Brahmagupta Quadrilaterals

!"#%$'&
()"#*+,.-/
0'13241657185:9<;>=>?A@
BDCFEG.HJILKNMAE.OPHQC
R SAU6VXWTVZY[\]S_^A`WbacUDde`+fhgcikjclZmonpi`qcSmsrcS<YtVXU6u7vb\e` p
T
YtVXUwmsrcS`U6S`7VZYL`m_UDde`Wbi\]STdxW7m_SAU6u"yVZYLd mDy:ysd]abSy
`s(s
Wba − a)(s − b)(s − c)
a, b, c
+ c)/2 z
{Ld]iArms|6`Wbi\]S.a}m_UDde`Wbi\]Sy"rZ`qXdxWbiysd]abSy8`Wba~`U6S`msrZ`m`U6SdxWsm_S.=iASA(a
Uoy+
€TSAbU6S
abS3m_SAU_|
u"dxWbS.a%\]VXWbibSYtVXU6S7RTSAU6VXW
vXmm_VrZdey+ƒ_U6S.aXd mrcS8YtVv>Wba%y_vFƒsr%`Tm_UDde`Wbi\]STmsrZ`m<dey
zT‚
„X…† `UDd]iArms|6`Wbi\]S.aVXWbSZ‡ˆc‰>ˆŠp‰bˆ‹XŒcAŠ z,‚ S.ƒD`AvbykSVZY>msrZdeyŽ€TS8rcVXWbVv>U<RTSAU6VXW%j
WX`u"dxWbim_UDde`Wbi\]Sy€+d msr7dxWm_S.iASAUNysd]abSy:`Wba"`U6S`"8‘s’“”h‘o•x–“Z—A˜h™
z
šprcS›PWbaXde`Wu"`msrcSAu"`m6d]ƒ6de`W
Uo`rXu"`i3v>lZmD`}abS3m_SAU6u"dxWbS.aœRTSAU6VXW}m_UDde`Wbi\]Sy
j`aPVZdxWXdxWbi8mo€TVUDd]iArms|6`Wbi\]S.am_UDde`‚ Wbi\]SyT`.\]VXWbi7`ƒ_VXuu%VXWysd]abS RTS8m_VcVcžrZdey
lbUDdxWbƒ6dxlc\]S+Yxv>UŸmsrcSAUN`Wba%i`qcS!vby:`8ƒ_VXWXy6m_UovFƒom6d]VXWm_V7VcmD`.dxW"`ƒŸjcƒ6\ed]ƒf]z dxWXykƒ_UDd]X`X\]SdxW
`7ƒ6dxU6ƒ6\]S3n Zvb`acUDde\e`m_SAUo`.\>€+d msrdxWm_S.iASAUŽysd]abSyA‰FaXde`iAVXWX`.\eyA‰b`Wba%`U6S`
`m_SAUŽu"`msrcS.|
u"`m6d]ƒ6de`WXy:€TSAU6S+dxWm_UDd]i3vFS.aj8msrcS Uo`rXu"`i3v>lZmD`lbU6Vcƒ_Sysy
vXmd mzm_¡ VcVcž7¢Lv>uu%SAU
m_V"abSAujXy6m6deYej"d m
S8ƒD`.\e\F`WdxWXykƒ_UDd]‚ X`X\]S8 Zvb`acUDde\e`m_SAUo`.\F`%z
¤p‘o‚ –¥c¦"–.—c§¨©”ª–«>§.–c¬Z‘o•P­
z
£
˜x–c”Ÿ‘o–.˜deY<d m7rZ`.y"dxWm_S.iASAU8ysd]abSyA‰:aXde`iAVXWX`.\eyA‰Ž`Wba`U6S`
v>U8lbU6SykSAWm`.dxu°deym_V
lbU6V.qXd]abS8`abSykƒ_UDdxlZm6d]VXW~VZY Uo`rXu"`i3v>lZmD` Zvb`acUDde\e`m_SAUo`.z¯
\ey!® qXde`8‘s’“–“Z—A˜h™Tf]ykS.S
± ˆA²‰Zlbl ˆZˆ3³X´´Šp‰.`Wba ± ŠZ²µ‚ n
z
z
¶·LMX¸L¹>G.HLKJCwI'º»·XE¼>GOh·>½
dey!ƒD`.\e\]S.a`"RTSAU6VXW`Wbi\]S8deYJbVmsr
`Wba
`U6S8Uo`m6d]VXWX`.\
[W`Wbi\]S
z
cos θ
