20◦ − sin 20◦ cos 80◦ . Observe that we are calculating sin(80◦ − 20◦ ) = sin(60◦ ) = 1 √ 3 2 . 2. Solve the trigonometric equation Use identity (1), that gives sin α cos α = − 21 . sin(2α) = −1. α = 2 3π 4 + nπ .
© Copyright 2026 Paperzz