Sample Problems for the Final CH142, Spring 2016 1. Calculate the standard state cell voltage, standard state reaction Gibbs energy, and equilibrium constant at 25.0°C for the reaction: Zn (s) + 2 Fe3+ → Zn2+ + 2 Fe2+. Answer: The Zn half cell is Zn → Zn2+ + 2e–. As written n = 2. The cathode is the reduction of Fe3+ to Fe2+, and the anode the oxidation of Zn to Zn2+. The cell potential is: E°c ell = E°R – E°L = E°r ed(cathode) – E°r ed(anode) = E°r ed(Fe3+,Fe2+) – E°r ed(Zn2+,Zn) = 0.77 V – (-0.76 V) = 1.53 V ∆G° = – n F E°c ell = – 2(96485 C mol-1)(1.53 V)(1 kJ/1000 J) = -295. kJ mol-1 Remember that cell potentials are intensive, so they don’t depend on the stoichiometric coefficients.There are two equivalent ways to find the equilibrium constant: ∆G°= -2.952x105 J mol-1 = – RT ln Ka = – 8.314 J K-1 mol-1(298.2 K) ln Ka RT 0.02569 V or E°c ell = 1.53 V = ln Ka = ln Ka nF 2 Ka = 5.37x1051 (your answer may differ slightly because of method or round-off error, e.g. 5.14x1051) 2. Calculate the electrochemical cell voltage at 25.0°C for the reaction: H2O2 + 2 H+ + Cu (s) → 2 Η2O + Cu2+ given that [H2O2] is 0.500 M, the [Cu2+] is 1.00x10-3 M, and the pH is 7.00. Answer: E°c ell = E°R – E°L = E°r ed(cathode) – E°r ed(anode) = E°r ed(H2O2,H2O) – E°r ed(Cu2+,Cu) = 1.763 V – 0.34 V = 1.423 V Nernst Equation relates the non-standard state and standard state cell potentials with n = 2: 2+ 0.05916 V 0.05916 V [Cu ] E = E° – log Q = 1.423 V – log n 2 [H2O2][H+]2 0.05916 V 1.00x10–3 0.05916 V = 1.423 V – log (0.500)(1.00x10-7)2 = 1.423 V – (11.301) 2 2 = 1.09 V 3. Calculate the solubility of LaF3 in pure water, Ksp = 2.0x10-19. Answer: Ksp = [La3+][F–]3 = (s)(3s)3 = 27 s4 s = [2.0x10-19/27]1/4 = 9.3x10-6 M 4. Calculate the pH at the equivalence point of a titration of 25.0 mL of 0.100 NaBrO with 0.100 M HCl. Ka for HBrO is 2.5x10-9. Show the reaction that determines the pH. Answer: titration reaction: BrO– + H+ → HBrO predominate species at the equiv. pt. is HBrO + – with Ka = 2.5x10-9 reaction that determines the pH: HBrO → ← H + BrO volume of titrant at equivalence point : 25.0 mL and total volume: 50.0 mL nominal concentration at equivalence point: moles HBrO moles BrO– 0.0250 L(0.100 M) [HBrO]o = = = = 0.0500 M 0.0500 L 0.0500 L 0.0500 L [H+][BrO–] x2 x2 Ka = = ≅ [HBrO] [HBrO]o – x [HBrO]o x2 + -5 giving Ka = 2.5x10-9 = or pH = 4.95 0.0500 with x = [H ] = 1.12x10 M 5. Calculate the pH of a solution prepared from 25.0 mL of 0.150 M acetic acid and 25.0 mL of 0.100 M NaOH. Ka for acetic acid is 1.8x10-5. Answer: initial moles of HOAc: 0.0250 L(0.150 M) = 3.75x10-3 mol initial moles of OH– : 0.0250 