Exercises 1 These are examples of the simpler functions. Write their equations. 1 2 3 4 5 6 Page 1 Exercises 2 More examples of the simpler functions to write equations. 7 8 9 10 11 12 Page 2 Exercises 3 Write with the correct limits on domain. 13 14 15 16 17 18 Page 3 Exercises 4 Examples with different scales. 19 20 21 22 23 24 Page 4 Exercises 5 Write the equations for these functions. Many involve fractional multipliers. 25 26 27 28 29 30 Page 5 Exercises 6 Write the equations for these functions. 31 32 33 34 35 36 Page 6 Exercises 7 Write the equations for these exponential functions. 37 38 39 40 41 42 Page 7 Exercises 8 Write the equations for these exponential or log functions. 43 44 45 46 47 48 Page 8 Extension Exercises 1 Excellence questions on Exponential functions. 1 2 3 4 5 6 Page 9 Extension Exercises 2 Write the equations for these exponential and log functions. 7 8 9 10 11 12 Page 10 Extension Exercises 3 Write the equations for these exponential functions. 13 14 15 16 17 18 Page 11 Extension Exercises 4 Write the equations for these log functions. 19 20 21 22 23 24 Page 12 Answers Fractions can replace decimals. Brackets can be in any order. Exercises 1 Exercises 5 1 y = βπ₯ + 2 β 1 25 y = 2 (x β 2)2 β 4 2 y=2|xβ2|β1 26 y = 2 |x + 3 | β 2 3 y = (x + 2) x or y = (x + 1)2 β 1 27 y = 3 βπ₯ + 1 β 1 4 y = 0.25(x + 2)(x β 1)(x β 2) 28 y = β1 (x β 1)2 + 3 (or use intercepts) 3 5 y = β2 (x β 1)2 + 3 29 2 y = π₯+ 1 +2 6 y=5|x+1|β3 30 y=β3|xβ2|+4 Exercises 2 Exercises 6 7 y = 2 βπ₯ β 1 β 2 31 y = 0.5 βπ₯ + 3 + 2 8 y = 2 (x +1)(x β 1)2 32 y = π₯β3 β1 + 1 9 y = 41 (x + 4) x or y = 41 (x + 2)2 β 1 33 y = 34 (x + 2)2 + 1 10 y = β0.5 | x + 2 | + 3 34 y = 0.5 | x + 2 | + 1 11 y = β0.5 βπ₯ + 3 + 2 35 y = -2 βπ₯ β 1 + 4 12 y = 1π₯ + 1 36 1 y = π₯0.5 + 2 β 1 or y = 2π₯ + 4 β 1 Exercises 3 Exercises 7 x 13 y = x (x β 1)(x β 3) for 0 β€ x β€ 3 37 y=3 14 y=|x+1|β3 for β3 < x < 1 38 y=2 15 y = β2 (x β 2)2 + 3 for 1 β€ x β€ 3 39 y=2 +2 16 y = 4 (x + 2)2 β 1 for β3 < x < β1 40 y=2 17 y = 2π₯ for x > 0 41 y = 0.25 18 y = 31 (x + 2) x (x β 3) for β2 β€ x β€ 3 42 y = 0.5 xβ2 x xβ1 β2 x x+2 Exercises 4 Exercises 8 19 y = 0.25 x (x β 4)(x β 8) 43 y=2 20 y = 0.2 x (x β 10)2 44 y = log10(x β 1) 21 y = 16 π₯ β4 45 y=3 22 y = β4 | x β 8 | + 16 46 y = 3 log10(x) 23 y = 2 βπ₯ 47 y = 0.25 β 4 24 y = β0.2 x (x β 15) 48 y = log10(x + 2) + 3 Page 13 xβ1 x+1 +3 β3 x Extension Answers Extension Exercises 1 x 1 y=5 2 y=2 +2 3 y = 0.2 4 y=3 5 y = 0.5 + 2 6 y=2 x x y = ( 51 ) x or x+1 β3 x xβ2 Extension Exercises 2 7 x y = ( 31 ) β 1 β 1 8 y = log10(x β 1) + 3 9 y=3 10 y = log2(x β 2) or y = 11 y=2 12 y = log3(x + 2) β 2 = xβ1 x+3 β2 log (π₯ β 2) log (2) β4 log (π₯ + 2) β2 log (3) Extension Exercises 3 x 13 y=2 β3 14 y = 0.5 15 y=2 16 y = 0.25 17 y = 3 × 2 β 1 (or similar) 18 y = 5 × 0.5 + 1 (or similar) x+1 x+2 +2 β1 xβ1 β2 or x y = ( 41 ) β 1 β 2 x x Extension Exercises 4 19 y = log10(x β 1) 20 y = log10(x) β 1 21 y = log3(x + 2) = 70 71 72 log (π₯ + 2) log (3) log (π₯ β 1) y = log2(x β 1) = log (2) log (π₯ + 2) y = log4(x + 2) β 2 = log (4) β 2 log (π₯ β 1) y = log2(x β 1) + 3 = log (2) + 3 Page 14
© Copyright 2026 Paperzz