MITOCHONDRIAL DIFFERENTIATION DURING THE EARLY DEVELOPMENT OF THE AMPHIBIAN EMBRYO by L e n n a rt Nelson AKADEMISK AVHANDLING som med tillstå n d av r e k to r s äm betet v id Umeå u n iv e rs ite t fö r erh ållan d e av filosofie dokto rsex am en , fram lägges till o ffen tlig g ra n sk n in g to rsd a g e n den 17 decem ber 1981 kl 10.00 vid FysiologiB otanik H ufo, sem inarierum B. Exam inator: P ro fe sso r S0ren L 0 v tru p , Umeå O p ponent: D ocent B a rb a ra C annon, Stockholm T itle : M itochondrial d ifferen tiatio n d u rin g th e early developm ent of th e am phibian em bryo. A u th o r: L e n n art N elson. A b s tra c t: M itochondria from X enopus laevis and Ambystoma mexicanum em bryos betw een fertilizatio n and th e b eg in n in g of feed in g w ere stu d ie d : th e form er with re s p e c t to m etabo lic b e h av io u r, enzyme p a tte r n an d c a r rie r a c tiv ity , and th e la tte r w ith re s p e c t to m orphological p ara m e te rs. The m etabolic b eh av io u r of m itochondria was stu d ie d by a s se ssin g th e ra te s of oxygen u p ta k e in p re se n c e of v ario u s s u b s tr a te s . The ra te s of oxidation of most s u b s tr a te s change d u rin g developm ent. The only s u b s tr a te to be read ily m etabolized is glutam ate (in p re se n c e of m alate), whose ra te of oxidation p re s e n ts a peak d u rin g g a stru la tio n and declines d u rin g la rv a l developm ent. T he h igh ra te of oxidation of glutam ate and a high a s p a rta te am in o tran sferase ac tiv ity indicate th a t th e glutam atea s p a rta te cycle may be predom inant in early em bryonic m itochondria. The activ ity of enzym es from the m atrix , the in n e r m em brane and th e o u te r m em brane w ere s tu d ie d . D uring early developm ent activ ities of enzym es in th e v ario u s com partm ents ch an g e in d ep en d en tly of each o th e r. F u r th erm o re, enzym es w ithin one com partm ent may v a ry in d e p e n d e n tly . M easurem ents of c a r rie r activ ity rev eal th a t th e c a r rie r fo r dicarboxylic acids d isp lay s a high ac tiv ity b efo re g a stru la tio n and d ecrease s th e r e a fte r , while th e tric a rb o x y lic acid , p y ru v a te and glutam ate/O H c a rrie rs show th e opposite p a tte rn of ch an g e, th e ir activ ities b ein g low o r u n d etectab le d u rin g early develop m ent. T his implies th a t a m itochondrial d ifferen tiatio n tak es place ' d u rin g developm ent, b eg in n in g at g a stru la tio n when th e f ir s t d iffe re n tia te d cells a p p e a r. In o rd e r to co rre la te m itochondrial an d cellular d iffe re n tia tio n , m or phological p aram eters of m itochondria from u n d iffe re n tia ted and d iffe re n tia te d cells - R uffini cells and epiderm al cells - w ere an aly zed . M itochondria from the d iffe re n tia ted cells are sig n ifican tly d iffe re n t from those in u n d iffe re n tia te d cells. T h u s the p ro c e sse s of cell d iffe re n tiation are accom panied by m orphological and biochemical d ifferen tiatio n of th e m itochondria. Key w ords: A m phibia, X enopus laevis, Ambystoma mexicanum , mito c h o n d ria , d iffe re n tia tio n , enzym es, c a r r ie r s , oxidation, d ev elo p m en t. ISBN 91-7174-093-7 Umeå 1981. D istrib u te d by th e D epartm ent of Zoophysiolo g y , U n iv ersity of Umeå, S-901 87 UMEÅ, Sw eden. MITOCHONDRIAL DIFFERENTIATION DURING THE EARLY DEVELOPMENT OF THE AMPHIBIAN EMBRYO by L e n n a rt Nelson AKADEMISK AVHANDLING som med tillstå n d av r e k to r s äm betet vid Umeå u n iv e rs ite t fö r erh ållan d e av filosofie do k to rsex am en , fram lägges till o ffen tlig g ra n sk n in g to rsd a g e n den 17 decem ber 1981 kl 10.00 vid FysiologiB otanik H ufo, sem inarierum B. Exam inator: P ro fe sso r S ören L ö v tru p , Umeå O p ponent: D ocent B a rb a ra C annon, Stockholm T itle : M itochondrial d iffe re n tia tio n d u rin g th e early developm ent of th e am phibian em bryo. A u th o r : L e n n a rt N elson. A b stra c t : M itochondria from X enopus laevis and Ambystoma mexicanum em bryos betw een fertilizatio n and the b eg in n in g of feed in g w ere stu d ie d : th e form er w ith re s p e c t to m etabo lic b e h a v io u r, enzyme p a tte r n an d c a r r ie r a c tiv ity , and th e la tte r w ith re s p e c t to m orphological p a ra m e te rs . The m etabolic b e h av io u r of m itochondria was stu d ie d b y a s se s sin g th e ra te s of oxygen u p ta k e in p re se n c e of v a rio u s s u b s tr a te s . T he ra te s of oxidation of most s u b s tr a te s ch an g e d u rin g developm ent. The only s u b s tr a te to be read ily m etabolized is glutam ate (in p re se n c e of m alate), whose r a te of oxidation p re s e n ts a p eak d u rin g g