L(0.100 M) = 2.50x10-3 mol → reaction: HOAc + OH– -3 -3 initial: 3.75x10 2.50x10 mol final: 1.25x10-3 ~ 0 [H+] = Ka OAc– + H2O OH– is limiting 2.50x10-3 mol -3 [HOAc] -5 1.25x10 mol -6 - = 1.8x10 2.50x10-3mol = 9.0x10 [OAc ] or pH = 5.05 6. For the first-order reaction 2N2O5 → 2N2O4 + O2, the activation energy is 106. kJ/mol. How many times faster will the reaction go at 100.0°C than at 25.0°C? Ea 1 1 kT2 Answer: lnk = – R T – T T1 2 1 Ea = 106. kJ mol-1 R = 8.314 J K-1 mol-1 T2 = 373.2 K T1 = 298.2 K 106.x103 J mol-1 1 1 kT2 lnk = – 8.314 J K-1 mol-1 373.2 K – 298.2 K = 8.59 T1 k373.2 K k = e8.59 = 5.38x103 times as fast 298.2 K Standard Reduction Potentials at 25°C F2 (g) + 2e- → 2FH2O2 + 2 H+ + 2 e- → 2 Η2O PbO2 (s) + 4H+ + SO42- + 2e- → PbSO4(s) + 2H2O MnO4- + 8H+ + 5e- → Mn2+ + 4H2O PbO2 (s) + 4H+ + 2e- → Pb2+ + 2H2O Cl2 (g) + 2e- → 2ClCr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O O2 (g) + 4H+ + 4e- → 2H2O Br2 (g) + 2e- → 2BrNO3- + 4H+ + 3e- → NO (g) + 2H2O Hg2+ + 2e- → Hg (l) Ag+ + e- → Ag (s) Fe3+ + e- → Fe2+ O2 (g) + 2 H+ + 2 e- → Η2O2 I2 (s) + 2e- → 2ICu+ + e- → Cu (s) Cu2+ + 2e- → Cu (s) AgCl (s) + 1 e- → Ag (s) + ClCu2+ + e- → Cu+ Sn4+ + 2e- → Sn2+ 2H+ + 2e- → H2 (g) Fe3+ + 3e- → Fe (s) Pb2+ + 2e- → Pb (s) Sn2+ + 2e- → Sn (s) Ni2+ + 2e- → Ni (s) PbSO4 (s) + 2e- → Pb + SO42Cr3+ + e- → Cr2+ Cd2+ + 2e- → Cd (s) Fe2+ + 2e- → Fe (s) Cr3+ + 3e- → Cr (s) Zn2+ + 2e- → Zn (s) V2+ + 2e- → V (s) Mn2+ + 2e- → Mn (s) Al3+ + 3e- → Al (s) Mg2+ + 2e- → Mg (s) Na+ + e- → Na (s) Ca2+ + 2e- → Ca (s) K+ + e- → K (s) Li+ + e- → Li (s) OCl– + H2O (l) + 2 e- → O2 (g) + 2 OH– O2 (g) + 2 H2O (l) + 4 e- → 4 ΟΗ− 2H2O + 2e- → H2 (g) + 2OH– E°r ed (V) 2.87 1.763 1.69 1.49 1.46 1.36 1.33 1.23 1.078 0.96 0.85 0.80 0.77 0.695 0.54 0.52 0.34 0.222 0.15 0.15 0.00 -0.04 -0.13 -0.14 -0.25 -0.359 -0.40 -0.40 -0.41 -0.74 -0.76 -1.18 -1.18 -1.66 -2.37 -2.714 -2.866 -2.925 -3.045 +0.890 +0.401 -0.828 Formulas and Constants Given on the ACS Test R = 8.314 J mol-1⋅K-1 R = 0.0821 L atm mol-1 1 F = 96,485. C mol-1 1 F = 96,485. J V-1 mol Arrhenius Equation: -E /RT k=Ae a NA = 6.022x1023 mol-1 h = 6.626x10-34 J s c = 2.998x1010 m s-1 0°C = 273.15 K Nernst Equation: RT E = E° – ln Q nF Nernst Equation at 25°C: 0.05916 V E = E° – log Q n Integrated Rate Laws: zero: [A] = [A]o – kt first: ln [A] = ln [A]o – k t 1 1 second: = kt+ [A]t [A]o Additional Formulas and Constants Given on the Colby Test ln 2 0.693 t½ = k = k k=Ae -Ea/RT Ea 1 1 k T2 ln k = – R T – T or 2 T1 1 -b ± b2- 4ac 2a 1 t½ = [A] k o E a 1 ln k= – R T + ln A ∆S = nR ln(V2/V1) k T 1 Ea 1 1 ln k = R T – T 2 1 T2 Kp = Kc (RT)∆n x=
© Copyright 2026 Paperzz