Program of the mantle thermometers and barometers

Vestnik Otdelenia nauk o Zemle RAN, VOL. 3, NZ6008, doi:10.2205/2011NZ000138, 2011
Program of the mantle thermometers and barometers: usage for reconstructions and calibration
of PT methods
I. V. Ashchepkov
Institute of geology and mineralogy SB RAS, Novosibirsk
Key words: Mantle, thermobarometry, layering, lithosphere, PT program
Citation: Ashchepkov, I. V. (2011), Program of the mantle thermometers and barometers: usage for reconstructions and
calibration of PT methods, Vestn. Otd. nauk Zemle, 3, NZ6008, doi:10.2205/2011NZ000138.
Program description
Original monomineral thermobarometers for mantle peridotites for clinopyroxene, garnet,
chromite and ilmenites for the mantle peridotites were statistically calibrated on the PT estimates for
mantle peridotites [Ashchepkov et al., 2010] were tested using the mineral phases obtained in high
pressure experiments with the natural peridotites (380 runs) [Brey et al.,1990; 2008 etc] and eclogites
(240 runs)[Dasgupta et al., 2006 etc]. In the original program of that written on FORTRAN are
assembled the most reliable methods of mineral thermometers (45) and barometers (36) and
oxybarometers (5), including original monomineral and methods [Ashchepkov, 2003 Ashchepkov et
al., 2008; 2009; 2010; 2011] for the mantle peridotites bases on the compositions of on clinopyroxene,
garnet, chromite and ilmenite. Program reads the text files, which converted from Excel. Original
data include standard silicate compositions for 12 components in standard order. The text file includes
15 columns of 8 symbols. The first is file name which is the same for all the minerals in the
association. The second is indicator symbol for phases. E- enstatite, D - diopside, O-olivine, S-spinel,
G- garnet, I –ilmenite, A- amphibole, F – phlogopite, P-plagioclase, L- liquid, R- bulk rock. Then
follow oxides: SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, CaO, Na2O, K2O, NiO, V2O3 written
with 2–3 decimals. The last column may contain description of the mineral or association up to 64
symbols. Monomineral methods use calculated values for Fe#Ol or Fe#Cpx. The input from console
includes file name (8 symbols) (A8), then amount of PT pairs of numbers thermometers and
barometers (2I2) and one for FO2 method. Program allows input of the iteration numbers (to 25 by
default). It allow to choose whether to use the calculated Fe3+ for the minerals and also. It is possible
also to put fixed values of T and P (default 1000oC and 40 kbar )
The program is reading mineral compositions detecting them by mineral indexes till name of the
association are the same and start the estimations of PT values when read different names. They are
going to the dispatcher points sending to the thermometers and barometers according to the input
numbers. It is performing calculation for each pair till the difference of the temperatures is higher 1o or
less then iteration number made then goes to next pair. The values of calculates pairs are writing in the
matrix. It is writing in new line when the new association starts.
The results of the calculations of pairs (to 15) PT of the parameters in any combination are
writing in the matrix of data in the CSV format together with the compositions of minerals or their
formula coefficients. The calculated Fe#Ol for coexisting olivine for each mineral are written also as
well as Cr# and Fe3+ for chromites and Fe3+ for Cpx. The description is writing before the results of
the calculations. The CSV (comma separated values) files are easily converting to Excel or Grapher
or may be used for the statistical programs.
Special variety of programs works with the data files of the experimental PT values and data of
the minerals in runs [Dasgupta et al., 2006; Brey et al., 1990, 2008 etc] reading PT parameters and
writing them together with the calculated values and compositions of the minerals. This allows to
make the correlations of compositions of minerals and PT values of the experimental runs and results
of the approximations and to find the difference between the P and T difference and their dependence
from mineral, liquid or even starting rock compositions.
Applications
Recently new version of the peridotite- pyroxenites Cpx barometer [Ashchepkov et al., 20032011] was obtained using about 300 experimental runs for basalts and peridotites and pyroxenites.
ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS
This universal barometer [Ashchepkov et al., 2011] reveals rather good calibration and agreement with
the most reliable methods of mantle thermobarometry [Brey and Kohler, 1990; Krogh, 1988; Nimis
and Taylor, 2000; McGregor, 1974; O’Neill and Wood, 1979; Taylor et al., 1998; O’Neill and Wall,
1987] (Fig.1-3,5).