a stru la tio n and declines d u rin g la rv a l developm ent T he h igh ra te of oxidation of glutam ate an d a high a s p a rta te am in o tran sferase ac tiv ity indicate th a t th e glutam atea s p a rta te cycle may be p redom inant in early em bryonic m ito ch o n d ria. The ac tiv ity of enzym es from th e m atrix , th e in n e r m em brane and th e o u te r m embrane w ere stu d ie d . D u rin g ea rly developm ent a ctiv ities of enzym es in th e v ario u s com partm ents ch an g e in d e p en d en tly of each o th e r. F u r th erm o re, enzym es w ithin one com partm ent may v a ry in d e p e n d e n tly . M easurem ents of c a r rie r activ ity rev eal th a t th e c a r rie r fo r dicarboxylic acids d isp lay s a high ac tiv ity b efo re g a stru la tio n and d ecrease s th e r e a fte r , while th e trica rb o x y lic acid , p y ru v a te and glutam ate/O H c a rrie rs show th e o pposite p a tte r n of c h an g e, th e ir ac tiv itie s b ein g low o r u n d e te c ta b le d u rin g e arly develop m ent. T his implies th a t a m itochondrial d ifferen tiatio n tak es place d u rin g developm ent, b eg in n in g a t g a stru la tio n when th e f ir s t d iffe re n tia te d cells a p p e a r. In o rd e r to co rre la te m itochondrial and cellular d iffe re n tia tio n , m or phological p aram eters of m itochondria from u n d iffe re n tia te d an d d iffe re n tia te d cells - Ruff ini cells and epiderm al cells - w ere an aly zed . M itochondria from th e d iffe re n tia te d cells are sig n ifican tly d iffe re n t from those in u n d iffe re n tia te d cells. T h u s th e p ro c e sse s of cell d iffe re n tiation a re accom panied by m orphological and biochemical d ifferen tiatio n of th e m itochondria. Key w ords: A m phibia, X enopus laev is, Ambystoma m exicanum, mito c h o n d ria , d iffe re n tia tio n , enzym es, c a r r ie r s , oxidation, d ev elop m en t. ISBN 91-7174-093-7 Umeå 1981. D istrib u te d by th e D epartm ent of Zoophysiolo g y , U n iv ersity of Umeå, S-901 87 UMEÅ, Sw eden. 1 CONTENTS LIST OF PUBLICATIONS 2 INTRODUCTION 3 CARBOHYDRATE METABOLISM 6 E n e rg y so u rces 6 G lycolytic pathw ay 7 P entose p h o sp h ate pathw ay 10 AMINO ACID METABOLISM 11 PROPERTIES OF EMBRYONIC MITOCHONDRIA 13 O xygen consum ption 13 M itochondrial enzym es 16 M itochondrial c a r rie r s 17 M itochondrial m orphology 18 MITOCHONDRIAL DIFFERENTIATION 20 REFERENCES 25 ACKNOWLEDGEMENTS 34 2 LIST OF PUBLICATIONS T he p re s e n t th e sis is b a sed on the following p u b lica tions : I. L 0 v tru p -R e in , H. an d L. N elson. C hanges in e n e rg y metabolism d u rin g th e early developm ent of X enopus laevis. Subm itted fo r p ublication. II. L 0 v tru p -R e in , H. and L. N elson. C hanges in m itochondrial re sp ira tio n d u rin g th e developm ent of X enopus laevis. S ubm itted fo r p ublication. III. N elson, L. and H. L 0 v tru p -R ein . C hanges in ac tiv ity of m itochondrial enzym es d u rin g th e d ev e lopm ent of X enopus laev is. Subm itted fo r p u b li cation . IV. N elson, L. C hanges in th e activ ities of m itochon d ria l c a r rie r s d u rin g th e developm ent of X enopus laevis. S ubm itted fo r p u b lication. V. N elson, L 0 v tru p L ., R. Loren tz o n , L. B oquist and (1982). M orphological d ifferen tiatio n S. of m itochondria in th e early am phibian em bryo. E x p tl, Cell R e s ., 137, 1. T he p a p e rs will be re fe rre d to by th e ir Roman num erals given above. 3 INTRODUCTION In th e c o u rse of em bryonic developm ent th e f e rtili zed egg, a m orphologically simple e n tity , is tran sfo rm ed into a la rv a which u su ally p o ssesses th e main f e a tu re s , m orphological as well as physiological, of th e body d is tin g u ish in g th e m em bers of some major animal tax o n . T his m arvellous tra n sfo rm atio n has been th e su b jec t of in q u i sition fo r se v e ra l c e n tu rie s . From o b se rv a tio n s v e r te b ra te em bryos, made on p a rtic u la rly th e developm ent those of vario u s of am p h ib ia , it has been p o ssib le to sub d iv id e th e em bryonic developm ent into th re e p h a se s: n e sis and la rv a l developm ent. b la stu la tio n , m orphoge T his su b d iv isio n was originally b a se d on v isib le c rite ria . T h u s , b lastu latio n is c h a ra c te riz e d b y ra p id m itoses leading to a fragm entation of th e eg g in a num ber of cells, w ithout o th e r obvious m orphological c h a n g e s . B lastulation ends when m orpho g en esis b e g in s, as ev id en ced by the ap p earan ce of th e b lasto p o re. As implied by th e name, th e em bryonic body is c o n s tru c te d d u rin g th e p h ase of m orphogenesis. L arval developm ent is th e p h ase d u rin g which v ario u s physiological fu n