RTSAWbƒ_S!`Tlc`Uo`u%θS3m_UDd¿¾6`m6d]VXW%VZYLRTSAU6VXW7`Wbi\]Sy:deyid qcSAsin
Wj θ
sin θ =
m2 − n2 ‰
m2 + n2
m > n
‰
gcd (m, n) = 1 z
fhˆn
›PW%fhˆnLmsrcSdxWm_S.iASAUoy
`Wba
u `jbVmsrbSTVcaba šprZdeySAWX`X\]Sy<vbym_VVcmD`.dxWmsrcS
"
m `.\eykV n p
RTSAU6VXW`Wbi\]S
š rcS8U6S`abSAU€+de\e\LykS.z STmsrcS8`aqZ`WmD`iASVZYpmsrZdey,dxWmsrcS
π/2 − θ
z
lbU6VcVZYFVZYFšprcS.VXU6SAu)´+\e`m_SAUVXW
z
..............................................
.......
..........
Àv>UŸmsrcSAU6u%VXU6SX‰b€TS"WbS.S.amsrcS7YtVZ\e\]V€+dxWbi8€TS\e\]|sžWbV€W
......
....
.................
....
.
.
.
....
. . .......
...
.... ..
.....
U6Sy_vb\ mDyJYªU6VXuÁƒ6dxU6ƒ6\]S<iAS.VXu%S3m_UPj
S:U6SYtSAUFm_VTÀd]i3v>U6Sˆ
... ... θ .................
......... ........
.
.
.
.
......
. .......................
......
.. ..
.
.
.
.
.
.
.
.
.
.
.
L
z
£
z
..... ......... ....
.. ..
. ..
.
.
θ
.
.. .
.
.
.
.
.
.
.
.
.
.
.
.. .
S3m
bS"`ƒsrcVXU6aVZYw`ƒ6dxU6ƒ6\]S ›hY©mo€TV`Wbi\]SyT`U6S
.. ..
......... ........... ...................... ....
.. ....
.........
.
.
.
.
.
.
.
.
.
.. ...
.
.
.
.
.
......
¡dxWXykƒ_UDAB
z
.......
.... ...
.
.
.
.
.
.
.
.
.
.
.
...... ........
d]bS.aVXW7msrcSTys`u%Sysd]abSVZY
‰ZmsrcSAW"msrcSkj7€+de\e\
...... ..............
.
...........................................................................................................................................
.....
........ .. B
bSTS. Zvb`.\ ›hY>msrcSkj"`U6SdxWXykƒ_UDd]bS.aAB
VXW%VXlbl>VZysd m_S+ysd]abSyA‰ A .....................
........ ...
........
..
... ....
........
z
..
... .... π − θ ...............
.
.
.
.... ...
..
msrcSAW}msrcSkj€+de\e\ށbS%y_v>lblc\]SAu%SAWmD`UPj
šprcSS_^m_SAWbabS.a
..
..... .................. ................
....
........ ..........
....
z
...................
.....
................. .........................
ÂAdxWbS7{pvb\]S+ys`jXymsrZ`m
..........
