6.5 Finding Rational Roots

Finding Rational Roots
Steps of Rational Zeros
1. Identify the constant term and coefficient
of the polynomial
2. List all factors of each number and don’t
forget the plus-or-minus symbol for each
term
3. Apply the equation and DIVIDE
p
Factors of Constant Term

q Factors of Leading Coefficient
4. List ALL of the possible rational zeros
3/2/2016 12:38 PM
5.6 – Find Rational Zeros
2
Example 1
List all possible rational zeros for x8  18x 4  9 x 2  2  0
Constant: 2
Leading Coefficient: 1
p +1,  1, 2,  2

q
+1,  1
p
 1, 2
q
3/2/2016 12:38 PM
2
1
1
2
 1
 1   2   2
1
1
1
1
1
1
2
2
 1,  1,  2,  2
1
1
1
1
5.6 – Find Rational Zeros
3
Example 2
List all possible rational zeros for
f ( x)  2 x 4  x 3  17 x 2  4 x  6
Constant: 6
Leading Coefficient: 2
p +1,  1, 2,  2, +3,  3, +6,  6

q
+1,  1, +2,  2
1
3
p
 1,  2,  3,  6,  , 
q
2
2
p
1 3
 1, 2, 3, 6,  , 
q
2 2
3/2/2016 12:38 PM
5.6 – Find Rational Zeros
4
Steps in finding rational zeros
A. Determine what the leading coefficient and
constant term are.
B. Put it in the rational zero test (p/q).
C. Use synthetic division to find which factor
gives the remainder of zero.
If the polynomial cannot be factored OR it is
NOT a QUADRATIC, repeat synthetic division.
D. Factor or use the Quadratic Formula
E. Equal it all to zero and put it in x= form.
3/2/2016 12:38 PM
5.6 – Find Rational Zeros
5
Example 3
3
2
f
(
x
)

x

7
x
 11x  5
Find the roots for
p +1,  1, 5,  5

q
+1,  1
p
 1,  5
q
7
1 1
11
1 6
1 6 5
5
5
0
X-1 IS A factor
x  6x  5  0
 x  1 x  5  0
2
 x  1  x  1 x  5  0
x 1 x 1 x  5
x  1 with a multiplicity of 2 and x  5
3/2/2016 12:38 PM
5.6 – Find Rational Zeros
6
Example 4 Find the roots for the function…
f ( x)  3x 3  7 x 2  22 x  8
p +1,  1, 2,  2, +4,  4, +8,  8

q
+1,  1, +3  3
p
1 2 4 8
 1,  2,  4,  8,  ,  ,  , 
q
3 3 3 3
1 3
7
 22
10
3
3 10 12
X-1 is NOT a factor
8
12
20
1 3
7
3
3
4
 22
4
26
8
26
18
X+1 is NOT factor
2 3
3
7
6
13
 22
26
4
8
8
0
X-2 IS A factor
3x 2  13x  4  0
1 12
3x 2  12 x  1x  4  0 2 6
2
3
x
  12x   1x  4  0 3 4
3x  x  4  1 x  4   0
 x  4  3x  1  0
7
Example
3
2
f
(
x
)

3
x

7
x
 22 x  8
4 Continued
 x  2  x  4  3x  1  0
x20
x2
x40
x  4
1
x  2, x  4 and x  
3
3x  1  0
3x  1
1
x
3
Example 5 Find the roots for the function…
f ( x)  5 x 3  7 x 2  x  3
p +1,  1, 3,  3

q +1,  1, +5  5
p
1 3
 1,  3,  , 
q
5 5
1 5
7
1
12
5
5 12 11
X-1 is NOT a factor
3
11
14
1
5
5
7
5
2
1
2
3
3
3
0
X+1 IS A factor
1 15
5x 2  2 x  3  0
2
5 x  5 x  3x  3  0 3 5
2
 5x  5x   3x  3  0
5x  x  1 3  x  1  0
 x  1 5x  3  0
 x  1 x  1 5x  3  0
x  1 w / a multiplicity of 2, x 
3
5
Example 6 Find the roots for the function…
f ( x)  x 4  x 3  3 x 2  x  2
p +1,  1, 2,  2

q
+1,  1
p
 1,  2
q
1 1 1  3 1 2
1 2 1 2
1 2 1 2 0
X-1 IS A factor
x  2x  x  2  0
3
2
1
1
2
1
1
1
1
1
2
2
2
0
X+1 IS A factor
x2  x  2  0
 x  1 x  2   0
 x  1 x  1 x  1 x  2   0
x  1 x  1 x  1 x  2
x  1 w / a multiplicity of 2,
x  1, x  2