ctio n s s ta r t. It is d ifficu lt to give an ex act m orphological definition of th e tra n sitio n betw een th e se two p h a s e s, b u t th e b e a tin g of th e h e a rt (s ta g e 33/34) may be tak en as evidence th a t larv a l developm ent h as b e g u n . It is p o ssib le by m eans of chemical indices to ch a ra c te riz e th re e p h ases almost coincident with b la stu la - 4 tio n , m orphogenesis and e m b ry o g en esis. T h u s th e re are th re e p h ases in th e p ro te in s y n th e s is , d istin c t both q u alitativ ely and q u a n tita tiv e ly (L d v tru p , 1974). B ut still more c h a ra c te ris tic a re th e d ifferen ces o b tain in g with re s p e c t to th e sy n th e sis of inform ational RNA: mRNA is sy n th e siz e d a t low and c o n sta n t ra te d u rin g cleavage and b lastu latio n (B ach v aro v a, D avidson, A llfrey and M irsky, 1966; Brown and L ittn a , 1966). B ut th is sy n th e sis seems to be in d ep en d e n t of th e n u c le u s, and u n n e c e ssa ry fo r m itoses since actinom ycin D is w ithout e ffect on develop m ent up to th e late b la stu la sta g e (B ra c h e t and D enis, 1963; Wallace an d E lsdale, 1963). The p ro te in s y n th e sis tak in g place m ust th e re fo re dep en d upon m aternal mRNA. T his m eans th a t no cell d ifferen tiatio n can take place in th e e arly em bryo; all th e cells a risin g th ro u g h division m ust belong to th e same ty p e , and th ey may in p rin cip le be c h a ra c te riz e d as "u n d iffe re n tia te d " cells. The b lasto p o re is form ed by a new k ind of cells, th e R uffini c e lls , which pull th e em bryonic cells into the in te rio r, th e re b y in titia tin g g a s tru la tio n . T his p h en o menon m ust th e re fo re be p reced ed by and be d ep en d en t upon a p ro ce ss of cell d iffere n tiatio n . In agreem ent with th is in fe re n c e it is found th a t the sy n th e sis of mRNA in crea ses in th e late b lastu la some time befo re g a s tr u lation M irsky, d u rin g se ts in 1966; th is (B ach v a ro v a , Brown p eriod D avidson, and L ittn a , 1966). A llfrey and F u rth e rm o re , a new sta g e -sp e c ific population of u n sta b le mRNA molecules ap p e a rs which can no longer be d ete c te d at la te r sta g e s of developm ent (D en is, 1968). 5 T he s y n th e s is of mRNA which ta k e s place a t th e o n se t of la rv a l developm ent is both q u a n tita tiv e ly and q u alitativ e ly d iffe re n t from th a t going on in th e p re c e d in g p h a se ; f ir s t now is th e inform ation re sid in g in th e genome e x ten siv e ly ex p lo ited , re s u ltin g in th e form ation of sta b le a d u lt mRNA molecules (B row n an d L ittn a , 1966. D en is, 1968). In th e following te x t th e a tte n tio n has b een fo cu sed mainly on th e two f ir s t p h a s e s. F or th e sak e of sim plicity o p e rate w ith g a s tr u la tio n " . th e following discu ssio n will mostly th e co n cep ts "p re g a stru la tio n " an d "p o st- 6 CARBOHYDRATE METABOLISM E n erg y so u rces The n a tu re of th e e n e rg y so u rces consum ed d u rin g am phibian developm ent h as been stu d ie d since th e b eg in n in g of th e c e n tu ry . G regg (1948), and shown th a t Rana d isa p p e a r in b efo re B ra c h e t and Needham B a rb ie ri and Salomon an d (1963) have Bufo no glycogen g a s tru la tio n , th ough at (1935), seems to th e time of h a tc h in g ab o u t 50 p e r cen t has been consum ed. G reg g 's re s u lts show th a t th e loss in to tal red u c in g c a rb o h y d ra te is n ea rly id en tical w ith th e d ecrease in gly co g en , th e la tte r th u s b ein g th e main e n e rg y so u rce. T he two o th e r common e n e rg y s o u rc e s , lipid and p ro te in , have also been in v e stig a te d (Wills, 1936; G regg and B allen tin e, 1946; M es-H artree and A rm stro n g , 1980). No m easurable ch an g es could be o b se rv e d u n til late d u rin g developm ent. It a p p e ars th a t th e e n e rg y so u rces a re u se d in th e su ccessio n c a rb o h y d ra te s , lip id s, p ro te in s; p ro te in s may be com busted only when no food is su p p lied (L o v tru p , 1974). The chemical an aly ses have been com plemented by m easurem ents of th e re s p ira to ry q u o tie n t (R Q ). T he value of RQ was found to be low d u rin g early develop m ent, re ac h in g th e value of u n ity only a fte r g a stru la tio n (B a rth and B a rth , 1954; B ra c h e t, 1934; P e tru c c i, 1961; Legname an d B a rb ie ri, 1962). T his s u g g e s ts th a t glyco gen is not com busted to any g r e a te r e x te n t before 7 g a s tru la tio n , th u s in agreem ent with th e c a rb o h y d ra te d ete rm in a tio n s. T he low RQ values may be in te rp re te d as an in d i cation