Àd]i3v>U6S8ˆ
AB = (diameter)(sin θ) z
ÃÄsÅ_ÆµÇªÈ É6ÊDË
c
Ì_Ís͵Î
ÃÏ6еÏ_Ñ_È Ï6ÐÒϟ˟ʵÓDÔJϟËhÈ ÕhÏDÖ3×6ĵÕhÈ ÓPËtÆ
Š
RTSAU6S!dey:`Wdxul>VXUŸmD`WmŽVcXykSAUPqZ`m6d]VXWp‡©Âv>lbl>VZykS`W"dxWXykƒ_UDd]X`X\]S8 ZvFacUDde\e`m_SAUo`.\
rZ`.ywUo`m6d]VXWX`.\ysd]abSyA‰aXde`iAVXWX`.\eyw`Wba+`U6S` ›hYZ`.\e\.msrcSykS<Uo`m6d]VXWX`.\eyw`U6SŽdxWm_S.iASAUoyA‰msrcSAW
d mdeyŽ` Uo`rXu"`i3v>lZmD`8 Zvb`acUDde\e`m_SAUo`.\
msz rcSAUŸ€+deykS,€TS+u7vb\ m6dxlc\ j`.\e\cmsrcSykSUo`m6d]VXWX`.\ey
‚
N
z
®
j"msrcS\]S`.y6m+ƒ_VXuu%VXW%u7vb\ m6dxlc\]SVZYLmsrcSdxU,abSAWbVXu"dxWX`m_VXUoy šprZdey!lbU6Vcƒ_Sysy<jXd]S\]aXy!`
Zvb`acUDde\e`m_SAUo`.\ysdxu"de\e`U!m_VmsrcSVXUDd]idxWX`.\:VXWbSZvXm+€+d msr}dxWm_z S.iASAUysd]abSyA‰aXde`iAVXWX`.\eyA‰
`Wba7`U6S`cŒ.msrZ`mdeyA‰` Uo`rXu"`i3v>lZmD`T Zvb`acUDde\e`m_SAUo`.\
‚
z
S3m
‰
‰
bS8RTSAU6VXW"`Wbi\]Sy ›PWqcVcždxWbi+fhˆns‰.€TS8rZ`qcSX‰ZYtVXUN`lblbU6VXlbUDde`m_S
z ‰ ‰ ns‰
‰
f
lc`.dxUoy<VZ¡ YFWXθ
`mD1v>Uoθ`.2\FWZθv>3u%bSAUoy
m i ni i = 1 2 3
sin θi =
m2i − n22
m2i + n2i
`Wba
cos θi =
2mi ni
z
m2i + n2i
S8€+de\e\wWbS.S.a~S_^lbU6Sysysd]VXWXyTYtVXU
‰
‰
`Wba
+dxU6θS.2a
) S_^sin(θ
θ3ƒD`
) WbS
dxWm_SAU6u"y+VZY sin(θ`1Wb+
a θ2 ) špcos(θ
rcS7U6S.1 Zvb
lbU6Sysys2d]VX+WXy8
sin(θ1 + θ2 + θ3 )
VcmD`.dxWbS.a:qcSAUPjS`.ysde\ j,YªU6VXu4msrcSN`bm
V.qci SwYtVXU6u7nvbi \ez `.y©j:vbysdxWbiNy6mD`WbaX`U6a:m_UDd]iAVXWbVXu%S3m_UDd]ƒ
d]abSAWm6d m6d]Sy ÀXVXUQS_^A`ulc\]SX‰
`Wba
z
sin(θ1 +θ2 ) = sin(θ1 ) cos(θ2 )+cos(θ1 ) sin(θ2 )
fh´n
sin(θ1 + θ2 + θ3 ) = sin(θ1 + θ2 ) cos(θ3 ) + cos(θ1 + θ2 ) sin(θ3 ) z
T
¼ cMZGO pE.OPHQC'
H ¶NGA
· ·p¹b
K pE
· !Kw·LIQGOª½h·XE¼>GA·>½ z
`.ykS.aVXW8msrcSU6Sy_vb\ mU6S\e`m_S.a8m_VRTSAU6VXW`Wbi\]Sy,id qcSAW7dxWfh´np€TS+y6mD`m_S
‚
… ~[W!dxWXykƒ_UDd]X`X\]S Zvb`acUDde\e`m_SAUo`.\.deyJ` Uo`rXu"`i3v>lZmD` Zvb`acUDde\e`m_SAUo`.\deY`Wba
VXWX\ j7deYbmsrcS!ysd]abSy ‰ ‰ ‰ `Wba8msrcSTaXde`iAVXWX`.\ey ‚ ‰ `U6S+lbU6VXl>VXUŸm6d]VXWX`.\m_V
£
a b c d
a =
b =
c =
d =
e =
€TrcSAU6S
f
‰
=
e f
‰
−
+ n22 )(m23 + n23 )
‰
+
− n22 )(m23 + n23 )
‰
+
+ n22 )(m23 − n23 )
