W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re N a m e o f V a r ia b le = y P e r io d ( s ) o f D if f e r e n c in g 1 ,1 M e a n o f W o r k in g S e r ie s 0 .0 0 0 1 4 5 S t a n d a r d D e v ia t io n 0 .0 1 2 7 9 5 N u m b e r o f O b s e r v a t io n s 1 2 6 O b s e r v a t io n ( s ) e lim in a t e d b y d if f e r e n c in g 2 A u t o c o r r e la t io n C h e c k f o r W h it e N o is e T o L a g C h i- S q u a r e 6 5 3 .5 2 6 < .0 0 0 1 - 0 .5 3 8 0 .1 2 7 - 0 .1 9 6 0 .2 1 1 - 0 .1 4 2 0 .0 6 1 1 2 6 0 .8 5 1 2 < .0 0 0 1 - 0 .0 6 8 0 .1 5 6 - 0 .1 4 6 0 .0 2 7 0 .0 3 0 0 .0 4 0 1 8 6 9 .6 4 1 8 < .0 0 0 1 - 0 .1 2 9 0 .0 7 1 - 0 .0 8 6 0 .1 6 6 - 0 .0 5 4 - 0 .0 2 7 2 4 7 7 .1 3 2 4 < .0 0 0 1 0 .0 3 4 - 0 .0 9 0 0 .0 8 0 - 0 .0 7 8 0 .1 0 3 - 0 .1 2 5 D F P r > C h iS q A u t o c o r r e la t io n s 1 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re M a x im u m P a r a m e te r M A 1 ,1 L ik e lih o o d E s t im a t io n E s t im a t e S ta n d a r d E r r o r t V a lu e 0 .8 8 8 8 5 0 .0 4 2 8 3 2 0 .7 5 A p p r o x P r > |t | L a g < .0 0 0 1 V a r ia n c e E s t im a t e 0 .0 0 0 0 9 1 S t d E r r o r E s t im a t e 0 .0 0 9 5 3 A IC - 8 1 2 .5 1 2 S B C - 8 0 9 .6 7 5 N u m b e r o f R e s id u a ls 1 1 2 6 A u t o c o r r e la t io n C h e c k o f R e s id u a ls T o L a g C h i- S q u a r e 6 4 .8 8 5 0 .4 3 1 3 - 0 .0 1 0 0 .0 8 0 - 0 .0 9 1 0 .1 2 8 - 0 .0 7 4 0 .0 2 2 1 2 8 .5 2 1 1 0 .6 6 6 4 - 0 .0 0 9 0 .0 8 3 - 0 .1 3 1 - 0 .0 4 1 0 .0 0 2 - 0 .0 2 8 1 8 1 5 .5 3 1 7 0 .5 5 7 6 - 0 .1 4 4 - 0 .0 0 6 - 0 .0 1 5 0 .1 5 9 0 .0 0 0 - 0 .0 4 5 2 4 2 0 .0 5 2 3 0 .6 3 8 9 - 0 .0 4 3 - 0 .1 2 3 - 0 .0 1 7 - 0 .0 7 4 0 .0 3 0 - 0 .0 7 5 D F P r > C h iS q A u t o c o r r e la t io n s 2 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re 3 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re M o d e l f o r v a r ia b le y P e r io d ( s ) o f D if f e r e n c in g N o m e a n te r m 1 ,1 in th is m o d e l. M o v in g A v e r a g e F a c t o r s F a c to r 1 : 1 - 0 .8 8 8 8 5 B * * ( 1 ) 4 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M 5 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (3 ,2 ,0 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re N a m e o f V a r ia b le = y P e r io d ( s ) o f D if f e r e n c in g 1 ,1 M e a n o f W o r k in g S e r ie s 0 .0 0 0 1 4 5 S t a n d a r d D e v ia t io n 0 .0 1 2 7 9 5 N u m b e r