of (a ) lipid o r p ro te in com bustion, (b ) an incom p lete c a rb o h y d ra te oxidation o r (c ) com bustion of o th e r m etabolites. T he f ir s t a lte rn a tiv e does not conform with th e chemical a n a ly ses. The second p o ssib ility , if tr u e , m akes th e custom ary in te rp re ta tio n of the RQ d eterm in a tions void of s e n se , since th ey a re b ased on the assum p tion th a t th e oxidation is com plete. The th ird a lte rn a tiv e will be d isc u sse d la te r on (p ag e 11). G lycolytic pathw ay T he fa ct th a t to tal c a rb o h y d ra te rem ains ro u g h ly c o n sta n t b efo re g a stru la tio n does not n ecessarily imply th a t th e re is no tu rn o v e r of c a rb o h y d ra te s d u rin g the e a rlie st involved sta g e s in of developm ent, v ario u s s y n th e tic c a rb o h y d ra te s re a c tio n s. One may be way to s tu d y th is q u estio n involves the application of in h ib ito rs. It has been found th a t sodium fluoride and iodoacetate, in h ib ito rs of g ly co ly sis, do not affect e ith e r oxygen consum ption o r developm ent up to the late b lastu la stag e (B a rth and B a rth , 1954; Salomon and B a rb ie ri, 1964). Among th e glycolytic enzym es, hexokinase (P e tru c c i and M iranda, 1972; Wesolowski and L y erla, 1979), p h o sphoglucom utase, p h o sphoglycerom utase and enolase (Salomon de Legnam e, Sanchez Riera and S ånchez, 1971) and la ctate d eh y d ro g en a se (Adams and F in n eg an , 1965) 8 have been s tu d ie d . H exokinase is the only enzyme clai med to be u n d e te cta b le u n til m etam orphosis. H ow ever, th is is not in agreem ent w ith th e re s u lt of Salomon de Legname e t al (1971), Thoman and G e rh a rt (1979) and our own index" (I), since th e d eterm inations of th e " sh u n t show th a t even at th e e a rlie st sta g e s about 15 p e r cen t of th e glucose is m etabolized in th e glycolytic p ath w ay , an d th e sh a re in c rea ses co n tin u ally . We may th e re fo re conclude th a t alth o u g h th e em bryo p o sse sse s th e enzym es h a rd ly re q u ire d exploited fo r g ly c o ly sis, th is a t all b efo re g a s tru la tio n , pathw ay is and early developm ent is in d ep e n d e n t of g ly colysis. The reaso n fo r th e low ac tiv ity of th is pathw ay d u rin g e arly developm ent is not know n. H ow ever, it is known th a t th e p h o sp h o ry latio n of fru c to s e -6 -p h o sp h a te is th e most im p o rtan t co n tro l p o in t in g ly co ly sis. Phosp h o fru c to k in a se , th e enzyme cata ly sin g th is reaction step is in h ib ited by high co n cen tratio n s of ATP (L e h n in g e r, 1975). The early am phibian em bryo contains high levels of ATP (L p v tru p -R e in , Nelson and L o v tru p , 1974; Salo mon de Legnam e, F e rn a n d e z , Miceli, Mariano and L eg nam e, 1977) with an e n erg y c h arg e of about 0.95 (T h o man and G e rh a rt, 14 CC>2 p ro d u ctio n time w hereas possible th e mechanism glycolysis ( I ) . 1979). As a p p ears from fig u re 1 the . 14 from [6- C ]-g lu co se in c re a se s ATP level to explain d e c re a se s, th e with s u g g e stin g a low in itial ra te of 9 • ------ • C6-14C}- GLUCOSE O A T P - LEVEL - 150 C P M / EMBRYO ng / EMBRYO - 250 DEVELOPMENTAL STAGES F ig. 1. C hanges in th e glycolytic activ ity ( I) and the level of ATP (L o v tru p -R ein th e X e n o p u s em bryo. e t a l ., 1974) in 10 P entose p h o sp h ate pathw ay T he im portance of th e p en to se p h o sp h ate pathw ay fo r em bryonic developm ent was f ir s t d em o n strated by L in d b erg and E rn s te r (1948) in the sea u rch in em bryo. L a te r it has been found in many o th e r em bryos, among which those of am phibian species (H erm ann and Tootle, 1964; B royles and S trittm a tte r, 1973). C onfirm ing p rev io u s o b se rv atio n s by Salomon de Legname et al. (1971) we h av e e sta b lish e d th a t th e re is a tu rn o v e r of glucose d u rin g developm ent b efo re g a s tr u latio n , b u t th a t most of th e glucose p a sse s th ro u g h th e p en to se p h o sp h a te pathw ay (I). Since th e re is no n e t loss of re d u c in g c a rb o h y d ra te s it may be p resum ed th a t th is pathw ay is en g ag ed in th e p ro d u ctio n of rib o se -5 p h o sp h ate fo r th e sy n th e sis of nucleic acid s. 11 AMINO ACID METABOLISM The main su b sta n c e oxidized in th e early em bryo m ust be looked fo r o u tsid e th e ran g e of tra d itio n al e n e rg y so u rc e s. V arious k in d s of evidence s u g g e st th a t th e amino acids glutam ic and a sp a rtic acid are involved in th e oxidative metabolism . T h u s , it h as been o b se rv e d re p e a te d ly th a t th e egg contains larg e am ounts of th ese amino acids which d ecrease d u rin g th e early p