The new improvements of the garnet barometer [Ashchepkov et al., 2008; 2010] give much
better coincidence for the experimental systems [Brey, G.P. and Kohler, 1990; Brey et al., 2009] and
garnet bearing peridotitic mantle xenoliths as well as garnets from diamond inclusions [Logvinova et
al., 2005; Sobolev et al., 1984] and from diamond associations [Grutter et al., 2006; Sobolev et al.,
1984] (Fig.3). Comparison with the diagram based on the experimental data show that most of the
pressures in the natural associations are overestimating the experimental values for the same
Cr/(Cr+Al) values (Fig.4) [Turkin and Sobolev, 2009].
A newly modified version of the programs includes the methods for the T and P estimates
according to the precise data for olivine [Sobolev et al., 2009; De Hoog, 2010]. They single grain
temperatures for olivine show a good correlation with the pyroxene estimates (Ashchepkov et al.,
2010).
Fig. 1. Correlation of the determinations
of the from the universal equation of
clinopyroxene barometer [Ashchepkov,
2011] according to the experimental data
(b) in the peridotite system and the
comparison of estimations according to
this equation and Cr-Tchermakite
barometer [Nimis and Taylor, 2000] (d).
n=121 (225)
R2 = 0.96 (0.89)
a)
1600
P (kbar) Ashchepkov, 2009 (Cpx)
ToC (Nimis &Taylor, 2000) (CPx)
1400
1200
1000
800
600
100
b)
80
60
40
20
0
600
800
1000
1200
1400
1600
0
ToC Experimental conditions
c)
1400
n=640
R2 = 0.95
1200
1000
800
600
400
400
600
800
1000
1200
10 20 30 40 50 60 70 80 90 100
P(kbar) Experimental conditions
P (kbar) Ashchepkov, 2002a (Cpx)
ToC Nimis,Taylor, 2000 (CPx)
n=194 (268)
R2 = 0.94 (0.87)
40
d)
n=1154
R2 = 0.85
30
20
10
0
1400
0
ToC P(kbar) Brey,Kohler (2Px)
10
20
30
40
P(kbar) (Nimis &Taylor, 2000) (CPx)
ToC (Nimis & Taylor,2000)
800
1000
1200
1400
400
0
600
800
0
P (Kbar) (Ashchepkov, 2010)
10
Moho
BMK- BMI
BM2
40
BM1
20
50
BMG
45 mw/m2
25
30
60
DGC
1. Ashchepkov ea,2010
2. Perkins, Newton, 1982
3. Nickel, Green, 1985
CDPVPP
DGW
GL
1. Ashchepkov ea, 2010
2. McGregor, 1974
70
35 mw/m2
P(kbar)
40 mw/m2
80
35
400
600
800
1000
1200
1400
R2 = 0.76 (0.64)
70
110
n=620 (780)
P (kbar) Ashchepkov, 2010 (Gar)
P (kbar) Ashchepkov, 2010 (Gar)
1600
30
SL
15
1400
SEA
Gr
20
10
1200
T oC
Удачная Udachnaya
Витим Vitim
LPC
5
1000
a)
60
50
40
30
20
10
0
R2 = 0.86 (0.64)
n=70 (98)
100
90
b)
80
70
60
50
40
30
20
10
0
0
10
20
30
40
50
60
P(kbar) McGregor, 1974
70
0 10 20 30 40 50 60 70 80 90 100 110
P(kbar) Experimental conditions
1600
Fig. 2. Estimations of (temperature and)
of pressure with the universal version of
clinopyroxene barometer [Ashchepkov,
2011] in the comparison with the
estimations according to orthopyroxene
methods (see legend) for the xenoliths
from basalts from the Vitim plateau (a)
and for the xenoliths from Udachnaya
pipe [Boyd et al ., 1997; Ionov et al.,
2010].
Fig.
3.
Correlations
dependences
between: a) values of pressure,
determined according to [McGregor,
1974] and the equation garnet barometer
with the corrections. (b). Correlations
between the estimations from the
equations of garnet barometer and
experimental data.
ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS
100
1. Diamond inclusions (Grutter, 2006)
2. Udachnaya
3. World data
1. Diamond inclusions (Grutter, 2006)
2. Udachnaya
3. World data
90
P (kbar) Ashchepkov, 2010 (Gar)
P (kbar) Ashchepkov, 2010 (Gar)
90
80
70
60
50
40
Fig. 4 The diagram Cr/Cr+Al - P (kbar)
[Turkin and Sobolev, 2009] according to
experimental data and values calculated
for natural garnets a) by garnet barometer
and b0 according to Opx. Data from : 1Udachnaya [Boyd, et al ., 1997;
Ashchepkov et al., 2010; Pokhilenko et
al., 1999; Sobolev , 1977]; 2. Diamond
associations [Grutter et al., 2006; Sobolev
et al., 1984; Logvinova et al., 2005]; 3.