4m3 n3 [m2 n2 (m21 − n21 ) + m1 n1 (m22 − n22 )] +
(m23 − n23 )[4m1 n1 m2 n2 − (m21 − n21 )(m22 − n22 )]
‰
2(m23 + n23 )[m2 n2 (m21 − n21 ) + m1 n1 (m22 − n22 )]
‰
2(m21 + n21 )[m3 n3 (m22 − n22 ) + m2 n2 (m23 − n23 )]
(m21
(m21
(m21
n21 )(m22
n21 )(m22
n21 )(m22
‰
`U6S"U6S\e`m6d qcS\ jlbUDdxu%S"WX`mDv>Uo`.\wWZv>u%bSAUoy+y_vFƒsrmsrZ`m
YtVXU
mi > ni
‰ ‰ ‰ ‰ ‰
i=1 2 3
a b c d e f > 0z
_…Z… S3m!vbyƒ_VXWXysd]abSAU!`ƒŸjcƒ6\ed]ƒ Zvb`acUDde\e`m_SAUo`.\wdxW~`
¡ aXde`u%S3m_SAU,ˆ"f]ykS.S"Àd]i3v>U6S´n
............................................
‰
ƒ6dxU6ƒ6\]S7VZYJ
S3m
.............
.........
.........
....... D
.....
....
z
¡
AB = a
.....
.
.
..................
.
.
‰
‰
‰
‰
‰
..
............... ... .......
.
.
.
.
.
.
.
.
.
.
.
.
..... .......
.. ....
.
.
.
.
.
...
.
BC = b CD‰ = c DA = d‰ AC = e BD šp
=rcSAfW
.
.
.
.
....... ..... θ ... ....
...
........
..
2 ..
d
..
.........
.........
...
........ θ1...... ...........................
.
..
.
.
.
..
∠ADB = θ1 ∠BDC = θ2 ∠DAC = θ3 z
.
.
.
.
.
..
.
..
.........
....
..
..
ÀZU6VXu Vv>U<S`UD\ed]SAU
..
...........
...
.
.
.
.
.
.
.
.
....
..
.
.
.
..
..
...... ...
.
.
.
.
.
∠ACD
=
π
−
(θ
+
θ
+
θ
)
z
.
.
.
..
.
.
.
.
1
2
3
.
...........
..
.
.
.
.
.
.
.
.
VcXykSAUPqZ`m6d]VXWXyQ€TS<rZ`qcS
‰
‰ A .......................θ........3.. .... ...... f
.. c ...
.
..
..
............. ....
.....
.
∠ACB = θ1 ∠BAC = θ2
.
.
............
....
..
..
.. ..
‰
‰
‰
‰
... .......................
.. ....
.. .. a
............ e
....
.. ..
.. ..
............
...
.....
∠DBC = θ3 a = sin θ1 b = sin θ2 c = sin θ3
.. ..
............
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
‰
‰w`Wba
........
..... ....
.
..............................................................................................................................................
d = sin(θ1 + θ2 + θ
e rZ=
.
..
...
S+3`.)\eykV"
`qcS sin(θ1 + θ2 )
B ..............
b
..... C
.
.
.
.
.
......
f = sin(θ2 + θ3 ) z©£
.........
......
........
.............
............................................
