Sample Problems for the Final CH142, Spring 2016 1. Calculate the

Sample Problems for the Final CH142, Spring 2016
1. Calculate the standard state cell voltage, standard state reaction Gibbs energy, and
equilibrium constant at 25.0°C for the reaction: Zn (s) + 2 Fe3+ → Zn2+ + 2 Fe2+.
Answer: The Zn half cell is Zn → Zn2+ + 2e–. As written n = 2. The cathode is the reduction of
Fe3+ to Fe2+, and the anode the oxidation of Zn to Zn2+. The cell potential is:
E°c ell = E°R – E°L = E°r ed(cathode) – E°r ed(anode) = E°r ed(Fe3+,Fe2+) – E°r ed(Zn2+,Zn)
= 0.77 V – (-0.76 V) = 1.53 V
∆G° = – n F E°c ell = – 2(96485 C mol-1)(1.53 V)(1 kJ/1000 J) = -295. kJ mol-1
Remember that cell potentials are intensive, so they don’t depend on the stoichiometric
coefficients.There are two equivalent ways to find the equilibrium constant:
∆G°= -2.952x105 J mol-1 = – RT ln Ka = – 8.314 J K-1 mol-1(298.2 K) ln Ka
RT
0.02569 V
or
E°c ell = 1.53 V =
ln Ka =
ln Ka
nF
2
Ka = 5.37x1051
(your answer may differ slightly because of method or round-off error, e.g. 5.14x1051)
2. Calculate the electrochemical cell voltage at 25.0°C for the reaction:
H2O2 + 2 H+ + Cu (s) → 2 Η2O + Cu2+
given that [H2O2] is 0.500 M, the [Cu2+] is 1.00x10-3 M, and the pH is 7.00.
Answer: E°c ell = E°R – E°L = E°r ed(cathode) – E°r ed(anode) = E°r ed(H2O2,H2O) – E°r ed(Cu2+,Cu)
= 1.763 V – 0.34 V = 1.423 V
Nernst Equation relates the non-standard state and standard state cell potentials with n = 2:
2+
0.05916 V
0.05916 V
 [Cu ] 
E = E° –
log
Q
=
1.423
V
–
log


n
2
[H2O2][H+]2
0.05916 V
1.00x10–3
0.05916 V


= 1.423 V –
log (0.500)(1.00x10-7)2 = 1.423 V –
(11.301)
2
2


= 1.09 V
3. Calculate the solubility of LaF3 in pure water, Ksp = 2.0x10-19.
Answer:
Ksp = [La3+][F–]3 = (s)(3s)3 = 27 s4
s = [2.0x10-19/27]1/4 = 9.3x10-6 M
4. Calculate the pH at the equivalence point of a titration of 25.0 mL of 0.100 NaBrO with 0.100
M HCl. Ka for HBrO is 2.5x10-9. Show the reaction that determines the pH.
Answer:
titration reaction: BrO– + H+ → HBrO predominate species at the equiv. pt. is HBrO
+
–
with Ka = 2.5x10-9
reaction that determines the pH: HBrO →
← H + BrO
volume of titrant at equivalence point : 25.0 mL and total volume: 50.0 mL
nominal concentration at equivalence point:
moles HBrO moles BrO– 0.0250 L(0.100 M)
[HBrO]o =
=
=
= 0.0500 M
0.0500 L
0.0500 L
0.0500 L
[H+][BrO–]
x2
x2
Ka =
=
≅
[HBrO]
[HBrO]o – x [HBrO]o
x2
+
-5
giving Ka = 2.5x10-9 =
or pH = 4.95
0.0500 with x = [H ] = 1.12x10 M
5. Calculate the pH of a solution prepared from 25.0 mL of 0.150 M acetic acid and 25.0 mL of
0.100 M NaOH. Ka for acetic acid is 1.8x10-5.
Answer:
initial moles of HOAc: 0.0250 L(0.150 M) = 3.75x10-3 mol
initial moles of OH– : 0.0250 L(0.100 M) = 2.50x10-3 mol
→
reaction: HOAc + OH–
-3
-3
initial: 3.75x10
2.50x10 mol
final:
1.25x10-3 ~ 0
[H+] = Ka
OAc– + H2O
OH– is limiting
2.50x10-3 mol
-3
[HOAc]
-5 1.25x10 mol
-6
- = 1.8x10
2.50x10-3mol = 9.0x10
[OAc ]
or pH = 5.05
6. For the first-order reaction 2N2O5 → 2N2O4 + O2, the activation energy is 106. kJ/mol.
How many times faster will the reaction go at 100.0°C than at 25.0°C?
Ea  1 1 
kT2
Answer: lnk  = – R T – T 
 T1
 2
1
Ea = 106. kJ mol-1
R = 8.314 J K-1 mol-1
T2 = 373.2 K
T1 = 298.2 K
106.x103 J mol-1  1
1 
kT2
lnk  = – 8.314 J K-1 mol-1  373.2 K – 298.2 K = 8.59
 T1