o f O b s e r v a t io n s 1 2 6 O b s e r v a t io n ( s ) e lim in a t e d b y d if f e r e n c in g 2 A u t o c o r r e la t io n C h e c k f o r W h it e N o is e T o L a g C h i- S q u a r e 6 5 3 .5 2 6 < .0 0 0 1 - 0 .5 3 8 0 .1 2 7 - 0 .1 9 6 0 .2 1 1 - 0 .1 4 2 0 .0 6 1 1 2 6 0 .8 5 1 2 < .0 0 0 1 - 0 .0 6 8 0 .1 5 6 - 0 .1 4 6 0 .0 2 7 0 .0 3 0 0 .0 4 0 1 8 6 9 .6 4 1 8 < .0 0 0 1 - 0 .1 2 9 0 .0 7 1 - 0 .0 8 6 0 .1 6 6 - 0 .0 5 4 - 0 .0 2 7 2 4 7 7 .1 3 2 4 < .0 0 0 1 0 .0 3 4 - 0 .0 9 0 0 .0 8 0 - 0 .0 7 8 0 .1 0 3 - 0 .1 2 5 D F P r > C h iS q A u t o c o r r e la t io n s 6 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (3 ,2 ,0 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re M a x im u m L ik e lih o o d E s t im a t io n E s t im a t e S ta n d a r d E r r o r t V a lu e A R 1 ,1 - 0 .7 5 2 2 4 0 .0 8 3 7 4 - 8 .9 8 < .0 0 0 1 1 A R 1 ,2 - 0 .4 6 5 0 4 0 .0 9 9 3 9 - 4 .6 8 < .0 0 0 1 2 A R 1 ,3 - 0 .3 5 9 1 7 0 .0 8 4 3 0 - 4 .2 6 < .0 0 0 1 3 P a r a m e te r A p p r o x P r > |t | L a g V a r ia n c e E s t im a t e 0 .0 0 0 0 9 7 S t d E r r o r E s t im a t e 0 .0 0 9 8 6 6 A IC - 8 0 2 .4 8 S B C - 7 9 3 .9 7 1 N u m b e r o f R e s id u a ls 1 2 6 C o r r e la t io n s o f P a r a m e t e r E s t im a t e s P a r a m e te r A R 1 ,1 A R 1 ,2 A R 1 ,3 A R 1 ,1 1 .0 0 0 0 .5 7 4 0 .2 2 0 A R 1 ,2 0 .5 7 4 1 .0 0 0 0 .5 7 3 A R 1 ,3 0 .2 2 0 0 .5 7 3 1 .0 0 0 A u t o c o r r e la t io n C h e c k o f R e s id u a ls T o L a g C h i- S q u a r e 6 7 .0 1 3 0 .0 7 1 5 - 0 .0 2 8 - 0 .0 7 5 - 0 .1 0 4 - 0 .1 8 5 - 0 .0 3 8 - 0 .0 1 1 1 2 1 0 .5 9 9 0 .3 0 4 9 0 .0 4 2 0 .0 8 0 - 0 .0 7 8 - 0 .0 4 7 0 .0 3 6 - 0 .0 9 0 1 8 2 1 .0 8 1 5 0 .1 3 4 3 - 0 .1 2 3 0 .0 2 1 0 .0 0 8 0 .2 3 0 0 .0 4 8 - 0 .0 3 2 2 4 2 4 .8 8 2 1 0 .2 5 2 3 - 0 .0 4 4 - 0 .1 3 9 - 0 .0 2 3 - 0 .0 4 1 0 .0 2 8 - 0 .0 2 5 D F P r > C h iS q A u t o c o r r e la t io n s 7 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (3 ,2 ,0 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re 8 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (3 ,2 ,0 ) M o d e l o n Y = lo g (X ) T h e A R IM A P ro c e d u re M o d e l f o r v a r ia b le y P e r io d ( s ) o f D if f e r e n c in g N o m e a n te r m 1 ,1 in th is m o d e l. A u t o r e g r e s s iv e F a c t o r s F a c to r 1 : 1 + 0 .7 5 2 2 4 B * * ( 1 ) + 0 .4 6 5 0 4 B * * ( 2 ) + 0 .3 5 9 1 7 B * * ( 3 ) 9 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M 