Worldwide kimberlites [Sobolev, 1977;
Burgess and Harte, 2004; Simon et al .,
2007 etc].
100
80
70
60
50
40
30
30
20
20
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1400
1600
0.2
0.4
0.6
0.8
1.0
Cr/(Cr+Al)
Cr/(Cr+Al)
400
600
800
1000
1200
400
600
800
1000
0
0
T oC
Udachnaya
10
Cpx Eclogites
1200
1. Ashchepkov ea, 2010eclog
2. McGregor, 1974
SEA
20
SEA
Gra
ph
Dia
30
ite
mo
nd
1. Ashchepkov ea, 2010 perid
2. McGregor, 1974
1600
Udachnaya
10
Cpx peridotites
20
1400
T oC
Gra
phit
e
Dia
mo
nd
30
40
40
50
50
45 mw/m2
60
45 mw/m2
60
35 mw/m2
35 mw/m2
70
70
P(kbar)
P(kbar)
40 mw/m2
40 mw/m2
80
80
400
600
800
1000
1200
1400
1600
400
600
800
1000
1200
1400
1600
400
600
400
600
800
1000
800
1000
0
0
T oC
10
Udachnaya
1. Ashchepkov ea, 2010 Garnet
2. McGregor, 1974
10
hite
mo
nd
Gar peridotites
1400
1200
1600
1400
1600
Udachnaya
1. Ashchepkov ea, 2010 Pxt
2. McGregor, 1974
SEA
Gra
p
Dia
30
1200
T oC
20
20
Fig.5. PT estimates obtained modified
singe
grain
thermobarometers
[Ashchepkov et al., 2010; 2011; Krogh,
1988; Nimis and Taylor, 2000;
McGregor, 1974; O’Neil and Wood,
1979; Taylor et al., 1998; O’Neil and
Wall, 1987] in comparison with those
Opx- based method [Brey and Kohler,
1990 – McGregor, 1974].
SEA
Gra
phit
e
mo
nd
Cpx Pyroxenites
Dia
30
40
40
50
50
45 mw/m2
60
45 mw/m2
60
35 mw/m2
35 mw/m2
70
70
P(kbar)
P(kbar)
40 mw/m2
400
600
800
1000
1200
1400
1600
400
600
800
1000
1200
1400
1600
0
40 mw/m2
80
80
400
600
400
600
800
800
0
T oC
1000
1000
1200
T oC
Udachnaya
1400
1200
1600
1400
1600
Udachnaya
10
10
Cpx Ilmenites
20
Gra
ph
Dia
30
SEA
1. Ashchepkov ea, 2010
2. McGregor, 1974
mo
nd
Chr Peridotites
20
Gra
ph
ite
Dia
30
SEA
ite
1. Ashchepkov ea, 2010Chr
2. McGregor, 1974
mo
nd
40
40
50
50
45 mw/m2
45 mw/m2
60
60
35 mw/m2
35 mw/m2
70
70
P(kbar)
P(kbar)
40 mw/m2
40 mw/m2
80
80
400
600
800
1000
1200
1400
1600
400
600
800
1000
1200
1400
1600
For the works with Grapher software the calculated values of pressures are writing together with
the Fe# or any other parameters including trace components in other column and distances between
the objects. This allows obtaining rather detail pictures for the mantle beneath Daldyn field (Fig.6).
Different minerals and their monomineral thermobarometric methods give similar inclination of the
mantle layers toward the east. The comparison of the data obtained for India by W. Griffin shows the
more detail layering then represented in their paper [Griffin et al., 2009].
The work was supported by RBRF, Grant 05-11-00060а
Festivalnaya
Polyarnaya
10
Fe garnet
Udachnaya
20
Aeromagnitnaya
Bukovinskaya
Gornyatskaya
30
Zarnitsa
Letnyaya
Zimnyay
Osennyaya
ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS
Distance KM
30
20
10
15
15
25
Fe clinopyroxene
25
35
35
45
Fig.6. The cross -sections of the Daldyn
field in Yakutia. From Zarnitsa to
Udachnaya pipe, data from [Ashchepkov
et al., 2010].