`U6S`
Àd]i3v>U6ST´
(ABCD) = 21 (ab + cd) sin(θ1 + θ2 ) z
‰ m‰ i ` nWbia
Šbˆ
šprcS8\]SAWbikmsrZy ‰ ‰ ‰ ‰ ‰ ‰>`Wba%msrcS`U6S`VZYLmsrcS" Zvb`acUDde\e`m_SAUo`.\
a b c d e f
`U6S7Uo`m6d]VXWX`.\©deYw`Wba}
VXWX\ jdeY©msrcS7`Wbi\]Sy
`U6S%RTSAU6VXW`Wbi\]Sy Àv>UŸmsrcSAU6u%ABCD
VXU6SX‰p`.y
θ
VcXykSAUPqcS.aS`UD\ed]SAU3‰pmsrcSykSUo`m6d]VXWX`.\ey8ƒD`W}biSƒ_VXWqcSAUŸm_S.a%m_VdxWm_S.z iASAUoyA‰L\]S`aXdxWbim_V`
Uo`rXu"`i3v>lZmD`" Zvb`acUDde\e`m_SAUo`.\ ÂvFXy6m6d mDvXm6dxWbi8YtVXUNmsrcS8`Wbi\]Sy!dxW"m_SAU6u"y!VZYQdxWm_S.iASAUoy
‚
`Wba
fxvbysdxWbi8Vv>U:S_^lbU6Sz ysysd]VXWXy,YªU6VXu msrcS\e`.y6m<ykS.ƒom6d]VXWns‰c`Wbau7vb\ m6dxlc\ jXdxWbi8j
m
n
msrciS8\]S`.y6m!ƒ_i VXuu%VXW%u7vb\ m6dxlc\]S7VZYpmsrcS"abSAWbVXu"dxWX`m_VXUoyA‰Z€TS7VcmD`.dxWmsrcS7S_^lbU6Sysysd]VXWXy
dxW8msrcS+y6mD`m_SAu%SAWmŽVZYFšprcS.VXU6SAu)ˆ
z
S8id qcS+`7WZv>u%SAUDd]ƒD`.\Fde\e\¿vby6m_Uo`m6d]VXWbSYtVXU6S!€TS8abS.aZvFƒ_S!mo€TV7dxul>VXUŸmD`WmNmsrcS.|
£ YªU6VXu šprcS.VXU6SAu ˆ Âv>lbl>VZykS!€TS+ykS3m
VXU6SAu"yŽ
‰
‰
‰
‰
=`2i3v>n
‰
špz rcSAW€TSrZ`qcS}` m
Uo`1rXu"
lZmD1` = Zvb1`acm
UDde\e2`m_=SAUo3
`.\ n2 = 2
m3 = 4 n 3 = 1 z
‚
ABCD
id qcSAWj
‰
‰
‰
a = 663
b = 425
c = 975
‰
‰
d = 943
e = 952
f = 1100 z
S bUoy6
m bWba
YªU6VXu fh´nL`WbaTmsrcSAW 1
dxW"VXU6abSAU
sin(θ1 + θ2 )
šprZdey!`U6S`%2u"(ab
`j+
`.\eykcd)
VbS"
ƒ_VXulXvXm_S.aj%vbysdxWbi
m_£ Vƒ_VXulXvXm_Smssin(θ
rcS7`U61S+
`VZθY 2 )
Uo`rXu"`i3v>lZmD
` yYtVXU6u7vb\e`8ABCD
f]ykS.S,msrcSTz ƒ_VXWbƒ6\¿vFaXdxWbi,ykS.ƒom6d]VXW%bS\]V€,n
‚
z
UDd]idxWX`.\e\ jL‰ Uo`rXu"`i3v>lZmD
` y Zvb`acUDde\e`m_SAUo`.\eyrZ`al>SAU6l>SAWbaXd]ƒDvb\e`U:aXde`iAVXWX`.\ey
z
¢Lv>uu%® SAUabSAUDd qcS.a"‚ iASAWbSAUo`.\pS_^lbU6Sysysd]VXWXyŽm_V7VcmD`.dxW7y_vFƒsr Zvb`acUDde\e`m_SAUo`.\ey