a r t of developm ent (D e u ch a r, 1956; M etafora, 1967). Isotope exp erim en ts show th a t glutam ate is the p r e fe r r e d s u b s tr a te d u rin g early developm ent, th e oxi dation of glutam ate b ein g h ig h e st d u rin g g a stru la tio n ( I ) . F u rth e rm o re , u n til th e late g a s tru la ( I I ) , glutam ate, in th e p re se n c e of m alate, is oxidized f a s te r th an any o th e r s u b s tr a te by iso lated m itochondria. Salomon de Legnam e, Sanchez R iera and S anchez (1975) have shown th a t when hom ogenates of Bufo b lastu lae are in cu b ated with rad io activ e glu tam ate, th e isotope is found in a s p a r ta te and in u rid in e m o n o -, di- and tri- p h o s p h a te s . T hese o b se rv atio n s s u g g e st th a t glutam ate is tr a n s form ed (F ig . de to a s p a rta te in th e g lu ta m a te -a sp a rta te cycle 2 ). T his cycle has an RQ value of 0.67 (Salomon Legnam e, 1969), actu ally o b se rv e d . which co rre sp o n d s well with th a t 12 PYRUVATE / / ! I 7 OXALOACETATE ASPARTATE GLUTAMATE MALATE 2-OXOGLUTARATE FUMARATE / SUCCINATE F ig. 2. The g lu ta m a te -a sp a rta te cycle an d th e p ro d u c tion of p y ru v a te . 13 PROPERTIES OF EMBRYONIC MITOCHONDRIA O xygen consum ption Since G odlew ski's o b serv atio n s (1900) it is known th a t th e ra te of re sp ira tio n in creases d u rin g th e co u rse of am phibian developm ent. T his has been confirm ed la te r innum erable times ( e .g . Legname and B a rb ie ri, 1962; Landström and L d v tru p , 1974). The ratio betw een ATP and ADP + P. is known to i be e s se n tia l fo r th e reg u latio n of the r e s p ira to ry chain (H olian, Owen and Wilson, 1977). As m entioned e a rlie r, th e ATP level in X e n o p u s is high d u rin g cleavage stag e s (L 0 v tru p -R e in e t a l ., 1974). By com paring th e shape of th e ATP c u rv e w ith th a t e sta b lish ed by Landström and L d v tru p (1974) fo r th e oxygen u p ta k e d u rin g early developm ent of X e n o p u s it is obvious th a t a re v e rs e d relatio n e x ists betw een ATP p e r em bryo (F ig . e sta b lish ed fo r Bu fo re sp ira tio n 3 ). by and th e amount of A sim ilar relation has been Salomon de Legname et al. (1977). T he p re g a s tru la sta g e s have th e low est r e s p ir a tio n , in agreem ent with th e h igh level of ATP. When the am ount of ATP d ec rease s th e re sp ira tio n in c re a se s . S tu d ies of th e effects on developm ent of the r e s p ir a to ry in h ib ito rs , cyanide and azide, have been conflicting (B ra c h e t, 1945; 1934; C raw ford B a rn e s, and 1944; Wilde, Spiegelman 1966; Lamy and Moog, and Melton, 1972). H ow ever, cyanide and azide do not seem to in h ib it oxygen u p ta k e in th e same way. C yanide stro n g ly in- 14 ni 0 2 / EMBRYO AND HOUR OXYGEN CONSUMPTION O ATP-LEVEL DEVELOPMENTAL F ig. 3. C hanges in and L p v tru p , oxygen STAGES consum ption (L andström 1974) and ATP level (L p v tru p - Rein e t a l ., 1974) in th e X enopus em bryo. 15 h ib its oxygen consum ption in in ta c t em bryos at all stag e s of developm ent, w hereas th e in h ib ito ry effect of azide is low d u rin g (B ra c h e t, early developm ent and in creases g rad u ally 1934; Spiegelman and S tein b ach , 1945; C raw fo rd and Wilde, 1966). T hese re s u lts may be explained by th e se n sitiv ity of th e m itochondrial re s p ira to ry chain tow ards th e in h ib ito rs . C yanide in h ib its m itochondrial oxygen u p tak e d u rin g th e e n tire em bryonic developm ent, while th e se n sitiv ity tow ards azide in creases ( I I ) . F u rth e rm o re , oxid ativ e oxygen th a n d in itro p h enol (D N P), an u n co u p ler of p h o sp h o ry la tio n , u p tak e to stim ulates th e in crease a la rg e r e x te n t before g a stru la tio n in la te r developm ental sta g e s (G re g g , nam e, 1968a; in Legnam e, F ern an d ez and 1960; Leg Miceli, 1971), in d icatin g a " re s p ira to ry p otential" exceeding th e oxygen u p ta k e which co n d itio n s. is ex h ib ited Since it by is known em bryos under th a t DNP has norma] A T P :ase a c tiv ity , and f u r th e r th a t th e ratio of ATP and ADP+Pj e x e rts a re g u la to ry function on re s p ira tio n , the effect m entioned h e re may be ex p lain ed . A num ber of o b serv atio n s indicate th a t m itochondria in the early em bryo are m etabolically d iffe re n t from those in la te r developm ent. O ur re s u lts co n cern in g the oxida tion of glutam ate (+ m alate) b ear out th is d ifferen ce. As re g a rd s shown th e th a t c itric a rse n ite acid cycle, stim ulates Legname (1968b) m itochondrial has oxygen u p tak e up to th e b lastu la s ta g e , b u t in h ib its it d u rin g la te r s ta g e s. This double b eh av io u r could be