eix = cos x + i sin x MA 222 K. Rotz Example. Use Maclaurin Series to show that eix = cos x + i sin x, where i2 = −1. Solution: Recall the Maclaurin series for ex , cos x and sin x: x e = sin x = cos x = ∞ X xn n=0 ∞ X n=0 ∞ X n=0 n! =1+x+ x2 x3 x4 x5 x6 x7 + + + + + + ··· 2! 3! 4! 5! 6! 7! (−1)n x2n+1 (2n + 1)! =x− x3 x5 x7 + − + ··· 3! 5! 7! (−1)n x2n (2n)! =1− x2 x4 x6 + − . 2! 4! 6! Using the series for ex , we get (ix)2 (ix)3 (ix)4 (ix)5 (ix)6 (ix)7 + + + + + + ··· 2! 3! 4! 5! 6! 7! x2 x3 x4 x5 x6 x7 = 1 + ix + i2 + i3 + i4 + i5 + i6 + i7 + · · · 2! 3! 4! 5! 6! 7! eix = 1 + ix + Notice that i2 = −1, i3 = −i, i4 = 1, i5 = i, and the pattern repeats from there. So eix = 1 + ix − x3 x4 x5 x6 x7 x2 −i + +i − − i + ··· 2! 3! 4! 5! 6! 7! Now group by terms with an i (the odd terms) and terms without an i (the even terms): x3 x5 x7 x2 x4 x6 + − + · · · + ix − i + i − i + · · · eix = 1 − 5! 7! 2! 2 4! 4 6! 6 3! x x x x3 x5 x7 = 1− + − + ··· + i x − + − + ··· 2! 4! 6! 3! 5! 7! Finally, we can recognize the first term in the parentheses as cos x, and the second set of parentheses as sin x. In conclusion, eix = cos x + i sin x. Neat fact: now you can talk about exponentials of complex numbers. For example, π π π eiπ = cos π + i sin π = −1 and ei 2 = cos + i sin = i. 2 2 This identity will be used later in the semester when we talk about second order linear differential equations with complex eigenvalues. 1
© Copyright 2026 Paperzz