z
… [ Uo`rXu"`i3v>lZmD`+ Zvb`acUDde\e`m_SAUo`.\crZ`.yl>SAU6l>SAWbaXd]ƒDvb\e`UNaXde`iAVc|
WX`.\ey:deYF`Wba%VXWX\ jdeYpd mŽrZ`.y:‚ ysd]abSy:`WbaaXde`iAVXWX`.\eylbU6VXl>VXUŸm6d]VXWX`.\m_V
a = (m21 − n21 )(m22 + n22 )
‰
‰
b = (m21 + n21 )(m22 − n22 )
c = 2m1 n1 (m22 + n22 )
d = 2m2 n2 (m21 + n21 )
‰
e = 2[m1 n1 (m22 − n22 ) + m2 n2 (m21 − n21 )]
f
‰
‰
= 4m1 n1 m2 n2 + (m21 − n21 )(m22 − n22 ) z
_…Z… S<U6SYtSAU>m_VÀd]i3v>U6S,´ šprcS<aXde`iAVXWX`.\ey
`Wba
€+de\e\XbS:l>SAU6l>SAWbaXd]ƒDvb\e`U
AC
m_V!S`ƒsr+£ VmsrcSAUpdeY`WbaVXWX\ j,deY z
RT
SAWbƒ_SX‰ BD
šprcSAU6SYtVXU6SX‰
€TS+lXvXm
`Wbθa 3 = π/2−θ1 z dxW7šprcS.sin
VXU6SAθu 3 =
ˆ!`cos
Wbamsθrc1SAz W%aXd qXd]abSj
=ƒ_VXm
naX
nm_3V7=iAS3m
1 d qXdeykVXUJ
msrcSiU6S`m
m_S3y6m:
u1u%+VXW7
mwms1rc−
STS_n^1lbU6Sysysd]VXWXy<\edey6m_S.a
z
›hYN`"m_Uo`l>S¾6d¿v>u fem_Uo`l>S¾sVZd]anŽdey8ƒŸjcƒ6\ed]ƒ‰>msrcSAW}d m!dey8S`.yDjm_VykS.S7msrZ`m!d m+u7vby6m
bS+deykVZykƒ_S\]Sy RTSAWbƒ_SX‰ Uo`rXu"`i3v>lZmD`!m_Uo`l>S¾6d¿v>u"y<`U6S+deykVZykƒ_S\]Sy:m_Uo`l>S¾6d¿v>u"y€+d msr
dxWm_S.iASAUNysd]abSyAz ‰caXde`iAVXWX`.‚ \eyA‰X`Wba7`U6S`
z
… }[WdxWXykƒ_UDd]X`X\]Sm_Uo`l>S¾6d¿v>udey` Uo`rXu"`i3v>lZmD`m_Uo`l>S¾6d¿v>u deY>`Wba"VXWX\ j
deYbmsrcS+ysd]abSy:`WbaaXde`iAVXWX`.\ey<`U6S+lbU6VXl>VXUŸm6d]VXWX`.‚ \m_V
a = c = (m21 − n21 )(m21 + n21 )(m22 + n22 )
‰
b = (m21 + n21 )2 (m22 − n22 )
‰
d = 8m1 n1 m2 n2 (m21 − n21 )
‰
+(m22 − n22 )(2m1 n1 + m21 − n21 )(2m1 n1 − m21 + n21 )
e = f
= 2(m21 + n21 )[m2 n2 (m21 − n21 ) + m1 n1 (m22 − n22 )] z
Šb´
_…Z… šprcSysd]abSy
`Wba
`U6SŽlc`Uo`.\e\]S\deY`WbaTVXWX\ j,deY
f]ykS.S<Àd]i3v>U6S´n
BC