a s c rib e d , on th e one h an d to its role as u n co u p ler and A T P :ase 16 Stim ulator e ffe c t, on th e o th e r h a n d , to its capacity to in h ib it oxid ativ e d ecarboxylation (Salomon de Legname et a l ., 1977). D urin g early developm ent th e level of ATP is high and th e ac tiv ity of th e trica rb o x y lic acid cycle is low (Thoman and G e rh a rt, 1979). T h u s , the main effect of a rse n ite is p ro b ab ly re late d to th e A T P :ase effect which lowers th e ATP/ADP+P^ ratio which in re sp ira tio n . H ow ever, tu rn stim ulates th e la te r phase of developm ent is c h a ra c te riz e d by relativ ely low ATP levels and an active K rebs cycle (Salomon de Legname et a l ., 1977). The effect of a rse n ite may th en be re lated to its action on oxid ativ e d ecarb o x y latio n , which is e x p re ss e d as an may be inhibition of re sp ira tio n . M itochondrial enzym es T he change in m itochondrial metabolism looked fo r b o th a t th e re g u la to ry level and at th e level of m itochondrial c h an g e s. V arious fin d in g s in d icate th a t m itochondria in th e early em bryo are d iffe re n t from those in th e la te r em bryo, q u a n tita tiv e ly as well as q u a lita tiv e ly. F or exam ple, q u a n tita tiv e an alyses of m itochondrial fa tty acids rev eal th a t th e ir composition changes d u rin g early developm ent (Bonini de Romanelli, Alonso and B azån, 1981). Wallace (1961) su g g e ste d th a t iso citrate is oxidized by th e NADP+-d e p e n d e n t enzyme d u rin g early am phibian developm ent and P e tru c c i, Amicarelli, Di Cola and Papo- 17 n e tti (1975) iso c itra te r e s u lts w ere unable d e h y d ro g en a se. could iso c itra te not be to In d etect NAD+-d e p e n d e n t the p re s e n t stu d ie s th ese c o rro b o ra te d , d e h y d ro g en ase is p r e s e n t, NAD+-d e p e n d e n t although th e a c ti v ity is q u ite low, th e low est among th e enzym es in v e s ti g ated ( I I I ) . In many o th e r re sp e c ts early m itochondria are indeed d iffe re n t (II; III and IV ). T h u s , malate d e h y d ro g en ase an d a s p a rta te am in o tran sferase, enzym es involved in th e g lu ta m a te -a sp a rta te cycle, are both v e ry active b efo re g a s tru la tio n , b u t d ecrease la te r on. The "ro ten o n e -in se n sitiv e " a fte r NADH g a s tru la tio n , re d u c ta se d e crease s d rastically and b egins to in crease only d u rin g la rv a l developm ent. Monoamine oxidase is a b s e n t in early m itochondria, and becomes d etectab le only at th e tailbud sta g e . Cytochrom e oxidase and succinate d eh y d ro g en ase d ecrease s lig h tly , b u t s ig n ific a n tly , d u rin g developm ent. M itochondrial c a rrie rs A sim ilar p ic tu re o b tains with re sp e c t to the c a r rie rs (IV ). Thus th e ac tiv ity of the malate c a r rie r is h igh in th e early em bryo, and d ecreases g rad u ally . A fum arate c a r r ie r , a b se n t in m itochondria from the em bryo of la te r developm ental s ta g e s , and from th e ad u lt liv e r, is p re s e n t in m itochondria isolated from th e early em b ry o . On th e c o n tra ry , the g lu tam ate/h y d ro x y l c a r rie r is a b se n t in early m ito ch o n dria, and becomes d etectab le only at th e tailb u d sta g e . The activ ity of the tric a rb o xylic acid c a rrie r is relativ ely low in early m itochondria, and in crea ses s u b s e q u e n tly . 18 M itochondrial m orphology It was m entioned above th a t cell d ifferen tiatio n begin s in th e g a s tru la and it is th u s a reasonable a s sum ption th a t th e o b se rv e d m itochondrial d ifferen tiatio n is c o rre la te d w ith cell d iffere n tiatio n . It has been p o s sible to confirm th is co n jectu re as fa r as the m itochon d rial m orphology is co n cern ed . W orking with th re e d iffe ren t cell ty p e s , re p re s e n tin g th e cell d ifferen tiatio n p a tte r n s th a t a rise sp o n tan eo u sly in th e am phibian em b ry o , it was shown th a t in u n d iffe re n tia te d m itochondria condensed a re small, conform ation. almost In sp h erical d iffe re n tia te d and cells the with a cells, r e p r e s e n tin g R uffini cells and epiderm al cells, th e m itochond ria a re much la rg e r and elo n g ated , and with an orthodox conform ation. T he m itochondria a re sig n ifican tly d iffe re n t in th e two ty p e s of d iffe re n tia te d cells (V ). Since it is know th a t m itochondria a re capable of ch an g in g th e ir shape and size by m ovem ent, fusion and fragm entation th e se o b se rv a tio n s raise th e issu e of w h eth er tru e d ifferen tiatio n o r tem porary m orphological change is b ein g o b s e rv e d . In o u r case th e re is no r e a son to dou b t th a t a real