Vestnik Otdelenia nauk o Zemle RAN, VOL. 3, NZ6008, doi:10.2205/2011NZ000138, 2011 Program of the mantle thermometers and barometers: usage for reconstructions and calibration of PT methods I. V. Ashchepkov Institute of geology and mineralogy SB RAS, Novosibirsk Key words: Mantle, thermobarometry, layering, lithosphere, PT program Citation: Ashchepkov, I. V. (2011), Program of the mantle thermometers and barometers: usage for reconstructions and calibration of PT methods, Vestn. Otd. nauk Zemle, 3, NZ6008, doi:10.2205/2011NZ000138. Program description Original monomineral thermobarometers for mantle peridotites for clinopyroxene, garnet, chromite and ilmenites for the mantle peridotites were statistically calibrated on the PT estimates for mantle peridotites [Ashchepkov et al., 2010] were tested using the mineral phases obtained in high pressure experiments with the natural peridotites (380 runs) [Brey et al.,1990; 2008 etc] and eclogites (240 runs)[Dasgupta et al., 2006 etc]. In the original program of that written on FORTRAN are assembled the most reliable methods of mineral thermometers (45) and barometers (36) and oxybarometers (5), including original monomineral and methods [Ashchepkov, 2003 Ashchepkov et al., 2008; 2009; 2010; 2011] for the mantle peridotites bases on the compositions of on clinopyroxene, garnet, chromite and ilmenite. Program reads the text files, which converted from Excel. Original data include standard silicate compositions for 12 components in standard order. The text file includes 15 columns of 8 symbols. The first is file name which is the same for all the minerals in the association. The second is indicator symbol for phases. E- enstatite, D - diopside, O-olivine, S-spinel, G- garnet, I –ilmenite, A- amphibole, F – phlogopite, P-plagioclase, L- liquid, R- bulk rock. Then follow oxides: SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, CaO, Na2O, K2O, NiO, V2O3 written with 2–3 decimals. The last column may contain description of the mineral or association up to 64 symbols. Monomineral methods use calculated values for Fe#Ol or Fe#Cpx. The input from console includes file name (8 symbols) (A8), then amount of PT pairs of numbers thermometers and barometers (2I2) and one for FO2 method. Program allows input of the iteration numbers (to 25 by default). It allow to choose whether to use the calculated Fe3+ for the minerals and also. It is possible also to put fixed values of T and P (default 1000oC and 40 kbar ) The program is reading mineral compositions detecting them by mineral indexes till name of the association are the same and start the estimations of PT values when read different names. They are going to the dispatcher points sending to the thermometers and barometers according to the input numbers. It is performing calculation for each pair till the difference of the temperatures is higher 1o or less then iteration number made then goes to next pair. The values of calculates pairs are writing in the matrix. It is writing in new line when the new association starts. The results of the calculations of pairs (to 15) PT of the parameters in any combination are writing in the matrix of data in the CSV format together with the compositions of minerals or their formula coefficients. The calculated Fe#Ol for coexisting olivine for each mineral are written also as well as Cr# and Fe3+ for chromites and Fe3+ for Cpx. The description is writing before the results of the calculations. The CSV (comma separated values) files are easily converting to Excel or Grapher or may be used for the statistical