1 0 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n th e R a w D a ta X T h e A R IM A P ro c e d u re N a m e o f V a r ia b le = x P e r io d ( s ) o f D if f e r e n c in g 1 ,1 M e a n o f W o r k in g S e r ie s 1 .0 6 3 4 9 2 S t a n d a r d D e v ia t io n 2 4 .1 9 6 2 N u m b e r o f O b s e r v a t io n s 1 2 6 O b s e r v a t io n ( s ) e lim in a t e d b y d if f e r e n c in g 2 A u t o c o r r e la t io n C h e c k f o r W h it e N o is e T o L a g C h i- S q u a r e 6 2 9 .1 3 6 < .0 0 0 1 - 0 .4 6 1 - 0 .0 6 3 - 0 .0 3 2 0 .0 8 3 - 0 .0 0 1 0 .0 3 4 1 2 3 7 .9 2 1 2 0 .0 0 0 2 - 0 .0 5 3 0 .0 9 7 - 0 .1 9 8 0 .0 9 8 0 .0 5 0 - 0 .0 0 9 1 8 6 1 .8 0 1 8 < .0 0 0 1 0 .0 1 4 - 0 .0 3 7 - 0 .2 0 1 0 .3 3 4 - 0 .0 7 9 - 0 .0 5 6 2 4 6 5 .7 5 2 4 < .0 0 0 1 - 0 .0 6 7 0 .0 8 6 0 .0 1 8 - 0 .0 2 5 - 0 .0 5 9 0 .0 9 6 D F P r > C h iS q A u t o c o r r e la t io n s 1 1 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n th e R a w D a ta X T h e A R IM A P ro c e d u re M a x im u m P a r a m e te r M A 1 ,1 L ik e lih o o d E s t im a t io n E s t im a t e S ta n d a r d E r r o r t V a lu e 0 .7 1 4 8 8 0 .0 6 3 8 4 1 1 .2 0 A p p r o x P r > |t | L a g < .0 0 0 1 V a r ia n c e E s t im a t e 3 7 2 .0 8 1 S t d E r r o r E s t im a t e 1 9 .2 8 9 4 A IC 1 1 0 5 .0 9 2 S B C 1 1 0 7 .9 2 8 N u m b e r o f R e s id u a ls 1 1 2 6 A u t o c o r r e la t io n C h e c k o f R e s id u a ls T o L a g C h i- S q u a r e 6 7 .0 9 5 0 .2 1 4 2 - 0 .0 5 5 - 0 .0 9 0 - 0 .0 0 4 0 .1 3 2 0 .1 1 6 0 .1 0 7 1 2 1 4 .9 4 1 1 0 .1 8 5 3 0 .0 2 3 0 .0 5 2 - 0 .1 3 4 0 .1 0 6 0 .1 3 9 0 .0 6 7 1 8 3 4 .6 2 1 7 0 .0 0 7 0 0 .0 2 4 - 0 .0 6 5 - 0 .0 7 7 0 .3 4 3 0 .0 6 2 - 0 .0 4 4 2 4 3 9 .0 1 2 3 0 .0 1 9 8 - 0 .0 3 6 0 .1 0 1 0 .0 7 0 0 .0 1 1 0 .0 0 0 0 .1 0 8 D F P r > C h iS q A u t o c o r r e la t io n s 1 2 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n th e R a w D a ta X T h e A R IM A P ro c e d u re 1 3 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M T r y in g A R I M A (0 ,2 ,1 ) M o d e l o n th e R a w D a ta X T h e A R IM A P ro c e d u re M o d e l f o r v a r ia b le x P e r io d ( s ) o f D if f e r e n c in g N o m e a n te r m 1 ,1 in th is m o d e l. M o v in g A v e r a g e F a c t o r s F a c to r 1 : 1 - 0 .7 1 4 8 8 B * * ( 1 ) 1 4 W e d n e s d a y , F e b ru a ry 2 6 , 2 0 1 4 1 2 :1 1 :2 3 P M 1 5
© Copyright 2026 Paperzz