Factoring Difference of Squares

Warm-up:
β€’ Write each number as a perfect square:
(example: 16 = 42 )
1.
2.
3.
4.
25
81
36
9
Factoring Difference of Squares
Factor:
π‘₯2 βˆ’ 4
π‘₯ 2 + 0π‘₯ βˆ’ 4
Answer: (π‘₯ + 2)(π‘₯ βˆ’ 2)
The middle term cancels out when we FOIL
π‘₯ 2 βˆ’ 2π‘₯ + 2π‘₯ βˆ’ 4
π‘₯ 2 + 0π‘₯ βˆ’ 4
π‘₯2 βˆ’ 4
Difference of 2 Squares
β€’ The difference of two squares is written as:
π‘Ž2 βˆ’ 𝑏2
– Both terms must be perfect squares
β€’ β€œPerfect Square”
We multiply something by itself to get a perfect
square.
Perfect Square:
β€’ Which ones are perfect squares?
3π‘₯ 2
2π‘₯ 2
16π‘₯ 2
9
36π‘₯ 2
36π‘₯
4π‘₯ 2
Factoring difference of 2 squares:
π‘Ž2 βˆ’ 𝑏2 = π‘Ž + 𝑏 π‘Ž βˆ’ 𝑏
Example:
Factor: π‘₯ 2 βˆ’ 25
π‘₯ 2 βˆ’ 52 rewrite 25 as 52
(π‘₯ + 5)(π‘₯ βˆ’ 5) follow the formula
Factoring difference of 2 squares:
β€’ Example:
Factor π‘Ž2 βˆ’ 16 are both terms perfect squares?
π‘Ž2 βˆ’ 42 rewrite 16 as 42
Formula: π‘Ž 2 βˆ’ 𝑏 2 = (π‘Ž + 𝑏)(π‘Ž βˆ’ 𝑏)
π‘Ž2 βˆ’ 42 = (π‘Ž + 4)(π‘Ž βˆ’ 4)
Factored answer: (π‘Ž + 4)(π‘Ž βˆ’ 4)
Try one…
Factor: 𝑝2 βˆ’ 36