programs. Special variety of programs works with the data files of the experimental PT values and data of the minerals in runs [Dasgupta et al., 2006; Brey et al., 1990, 2008 etc] reading PT parameters and writing them together with the calculated values and compositions of the minerals. This allows to make the correlations of compositions of minerals and PT values of the experimental runs and results of the approximations and to find the difference between the P and T difference and their dependence from mineral, liquid or even starting rock compositions. Applications Recently new version of the peridotite- pyroxenites Cpx barometer [Ashchepkov et al., 20032011] was obtained using about 300 experimental runs for basalts and peridotites and pyroxenites. ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS This universal barometer [Ashchepkov et al., 2011] reveals rather good calibration and agreement with the most reliable methods of mantle thermobarometry [Brey and Kohler, 1990; Krogh, 1988; Nimis and Taylor, 2000; McGregor, 1974; O’Neill and Wood, 1979; Taylor et al., 1998; O’Neill and Wall, 1987] (Fig.1-3,5). The new improvements of the garnet barometer [Ashchepkov et al., 2008; 2010] give much better coincidence for the experimental systems [Brey, G.P. and Kohler, 1990; Brey et al., 2009] and garnet bearing peridotitic mantle xenoliths as well as garnets from diamond inclusions [Logvinova et al., 2005; Sobolev et al., 1984] and from diamond associations [Grutter et al., 2006; Sobolev et al., 1984] (Fig.3). Comparison with the diagram based on the experimental data show that most of the pressures in the natural associations are overestimating the experimental values for the same Cr/(Cr+Al) values (Fig.4) [Turkin and Sobolev, 2009]. A newly modified version of the programs includes the methods for the T and P estimates according to the precise data for olivine [Sobolev et al., 2009; De Hoog, 2010]. They single grain temperatures for olivine show a good correlation with the pyroxene estimates (Ashchepkov et al., 2010). Fig. 1. Correlation of the determinations of the from the universal equation of clinopyroxene barometer [Ashchepkov, 2011] according to the experimental data (b) in the peridotite system and the comparison of estimations according to this equation and Cr-Tchermakite barometer [Nimis and Taylor, 2000] (d). n=121 (225) R2 = 0.96 (0.89) a) 1600 P (kbar) Ashchepkov, 2009 (Cpx) ToC (Nimis &Taylor, 2000) (CPx) 1400 1200 1000 800 600 100 b) 80 60 40 20 0 600 800 1000 1200 1400 1600 0 ToC Experimental conditions c) 1400 n=640 R2 = 0.95 1200 1000 800 600 400 400 600 800 1000 1200 10 20 30 40 50 60 70 80 90 100 P(kbar) Experimental conditions P (kbar) Ashchepkov, 2002a (Cpx) ToC Nimis,Taylor, 2000 (CPx) n=194 (268) R2 = 0.94 (0.87) 40 d) n=1154 R2 = 0.85 30 20 10 0 1400 0 ToC P(kbar) Brey,Kohler (2Px) 10 20 30 40 P(kbar) (Nimis &Taylor, 2000) (CPx) ToC (Nimis & Taylor,2000) 800 1000 1200 1400 400 0 600 800 0 P (Kbar) (Ashchepkov, 2010) 10 Moho BMK- BMI BM2 40 BM1 20 50 BMG 45 mw/m2 25 30 60 DGC 1. Ashchepkov ea,2010 2. Perkins, Newton, 1982 3. Nickel, Green, 1985 CDPVPP DGW GL 1. Ashchepkov ea, 2010 2. McGregor, 1974 70 35 mw/m2 P(kbar) 40 mw/m2 80 35 400 600 800 1000 1200 1400 R2 = 0.76 (0.64) 70 110 n=620 (780) P (kbar) Ashchepkov, 2010 (Gar) P (kbar) Ashchepkov, 2010 (Gar) 1600 30 SL 15 1400 SEA Gr 20 10 1200 T oC Удачная Udachnaya Витим Vitim LPC 5 1000 a) 60 50 40 30 20 10 0 R2 = 0.86 (0.64) n=70 (98) 100 90 b) 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 P(kbar) McGregor, 1974 70 0 10 20 30 40 50 