R SAWbƒ_SX‰p€TSykS3m AD
T
`Wba
dxWšprcS.VXU6SAu θˆ73_m =
VVcθ1mD`.dxWmsrcS`bV.qcS z
m3 = m 1
n3 = n 1
S_^lbU6Sysysd]VXWXy
z
HQCwM½ªK OPHQ
C Uo`rXu"`i3v>lZmD`YtVv>WbaykSkqcSAUo`.\©dxul>VXUŸmD`Wm!U6Sy_vb\ mDydxWqcVZ\ qXdxWbi"ƒŸjcƒ6\ed]ƒ+ Zvb`acUDd]|
šprcS+U6S`abSAUu"`j"SAWPV.j"U6S.aXdeykƒ_V.qcSAUDdxWbiykVXu%SVZYbmsrcSAu dxWbabSAl>SAWbabSAWm6\ j
z
z
ˆ
Uo`rXu"`i3v>lZmD
` y!U6SAu"`U_ž.`X\]SYtVXU6u7vb\e`7YtVXUŽmsrcS`U6S`%VZYJ`%ƒŸjcƒ6\ed]ƒ, Zvb`acUDd]|
\e`m_SAUo`.\z
dey‚ ysdxu"de\e`Um_V RTSAU6VXW yYtVXU6u7vb\e`YtVXU+`m_UDde`Wbi\]S
[ŽƒomDvb`.\e\ j}msrcSƒ_VXWqcSAUoykS
rcVZ\]aXym_VcV
S3m8msrcSysd]abSyVZY<` Zvb`acUDde\e`m_SAUo`.\<bS~abSAWbz Vm_S.aœj
‰ ‰ ‰
`Wba
z ¡
\]S3m
U6V.qcSmsrZ`mTmsrcS} Zvb`acUDde\e`m_SAUo`.\Ža
dey%ƒŸbjcƒ6\ecd]ƒTd
deY<`Wba
s de=
(a`U6+S`
b de+
z p Vm_SmsrZ`m€TrcSAW
VXWX\ jœ
Yd mDy%
y c + d)/2
∆ =
(s − a)(s − b)(s − c)(s − d) z ›PWœ Y]`ƒom‰NmsrZdey%bS`AvF|
‰wmsrcS~ Zvb`acUDde\e`m_SAUo`.\<abS.iASAWbSAUo`m_Sy%dxWm_V`m_UDde`Wbi\]S
d
m6deYxvb=\wYtVX0U6u7vb\e`Uo`.deykSymsrcSiASAWbSAUo`.\VXl>SAW ZvFSy6m6d]VXWp
‡ Jd qcSAWz `W
³ZiAVXW€+d msrysd]abSy
Pn
S3m_SAU6u"dxWbS<msrcVZykS ³ZiAn
‰.\]S3m
VXWXyw€TrcVZykS`U6S`!dey
a1 , a 2 , . . . , a n
s=
z n
i=1 ai /2 p
[œlc`UŸm6de`.\>ykVZ\¿vXm6d]VXW7deyid qcSAW7dxW ± ‹A²
∆n = (s − a1 )(s − a2 ) · · · (s − an ) z
z
´ g.^lbU6SysyŽmsrcS\]SAWbikmsrZy ‰ VZY>msrcS8aXde`iAVXWX`.\ey+VZYp`7ƒŸjcƒ6\ed]ƒ: Zvb`acUDde\e`m_SAUo`.\pdxW
e f
m_SAU6u"y:VZz YbmsrcS!ysd]abSy ‰ ‰ ‰
a b c dz
¢Lv>uu%SAUrZ`.yid qcSAW`%ƒ_VXulc\]S_^"u%S3msrcVca%m_VabS3m_SAU6u"dxWbSRTSAU6VXW Zvb`acUDd]|
\e`m_SAUo`.\eyAz ‰>msrcS%VXWbSy,€+d msrdxWm_S.iUo`.\Jysd]abSyA‰QaXde`iAVXWX`.\eyA‰Q`Wba`U6S` šprZdey!deyTVvXm6\edxWbS.a