45
55
55
65
65
75
75
30
20
10
10
Fe chromite
20
25
Fe ilmenite
15
5
15
25
30
35
40
45
50
55
60
65
70
75
80
References
Ashchepkov, I. V., N. P. Pokhilenko, N. V. Vladykin, A. M. Logvinova, S. I. Kostrovitsky, V.
P. Afanasiev, L. N. Pokhilenko, S. S. Kuligin, L. V. Malygina, N. V. Alymova, O. S. Khmelnikova, S.
V. Palessky, I. V. Nikolaeva, M. A. Karpenko, Y. B. Stagnitsky (2010) Structure and evolution of the
lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics, Vol. 485, pp.
17-41.
Ashchepkov, I. V., N. P. Pokhilenko, N. V. Vladykin, A. Y. Rotman, V. P. Afanasiev, A. M.
Logvinova, S. I. Kostrovitsky, L. N. Pokhilenko, M. A. Karpenko, S. S. Kuligin, E. V. Malygina, Y.
B. Stegnitsky, N. A. Alymova, O. S. Khmelnikova (2008) Reconstruction of mantle sections beneath
Yakutian kimberlite pipes using monomineral thermobarometry. Geological Society, London, Special
Publications, Vol. 293. pp. 335–352.
Ashchepkov, I. V., L. André, H. Downes, B. A. Belyatsky (2011) Pyroxenites and megacrysts
from Vitim picrite-basalts (Russia): polybaric fractionation of rising melts in the mantle? Journal
Asian Earth Sciences (in press).
Ashchepkov, I. V., N. V. Vladykin, A. M. Logvinova, S. S. Kuligin, L. V. Malygina, L. N.
Pokhilenko, N. V. Alymova, S. I. Mityukhin (2009) Using of the monomineral thermobarometers for
the reconstruction of the mantle lithosphere structure. Vestn. Otd.nauk o Zemle RAN. № 1(27).
Ashchepkov, I. V. (2003). More precise equation of the Jd-Di Barometеr. Herald of the Earth
department RAS. № 1. pp. 45-46.
Ashchepkov, I. V., T. Ntaflos, N. V. Vladykin, D. A. Ionov, S. S. Kuligin, L. V. Malygina, L. N.
Pokhilenko, A. M. Logvinova, S. I. Mityukhin, S. V. Palessky, O. S. Khmelnikova, A. Ya. Rotman
(2010) Deep seated xenoliths from the phlogopite-bearing brown breccia of Udachnaya pipe. Deepseated magmatism, its sources and plumes, Irkutsk, pp. 164-186. Edited by Dr. N. V. Vladykin
Brey, G. P., T. Kohler (1990) Geothermobarometry in four phase lherzolites II: new thermobarometers and practical assessment of using thermobarometers. Journal of Petrology, Vol. 31, pp.
1353-1378.
Brey, G. P., T. Kohler, K. G. Nickel (1990). Geothermobarometry in four-phase lherzolites I.
Experimental results from 10 to 60 kbar. Journal of Petrology Vol. 31, pp. 1313-1352.
Brey, G. P., Bulatov V. K., A. V. Girnis (2008) Geobarometry for Peridotites: Experiments in
Simple and Natural Systems from 6 to 10 GPa. Journal of Petrology, Vol.41/1, pp. 3-24
Boyd, F.R., N. P. Pokhilenko, D. G. Pearson, S. A. Mertzman, N. V. Sobolev, L. W. Finger
(1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths.
Contrib. Mineral. Petrol. Vol. 128, pp. 228-246.
Burgess, S. R., B. Harte (2004) Tracing lithosphere evolution through the analysis of
heterogeneous G9-G10 garnets in peridotite xenoliths, II: REE chemistry. Journal of Petrology, Vol
45. Iss. 3. pp. 609-634.
Dasgupta, R., M. M. Hirschmann, K. Stalker (2006) Immiscible Transition from Carbonate-rich
to Silicate-rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silicaundersaturated Ocean Island Lavas Journal of Petrology, Vol. 47, pp. 647-671.
De Hoog, J. C., L. Gall, D. H. Cornell (2010) Trace-element geochemistry of mantle olivine and
application to mantle petrogenesis and geothermobarometry. Chemical Geology, Vol. 70, pp. 196-215.