60 70 80 90 100 110 P(kbar) Experimental conditions 1600 Fig. 2. Estimations of (temperature and) of pressure with the universal version of clinopyroxene barometer [Ashchepkov, 2011] in the comparison with the estimations according to orthopyroxene methods (see legend) for the xenoliths from basalts from the Vitim plateau (a) and for the xenoliths from Udachnaya pipe [Boyd et al ., 1997; Ionov et al., 2010]. Fig. 3. Correlations dependences between: a) values of pressure, determined according to [McGregor, 1974] and the equation garnet barometer with the corrections. (b). Correlations between the estimations from the equations of garnet barometer and experimental data. ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS 100 1. Diamond inclusions (Grutter, 2006) 2. Udachnaya 3. World data 1. Diamond inclusions (Grutter, 2006) 2. Udachnaya 3. World data 90 P (kbar) Ashchepkov, 2010 (Gar) P (kbar) Ashchepkov, 2010 (Gar) 90 80 70 60 50 40 Fig. 4 The diagram Cr/Cr+Al - P (kbar) [Turkin and Sobolev, 2009] according to experimental data and values calculated for natural garnets a) by garnet barometer and b0 according to Opx. Data from : 1Udachnaya [Boyd, et al ., 1997; Ashchepkov et al., 2010; Pokhilenko et al., 1999; Sobolev , 1977]; 2. Diamond associations [Grutter et al., 2006; Sobolev et al., 1984; Logvinova et al., 2005]; 3. Worldwide kimberlites [Sobolev, 1977; Burgess and Harte, 2004; Simon et al ., 2007 etc]. 100 80 70 60 50 40 30 30 20 20 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1400 1600 0.2 0.4 0.6 0.8 1.0 Cr/(Cr+Al) Cr/(Cr+Al) 400 600 800 1000 1200 400 600 800 1000 0 0 T oC Udachnaya 10 Cpx Eclogites 1200 1. Ashchepkov ea, 2010eclog 2. McGregor, 1974 SEA 20 SEA Gra ph Dia 30 ite mo nd 1. Ashchepkov ea, 2010 perid 2. McGregor, 1974 1600 Udachnaya 10 Cpx peridotites 20 1400 T oC Gra phit e Dia mo nd 30 40 40 50 50 45 mw/m2 60 45 mw/m2 60 35 mw/m2 35 mw/m2 70 70 P(kbar) P(kbar) 40 mw/m2 40 mw/m2 80 80 400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600 400 600 400 600 800 1000 800 1000 0 0 T oC 10 Udachnaya 1. Ashchepkov ea, 2010 Garnet 2. McGregor, 1974 10 hite mo nd Gar peridotites 1400 1200 1600 1400 1600 Udachnaya 1. Ashchepkov ea, 2010 Pxt 2. McGregor, 1974 SEA Gra p Dia 30 1200 T oC 20 20 Fig.5. PT estimates obtained modified singe grain thermobarometers [Ashchepkov et al., 2010; 2011; Krogh, 1988; Nimis and Taylor, 2000; McGregor, 1974; O’Neil and Wood, 1979; Taylor et al., 1998; O’Neil and Wall, 1987] in comparison with those Opx- based method [Brey and Kohler, 1990 – McGregor, 1974]. SEA Gra phit e mo nd Cpx Pyroxenites Dia 30 40 40 50 50 45 mw/m2 60 45 mw/m2 60 35 mw/m2 35 mw/m2 70 70 P(kbar) P(kbar) 40 mw/m2 400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600 0 40 mw/m2 80 80 400 600 400 600 800 800 0 T oC 1000 1000 1200 T oC Udachnaya 1400 1200 1600 1400 1600 Udachnaya 10 10 Cpx Ilmenites 20 Gra ph Dia 30 SEA 1. Ashchepkov ea, 2010 2. McGregor, 1974 mo nd Chr Peridotites 20 Gra ph ite Dia 30 SEA ite 1. Ashchepkov ea, 2010Chr 2. McGregor, 1974 mo nd 40 40 50 50 45 mw/m2 45 mw/m2 60 60 35 mw/m2 35 mw/m2 70 70 P(kbar) P(kbar) 40 mw/m2 40 mw/m2 80 80 400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600 For the works with Grapher software the calculated values of pressures are writing together with the Fe# or any other parameters including trace components in other column and distances between the objects. This allows obtaining rather detail pictures for the mantle beneath Daldyn field (Fig.6). Different minerals and their monomineral thermobarometric methods give similar