dxW ± ˆA²‰Zlbl ˆZˆ3³X´´Š šprcS+U6S`abSAUu"`j`mom_SAulZmJm_V7id qcS,ysdxulc\]z SAUabSykƒ_UDdxlZm6d]VXWXyVZY
RTSAU6VXW" Zvb`z acUDde\e`m_SAUo`.\ez yA‰X`m\]S`.y6m<VZYFyµl>S.ƒ6de`.\QRTSAU6VXW Zvb`acUDde\e`m_SAUo`.\ey:y_vFƒsr7`.y,RTSAU6VXW
lc`Uo`.\e\]S\]VciUo`u"yA‰`WbaRTSAU6VXWTm_Uo`l>S¾6d¿v>u"y
z
WbSƒD`W bWbau%VXU6SVXW~msrcS\edeYtSVZY Uo`rXu"`i3v>lZmD`dxW ± ´A²‰lbl Šc³X‹ˆ [
lc`UŸm6de`.® \ykVZ\¿vXm6d]VXWL‰dxW,m_SAU6u"yJVZY`<yµl>S.ƒ6de`.\Y]`u"‚de\ jVZYcRTSAU6VXWm_UDde`Wbi\]SyA‰m_V:msz rcS<iASAWbSAz Uo`.\
lbU6VcX\]SAu aXdeykƒDvbysykS.adxW8msrcSlbU6SykSAWmlc`l>SAUƒD`WbS!YtVv>Wba7dxW ± A²‰Zlbl Šc³X‹´
z
z
„ ± ˆA²
g
d]ƒsžykVXWL‰Q,•x™”Ÿ’‘ %’ ”h¥F
 .¥F’‘ %
’ 8§
¦ c‘o™
‰ wVZ\ ›o›_
‰ LrcS\eykS`b‰
z z
8z ,z
fhˆ
¡bˆzn z
± ´A² UDd m_ƒsrZ`U6aL‰b¤p‘o–¥c¦"–.—c§¨©”ª–b
‰ !~`msrcSAu"`m6d]ƒD`.\LÂ.l>S.ƒom_Uov>u‰X´TfhˆZ‹ "#n
z z
± A²+¢ {  ÂA`.y6m_UPjL‰ $&%–¦7•e'˜ "’ ©8‘s’(
“ A‘o•x–“Z—A˜h™)
‰ !~`msrcSAu"`m6d]ƒD`.\LÂ.l>S.ƒom_Uov>u‰c
z
z
z
fh´ *"ˆn
z
± ŠZ²¢ {  ÂA`.y6m_UPjL‰F8‘s’+
“ $Ž“Z—A˜h™,
‰ !~`msrcSAu"`m6d]ƒDy<`Wb
a LVXulXvXm_SAUgcaZvFƒD`m6d]VXWL‰>‹
fh´ Zˆnsz ‰Z‹z ˆ3z³ #
z
± ‹A²¢ {  ÂA`.y6m_UPjL
‰ .F’.'˜ A—X’“X–./
˜ $Ž‘s–•]“”h¥F¦"–“c“F‘T
’ :¤p‘o–¥c¦"–.—c§¨©”ª–b0
‰ !~`msrcS.|
z
z
z
u"`m6d]ƒDyŽ`Wb1
a LVXulXvXm_SAUgcaZvFƒD`m6d]VXWL‰c‹fh
´ Zˆns‰Zˆ
Š k³Xˆ‹ˆ
z
± #.²¢ {  ÂA`.y6m_UPjL‰Q8‘s’2
“ A‘o•x–“Z—A˜h4™ 30$5T
 67.F‘o™6¨©
 8s”ª:• 9‰Z[Nvby6m_Uo`.\ede`;
W !~`msrcS.|
u"`m6d]ƒD`.z \FzÂVcz ƒ6d]S3mŸ1
j J`A¾sS3mom_SX‰c´ #Tfhˆns‰Z
ˆ #³X
ˆ #
z
¢ { Â ÂA`.y6m_UPj
<kS.SkqZz `Wz ÂAz `WbabrjZ`
VcabaX`ž.`.\eys`WbacUo` VZy6m
`.\e\ed
{p`iArvXqZ`WX`R+
`Wbi`.\]VXU6S8
‹ #=#Z´c‰Z›PWbaXde`
‚
\e`m_SAUo`.‚\ey