d ifferen tiatio n o c c u rs, since the change in m orphology is in good co rrelatio n with the of ATP functional ch a n g es. C ondensed m itochondria and high levels p rev ail in the p re g a s tru la em bryo (L d v tru p -R ein et a l ., 1974; Salomon de Legname e t a l ., 1977). It is tem pting to s u g g e st th a t the high level of ATP is resp o n sib le for 19 th is conform ation. T his assum ption would receive some s u p p o rt from Poliak (1975) an d S utton and Poliak (1980), who re p o rte d a co n d en sed conform ation in foetal rat liv e r m itochondria in co rrelatio n w ith a tra n s ie n t high co n cen tratio n of ATP. 20 MITOCHONDRIAL DIFFERENTIATION T he re s u lts m itochondria d isc u sse d u n d erg o a so d istin c t fa r dem onstrate d ifferen tiatio n th a t in the c o u rse of developm ent, and much of th e evidence s u g g e s ts th a t it is p o ssible to d istin g u ish two p h ases with re s p e c t to m itochondrial d iffe re n tia tio n . T he f ir s t p h a se , d ep en d in g on an em bryonic ty p e of m itochondria o c c u rrin g in u n d iffe re n tia te d cells, is c h a ra c te riz e d by a p a rtic u la r metabolism d ire c te d mainly tow ards s y n th e tic a c tiv itie s. T he trica rb o x y lic acid cycle is coupled to tra n s am inative reactio n s catalyzed by a s p a r ta te tran sam in ase. T his aty p ical cy cle, w hich re p re s e n ts th e main oxidative pathw ay d u rin g early developm ent (I), p ro d u ce s a s p a rta te while some of th e in term ed iates of th e g lu ta m a te -a sp a rta te cycle such as m alate seem to be ch an n eled tow ard th e s y n th e s is (P e tru c c i, Amicarelli an d P a p o n etti, of p y ru v ic acid 1977). Both a s p a r ta te and p y ru v a te a re u se d as p re c u rs o rs in th e p a th ways leading to th e form ation of p u rin e and pyrim idine bases (F ig . 2; page 12). The second p h a s e , o c c u rrin g d u rin g acquisition of g a s tru la tio n , an involved in e n erg y 1969; and I I) . I "em bryonic" in itia te d by m etabolic changes "ad u lt" ty p e p ro d u ctio n is c h a ra c te riz e d by the of m itochondria, (Salomon As cell d ifferen tiatio n de more Legnam e, p ro ceed s the ty p e of m itochondria is g rad u ally replaced by an "ad u lt" ty p e . 21 The ch an g es in m orphology and biochemical p ro p e r ties of m itochondria d u rin g early developm ent may be cau sed e ith e r b y ch an g es in p re e x istin g m itochondria in th e u n d iffe re n tia te d cells o r by th e replacem ent of th is population of m itochondria by a n o th e r one with d iffe re n t p r o p e r tie s . T hese h y p o th e se s a lte rn a tiv e s put r e p re s e n t fo rw ard to actually explain th e two of the mechanism of m itochondrial b iogenesis in all living c e lls . As y et we have no indication of which ty p e of mechanism is in volv ed . Some inform ation, h ow ever, is w orth m entioning w hich may fa v o u r th e second a lte rn a tiv e . As we have see n , th e m itochondria of d iffe re n tia te d cells are s u b sta n tia lly la rg e r th an those of u n d iffe re n tia te d cells (V ), so th e f ir s t a lte rn a tiv e would re q u ire th a t m itochondrial p ro te in p e r em bryo in creases sig n ifi c a n tly . In fa c t, it d ecre ase s by th irty p e r c e n t from the g a s tru la to th e tailb u d stag e ( I I ) . T h e re fo re , th e num b e r of m itochondria o u g h t to d ec re a se , and if some of th e early m itochondria a re bound to d e g e n e ra te , it seems likely th a t th ey all do so, being rep laced by a new p o p u la tio n . T he c u rv e re p re s e n tin g the changes in p ro tein co n ten t p e r em bryo ( II) may be reso lv ed into two c u rv es (F ig . 4 ), which make it p o ssible to d istin g u ish two mito ch o n d rial p o p u latio n s: one which begins to decline and th e o th e r to rise aro u n d population r e p re s e n ts th e g a s tru la tio n . "em bryonic" The d e c reasin g ty p e , while the (pg/EM BRYO) 22 O PROTEIN O > mDNA SYNTHESIS -30 & 5 UJ QC D PROTEIN 01 - 20 aUi co c/> MITOCHONDRIAL UJ X >■ 0) 0 10 20 30 40 DEVELOPMENTAL STAGES F ig. 4. C hanges in m itochondrial p ro te in co n ten t (II) and mtDNA sy n th e sis (C hase and D avid, 1972) d u rin g th e developm ent of X enopus. The d ash ed lines r e p re s e n t th e s u g g e ste d resolution of th e p ro te in c u rv e . 