k373.2 K
k
 = e8.59 = 5.38x103 times as fast
 298.2 K
Standard Reduction Potentials at 25°C
F2 (g) + 2e- → 2FH2O2 + 2 H+ + 2 e- → 2 Η2O
PbO2 (s) + 4H+ + SO42- + 2e- → PbSO4(s) + 2H2O
MnO4- + 8H+ + 5e- → Mn2+ + 4H2O
PbO2 (s) + 4H+ + 2e- → Pb2+ + 2H2O
Cl2 (g) + 2e- → 2ClCr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O
O2 (g) + 4H+ + 4e- → 2H2O
Br2 (g) + 2e- → 2BrNO3- + 4H+ + 3e- → NO (g) + 2H2O
Hg2+ + 2e- → Hg (l)
Ag+ + e- → Ag (s)
Fe3+ + e- → Fe2+
O2 (g) + 2 H+ + 2 e- → Η2O2
I2 (s) + 2e- → 2ICu+ + e- → Cu (s)
Cu2+ + 2e- → Cu (s)
AgCl (s) + 1 e- → Ag (s) + ClCu2+ + e- → Cu+
Sn4+ + 2e- → Sn2+
2H+ + 2e- → H2 (g)
Fe3+ + 3e- → Fe (s)
Pb2+ + 2e- → Pb (s)
Sn2+ + 2e- → Sn (s)
Ni2+ + 2e- → Ni (s)
PbSO4 (s) + 2e- → Pb + SO42Cr3+ + e- → Cr2+
Cd2+ + 2e- → Cd (s)
Fe2+ + 2e- → Fe (s)
Cr3+ + 3e- → Cr (s)
Zn2+ + 2e- → Zn (s)
V2+ + 2e- → V (s)
Mn2+ + 2e- → Mn (s)
Al3+ + 3e- → Al (s)
Mg2+ + 2e- → Mg (s)
Na+ + e- → Na (s)
Ca2+ + 2e- → Ca (s)
K+ + e- → K (s)
Li+ + e- → Li (s)
OCl– + H2O (l) + 2 e- → O2 (g) + 2 OH–
O2 (g) + 2 H2O (l) + 4 e- → 4 ΟΗ−
2H2O + 2e- → H2 (g) + 2OH–
E°r ed (V)
2.87
1.763
1.69
1.49
1.46
1.36
1.33
1.23
1.078
0.96
0.85
0.80
0.77
0.695
0.54
0.52
0.34
0.222
0.15
0.15
0.00
-0.04
-0.13
-0.14
-0.25
-0.359
-0.40
-0.40
-0.41
-0.74
-0.76
-1.18
-1.18
-1.66
-2.37
-2.714
-2.866
-2.925
-3.045
+0.890
+0.401
-0.828
Formulas and Constants Given on the ACS Test
R = 8.314 J mol-1⋅K-1
R = 0.0821 L atm mol-1
1 F = 96,485. C mol-1
1 F = 96,485. J V-1 mol
Arrhenius Equation:
-E /RT
k=Ae a
NA = 6.022x1023 mol-1
h = 6.626x10-34 J s
c = 2.998x1010 m s-1
0°C = 273.15 K
Nernst Equation:
RT
E = E° –
ln Q
nF
Nernst Equation at 25°C:
0.05916 V
E = E° –
log Q
n
Integrated Rate Laws:
zero: [A] = [A]o – kt
first: ln [A] = ln [A]o – k t
1
1
second:
= kt+
[A]t
[A]o
Additional Formulas and Constants Given on the Colby Test
ln 2 0.693
t½ = k = k
k=Ae
-Ea/RT
Ea  1 1 
k T2
ln k = – R T – T  or
 2
T1
1
-b ± b2- 4ac
2a
1
t½ = [A] k
o
E
 a 1
ln k= –  R  T + ln A
 
∆S = nR ln(V2/V1)
k T 1 Ea  1 1 
ln k = R T – T 
 2 1
T2
Kp = Kc (RT)∆n
x=