Griffin, W.L., A. F. Kobussen, E. V. S. S. K. Babu, S. Y. O'Reilly, R. Norris, P. Sengupta
(2009) A translithospheric suture in the vanished 1-Ga lithospheric root of South India: Evidence from
contrasting lithosphere sections in the Dharwar Craton. Lithos 112S, pp. 1109–1119.
ASHCHEPKOV: MANTLE THERMOMETERS AND BAROMETERS
Grutter, H. S., D. Latti, A. H. Menzies (2006) Cr-Saturation Arrays in Concentrate Garnet
Compositions from Kimberlite and their Use in Mantle Barometry. Journal of Petrology, Vol. 47, N 4,
pp. 801-820.
Krogh, E. J. (1988). The garnet-clinopyroxene Fe-Mg geothermometer a reinterpretation of
existing experimental data. Contrib. Mineral. Petrol. Vol. 99, pp. 44-48.
Logvinova, A. M., L. A. Taylor, C. Floss, N. V. Sobolev (2005) Geochemistry of multiple
diamond inclusions of harzburgitic garnets as examined in-situ. International Geology Review, Vol.
47, pp. 1223-1233.
McGregor, I. D. (1974) The system MgO–Al2O3–SiO2: solubility of Al2O3 in enstatite for
spinel and garnet–spinel compositions. American. Mineralogist, Vol. 59, pp. 110–19.
Nimis P., W. Taylor (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I.
Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib.
Mineral. Petrol. Vol. 139, pp. 541-554.
Nickel, K. G., D. H. Green (1985) Empirical thermobarometry for garnet peridotites and nature
of lithosphere, kimberlites and diamonds. Earth. Planet. Sci. Lett. Vol. 73, pp. 153-170.
O’Neill, H. St. C, B. J. Wood (1979) An experimental study of Fe-Mg- partitioning between
garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol Vol. 70, pp. 59-70.
Pokhilenko, N. P., N. V. Sobolev, S. S. Kuligin, N. Shimizu (1999) Peculiarities of distribution
of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the
Siberian craton lithospheric mantle. Proceedings of the VII International Kimberlite Conference. The
P.H. Nixon volume. pp. 690-707.
Pokhilenko, N. P., D. G. Pearson, F. R. Boyd, N. V. Sobolev (1991) Megacrystalline dunites:
sources of Siberian diamonds. Carnegie Institute Washington. Yearbook. Vol. 90, pp. 11-18.
Pokhilenko, N. P., N. V. Sobolev, S. D. Chernyi, Yu. T. Yanygin (2000) Pyropes and chromites
from kimberlites in the Nakyn field (Yakutia) and Snipe Lake district (Slave River re-gion, Canada):
evidence for anomalous structure of the lithosphere. Dokl. Earth Sci. Vol. 372, pp. 638–642.
O’Neill, H. St. C., V. J. Wall (1987) The olivine orthopyroxene-spinel oxygen geobarometer,
the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. Journal of
Petrology, Vol. 28, pp. 1169-1191.
Simon, N. S. C., R. W. Carlson, D. G. Pearson, G. R. Davies (2007) The Origin and Evolution
of the Kaapvaal Cratonic Lithospheric Mantle. Journal Petrology, Vol.48, pp. 589-625.
Sobolev, N. V., N. V. Pokhilenko, E. S. Efimova (1984) Xenoliths of diamond bearing
peridotites in kimberlites and problem of the diamond origin. Russian Geol. Geophys. Vol. 25/12, pp.
pp. 63-80.
Sobolev, N. V. (1977) Deep-Seated Inclusions in Kimberlites and the Problem of the
Composition of the Mantle. Amer. Geophys.Union, Washington, DC. 279 p.
Sobolev, N. V., A. M. Logvinova, D. A. Zedgenizova, N. P. Pokhilenk, E. V. Malygina, D. V.
Kuzmin, A. V. Sobolev (2009) Petrogenetic significance of minor elements in olivines from diamonds
and peridotite xenoliths from kimberlites of Yakutia. Lithos 112, S2, pp. 701-713.
Taylor, W. R., M. Kammerman, R. Hamilton (1998) New thermometer and oxygen fugacity
sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. 7th
International Kimberlite Conference. Extended abstracts. Cape town. pp. 891-901.
Turkin, A. I., N. V. Sobolev (2009) Pyrope–knorringite garnets: overview of experimental data
and natural parageneses, Russian Geology and Geophysics, Vol. 50, pp. 1169-1182.