HAravindG Superstar Hax cos thetaL + Hby sin thetaL = a^2 - b^2 and Haxsin theta cos^2 thetaL - Hbycos theta sin^2 thetaL = 0 show that HaxL^2 3 + HbyL^2 3 = Ha^2 - b^2L^2 3 Ha xL^2 3 + Hb yL^2 3 = Ha^2 - b^2L^2 3L a2 x2 In[12]:= H Ha xL ^ 2 3 + Hb yL ^ 2 3 == Ha ^ 2 - b ^ 2L ^ 2 3 L ® b2 y2 + 1 2 Ia2 - b2 M ; 3 3 3 Reset the Mathematica line counter. In[13]:= $Line = 0; The trig equations from the problem statement: In[1]:= 9a2 b2 + b y Csc@ΘD + a x Sec@ΘD, b y Cot@ΘD Csc@ΘD a x Sec@ΘD Tan@ΘD= Out[1]= 9a2 b2 + b y Csc@ΘD + a x Sec@ΘD, b y Cot@ΘD Csc@ΘD a x Sec@ΘD Tan@ΘD= Solve the equations above for x and y. Flatten gets rid of an extra set of braces. In[2]:= Solve@%1, 8x, y<D Flatten I- a2 + b2 M Cot@ΘD Csc@ΘD Out[2]= I- a2 + b2 M Sec@ΘD Tan@ΘD ,y®- :x ® - > a ICsc@ΘD2 + Sec@ΘD2 M b ICsc@ΘD2 + Sec@ΘD2 M x and y above are replacement rules. Square each side of the ® symbol to obtain new replacement rules. I- a2 + b2 M Cot@ΘD Csc@ΘD In[3]:= 2 2 I- a2 + b2 M Sec@ΘD Tan@ΘD ,y ® - :x ® a ICsc@ΘD2 + Sec@ΘD2 M > b ICsc@ΘD2 + Sec@ΘD2 M 2 2 I- a2 + b2 M Cot@ΘD2 Csc@ΘD2 Out[3]= 2 2 :x2 ® I- a2 + b2 M Sec@ΘD2 Tan@ΘD2 , y2 ® > 2 2 a2 ICsc@ΘD2 + Sec@ΘD2 M b2 ICsc@ΘD2 + Sec@ΘD2 M Apply the replacement rules above to the following expression, In[12]: a2 x2 b2 y2 1 + In[4]:= 3 3 2 Ia2 - b2 M . %3 3 2 2 I- a2 + b2 M Cot@ΘD2 Csc@ΘD2 I- a2 + b2 M Sec@ΘD2 Tan@ΘD2 + Out[4]= 2 2 2 1 2 2 2 3 ICsc@ΘD + Sec@ΘD M 2 Ia2 - b2 M 3 3 ICsc@ΘD + Sec@ΘD M Factor the LHS of Out[4]. 2 2 I- a2 + b2 M Cot@ΘD2 Csc@ΘD2 In[5]:= FactorB I- a2 + b2 M Sec@ΘD2 Tan@ΘD2 + 2 2 2 3 ICsc@ΘD + Sec@ΘD M Ha - bL2 Ha + bL2 ICot@ΘD2 Csc@ΘD2 + Sec@ΘD2 Tan@ΘD2 M 1 2 2 2 Ia2 - b2 M 3 3 ICsc@ΘD + Sec@ΘD M Out[5]= 2 1 F 2 2 2 2 Ia2 - b2 M 3 3 ICsc@ΘD + Sec@ΘD M Rearrange the LHS terms of Out[5] collecting the trig functions and the other expressions in that order. ICot@ΘD2 Csc@ΘD2 + Sec@ΘD2 Tan@ΘD2 M 1 In[6]:= 2 2 2 ICsc@ΘD + Sec@ΘD M Simplify the trig fraction above. 3 Ha - bL2 Ha + bL2 1 3 2 Ia2 - b2 M ; 2 Untitled-3 ICot@ΘD2 Csc@ΘD2 + Sec@ΘD2 Tan@ΘD2 M In[7]:= FullSimplifyB 3 ICsc@ΘD + Sec@ΘD M 1 Ha - bL2 Ha + bL2 H5 + 3 Cos@4 ΘDL Out[7]= 24 1 Out[8]= 3 Solve@%7, ΘD 88Θ ® 0<< Replace Θ in Out[7] with zero. In[9]:= %7 . %8 1 Out[9]= : Ha - bL2 Ha + bL2 3 1 2 Ia2 - b2 M > 3 Expand then simplify the LHS of Out[9], 1 In[10]:= Ha - bL2 Ha + bL2 Expand Simplify 3 1 Out[10]= 2 Ia2 - b2 M 3 The LHS equals the RHS. 1 In[11]:= Out[11]= 2 Ia2 - b2 M == 3 True 1 3 2 Ia2 - b2 M 2 Ia2 - b2 M Solve Out[7] for Θ. In[8]:= 1 F 2 2 2 Ha - bL2 Ha + bL2 1 3 2 Ia2 - b2 M
© Copyright 2024 Paperzz