inclination of the mantle layers toward the east. The comparison of the data obtained for India by W. Griffin shows the more detail layering then represented in their paper [Griffin et al., 2009]. The work was supported by RBRF, Grant 05-11-00060а Festivalnaya Polyarnaya 10 Fe garnet Udachnaya 20 Aeromagnitnaya Bukovinskaya Gornyatskaya 30 Zarnitsa Letnyaya Zimnyay Osennyaya ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS Distance KM 30 20 10 15 15 25 Fe clinopyroxene 25 35 35 45 Fig.6. The cross -sections of the Daldyn field in Yakutia. From Zarnitsa to Udachnaya pipe, data from [Ashchepkov et al., 2010]. 45 55 55 65 65 75 75 30 20 10 10 Fe chromite 20 25 Fe ilmenite 15 5 15 25 30 35 40 45 50 55 60 65 70 75 80 References Ashchepkov, I. V., N. P. Pokhilenko, N. V. Vladykin, A. M. Logvinova, S. I. Kostrovitsky, V. P. Afanasiev, L. N. Pokhilenko, S. S. Kuligin, L. V. Malygina, N. V. Alymova, O. S. Khmelnikova, S. V. Palessky, I. V. Nikolaeva, M. A. Karpenko, Y. B. Stagnitsky (2010) Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics, Vol. 485, pp. 17-41. Ashchepkov, I. V., N. P. Pokhilenko, N. V. Vladykin, A. Y. Rotman, V. P. Afanasiev, A. M. Logvinova, S. I. Kostrovitsky, L. N. Pokhilenko, M. A. Karpenko, S. S. Kuligin, E. V. Malygina, Y. B. Stegnitsky, N. A. Alymova, O. S. Khmelnikova (2008) Reconstruction of mantle sections beneath Yakutian kimberlite pipes using monomineral thermobarometry. Geological Society, London, Special Publications, Vol. 293. pp. 335–352. Ashchepkov, I. V., L. André, H. Downes, B. A. Belyatsky (2011) Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): polybaric fractionation of rising melts in the mantle? Journal Asian Earth Sciences (in press). Ashchepkov, I. V., N. V. Vladykin, A. M. Logvinova, S. S. Kuligin, L. V. Malygina, L. N. Pokhilenko, N. V. Alymova, S. I. Mityukhin (2009) Using of the monomineral thermobarometers for the reconstruction of the mantle lithosphere structure. Vestn. Otd.nauk o Zemle RAN. № 1(27). Ashchepkov, I. V. (2003). More precise equation of the Jd-Di Barometеr. Herald of the Earth department RAS. № 1. pp. 45-46. Ashchepkov, I. V., T. Ntaflos, N. V. Vladykin, D. A. Ionov, S. S. Kuligin, L. V. Malygina, L. N. Pokhilenko, A. M. Logvinova, S. I. Mityukhin, S. V. Palessky, O. S. Khmelnikova, A. Ya. Rotman (2010) Deep seated xenoliths from the phlogopite-bearing brown breccia of Udachnaya pipe. Deepseated magmatism, its sources and plumes, Irkutsk, pp. 164-186. Edited by Dr. N. V. Vladykin Brey, G. P., T. Kohler (1990) Geothermobarometry in four phase lherzolites II: new thermobarometers and practical assessment of using thermobarometers. Journal of Petrology, Vol. 31, pp. 1353-1378. Brey, G. P., T. Kohler, K. G. Nickel (1990). Geothermobarometry in four-phase lherzolites I. Experimental results from 10 to 60 kbar. Journal of Petrology Vol. 31, pp. 1313-1352. Brey, G. P., Bulatov V. K., A. V. Girnis (2008) Geobarometry for Peridotites: Experiments in Simple and Natural Systems from 6 to 10 GPa. Journal of Petrology, Vol.41/1, pp. 3-24 Boyd, F.R., N. P. Pokhilenko, D. G. Pearson, S. A. Mertzman, N. V. Sobolev, L. W. Finger (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol. Vol. 128, pp. 228-246. Burgess, S. R., B. Harte (2004) Tracing lithosphere evolution through the analysis of heterogeneous G9-G10 garnets in peridotite xenoliths, II: REE chemistry. Journal of Petrology, Vol 45. Iss. 3. pp. 609-634. Dasgupta, R., M. M. Hirschmann, K. Stalker (2006) Immiscible Transition from Carbonate-rich to Silicate-rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silicaundersaturated Ocean Island Lavas Journal of Petrology, Vol. 47, pp. 647-671. De Hoog, J. C., L. Gall, D. H. Cornell (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, Vol. 70, pp. 196-215. Griffin, W.L., A. F. Kobussen, E. V. S. S. K. Babu, S. Y. O'Reilly, R. Norris, P. Sengupta (2009) A translithospheric suture in the vanished 1-Ga lithospheric root of South India: Evidence from contrasting lithosphere sections in the Dharwar Craton. Lithos 112S, pp. 1109–1119. ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS Grutter, H. S., D. Latti, A. H. Menzies (2006) Cr-Saturation Arrays in Concentrate Garnet Compositions from Kimberlite and their Use in Mantle Barometry. Journal of Petrology, Vol. 47, N 4, pp. 801-820. Krogh, E. J. (1988). The garnet-clinopyroxene Fe-Mg geothermometer a reinterpretation of existing experimental data. Contrib. Mineral. Petrol. Vol. 99, pp. 44-48. Logvinova, A. M., L. A. Taylor, C. Floss, N. V. Sobolev (2005) Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in-situ. International Geology Review, Vol. 47, pp. 1223-1233. McGregor, I. D. (1974) The system MgO–Al2O3–SiO2: solubility of Al2O3 in enstatite for spinel and garnet–spinel compositions. American. Mineralogist, Vol. 59, pp. 110–19. Nimis P., W. Taylor (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. Vol. 139, pp. 541-554. Nickel, K. G., D. H. Green (1985) Empirical thermobarometry for garnet peridotites and nature of lithosphere, kimberlites and diamonds. Earth. Planet. Sci. Lett. Vol. 73, pp. 153-170. O’Neill, H. St. C, B. J. Wood (1979) An experimental study of Fe-Mg- partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol Vol. 70, pp. 59-70. Pokhilenko, N. P., N. V. Sobolev, S. S. Kuligin, N. Shimizu (1999) Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. Proceedings of the VII International Kimberlite Conference. The P.H. Nixon volume. pp. 690-707. Pokhilenko, N. P., D. G. Pearson, F. R. Boyd, N. V. Sobolev (1991) Megacrystalline dunites: sources of Siberian diamonds. Carnegie Institute Washington. Yearbook. Vol. 90, pp. 11-18. Pokhilenko, N. P., N. V. Sobolev, S. D. Chernyi, Yu. T. Yanygin (2000) Pyropes and chromites from kimberlites in the Nakyn field (Yakutia) and Snipe Lake district (Slave River re-gion, Canada): evidence for anomalous structure of the lithosphere. Dokl. Earth Sci. Vol. 372, pp. 638–642. O’Neill, H. St. C., V. J. Wall (1987) The olivine orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. Journal of Petrology, Vol. 28, pp. 1169-1191. Simon, N. S. C., R. W. Carlson, D. G. Pearson, G. R. Davies (2007) The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle. Journal Petrology, Vol.48, pp. 589-625. Sobolev, N. V., N. V. Pokhilenko, E. S. Efimova (1984) Xenoliths of diamond bearing peridotites in kimberlites and problem of the diamond origin. Russian Geol. Geophys. Vol. 25/12, pp. pp. 63-80. Sobolev, N. V. (1977) Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Mantle. Amer. Geophys.Union, Washington, DC. 279 p. Sobolev, N. V., A. M. Logvinova, D. A. Zedgenizova, N. P. Pokhilenk, E. V. Malygina, D. V. Kuzmin, A. V. Sobolev (2009) Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112, S2, pp. 701-713. Taylor, W. R., M. Kammerman, R. Hamilton (1998) New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. 7th International Kimberlite Conference. Extended abstracts. Cape town. pp. 891-901. Turkin, A. I., N. V. Sobolev (2009) Pyrope–knorringite garnets: overview of experimental data and natural parageneses, Russian Geology and Geophysics, Vol. 50, pp. 1169-1182.
© Copyright 2026 Paperzz