23 in c re a sin g population r e p re s e n ts th e "adult" ty p e of m ito ch o n d ria. S tu d ies of cytochrom e oxidase activ ity in am phibian nucleocytoplasm ic h y b rid s reveal th a t the activ ity of th is enzyme fails to in crease d u rin g p o s t-n e u ru la r develop m ent as it does in co n tro l em bryos (L iepins and H ennen, 1977). T his re s u lt s u g g e sts th a t th e m aternally in h e rite d m itochondria a re able to m aintain a functional population of m itochondria up to n e u ru la tio n . T his population may co n stitu te th e "em bryonic" m itochondria. M itochondrial DNA is sy n th e siz e d in co rrelatio n with th e in c re a sin g "ad u lt" population (C hase and Dawid, 1972). T he s y n th e tic ac tiv ity is too low to explain th e in c re a se in th e "ad u lt" p o p u lation, b u t th e m ethod yields a minimum estim ate of th e s y n th e tic r a te . R eplication of m itochondrial DNA is known to take place d u rin g early developm ent of sea u rc h in (B re sc h , 1973), as well as of fish em bryos (M ikhailov and G ause, 1974), with a doub ling time of seven h o u rs , although the m itochondrial DNA co n ten t rem ains c o n sta n t. The two m itochondrial populations have d iffe re n t p ro p e rtie s . T he sw elling in am monium-fum arate (IV ) is a good m ark er fo r th e "em bryonic" pop u latio n , while mono amine oxidase ac tiv ity (III) and glutam ate/O H c a r rie r activ ity (IV ) may be u sed fo r th e "adult" ty p e of mito ch o n d ria. 24 Replacem ent of m itochondria o ccu rs concom itantly with th e p ro c ess of cellu lar d iffe ren tiatio n and may th u s be causally re la te d to it. T his assum ption receiv es some s u p p o rt from L andström , L d v tru p -R ein and L dv tru p (1976), who re p o rte d th a t an in h ib ito r of m itochondrial p ro te in s y n th e s is , chloram phenicol, may affect th e d iffe re n tia tio n of R uffini cells, an d from P ritc h a rd (1981), who re p o rte d th a t d istu rb a n c e s of m itochondrial m etabo lism may affect th e d iffere n tiatio n of chicken n e u ra l re tin a into pigm ent epithelium . em bryo 25 REFERENCES Adams, E. and C .V . F innegan (1965). An in v estig atio n of la ctate d eh y d ro g en a se activ ity in e arly am phibian developm ent. J . E x p tl. Z ool., 158, 241-251. B ac h v aro v a, R ., E .H . D avidson, V .G . A llfrey and A .E . M irsky (1966). A ctivation of RNA sy n th e sis asso ciated w ith g a s tru la tio n . P roc. N atl. Acad. S c i., 55, 358-365. B a rb ie ri, F .D . an d m ental stu d ie s H. Salomon (1963). Some e x p e ri on glycogen and lactic acid in th e developing eg g s of Bufo a r e n a r u m . Acta Em bryol. M orphol. E x p e r ., 6, 304-310. B a rn e s , M .R. Ran a (1944). pipiens The metabolism of th e developing as rev ealed by specific in h ib ito rs . J . E x p tl. Z ool., 95, 399-417. B a rth , L .G . an d L .J . B arth (1954). T he e n e rg e tic s of developm ent. U niv. P re ss . Bonini de Rom anelli, I . C ., T . S . Alonso and N . G . Bazân (1981). P h o sp h atid ic acid, p h o sp h atid y lin o sito l, p h o sp h a tid y lse rin e and cardiolipin in the co u rse of early em bryonic developm ent. F atty acid composition and co n ten t in whole toad em bryos and in mito ch o n d rial fra c tio n s . 561-571. Biochim. B iophys. A cta, 664, 26 B rä c h e t, J . (1934). É tude du métabolisme de l'oeuf de gren o u ille (R ana fu sc a ) au co u rs du développem ent. I. La re sp ira tio n e t la gly co ly se, de la segm entation à l'éclosion. A rch . B io l., 45, 611-727. B ra c h e t, J . and H. Denis (1963). E ffects of actinom ycin D on m orp h o g en esis. N a tu re , 198, 205-206. B ra c h e t, J . an d J . Needham (1935). É tude du m étabolis me de l'o eu f de grenouille (R ana fu sc a ) au co u rs du développem ent. IV. La te n e u r en glycogène de l'o eu f de la segm entation à l'éclosion. A rch. B io l., 46, 821-835. B re s c h , H. young (1973). M itochondrial DNA metabolism Psammechinus m ilitaris em bryos. F ed. in E u r. Biochem. Soc. L e tte rs , 31, 233-236. B row n, D .D . and E. L ittn a (1966). S y n th esis and accu m ulation of DNA-like RNA d u rin g em bryogenesis of X enopus laevis. J . Mol. B io l., 20, 81-94. B ro y les, R .H . and C .F . S trittm a tte r (1973). Hexose m onophosphate s h u n t d e h y d ro g en ases in th e d ev e loping fro g . Comp. Biochem. P h y sio l., 44B, 667- 676. C hase, J.W . and I .B . Dawid (1972). B iogenesis of mito ch o n d ria d u rin g X enopus laevis developm ent. D ev. Biol. 27, 504-518. 27 C raw fo rd , R .B. and C .E . Wilde (1966). C ellular d iffe re n tiation in th e Anamniota II. O xygen d ependency and e n e rg e tic s req u irem en ts d u rin g e arly developm ent of teleo sts and u ro d e le s. E x p tl. Cell R e s ., 44, 453- 470. D enis, H. (1968). Role of m essen g er ribonucleic acid in em bryonic d ev elo p m ent. A dv. M orphogen., 7, 115-150. D eu ch ar, E.M. (1956). Amino acids in developing tiss u e s of X e n o p u s la e v i s . J. Em bryol. E xp. M o rp h o l., 4, 327-346. G odlew ski, E. (1900). Ü ber die E inw irkung des S a u e r sto ffs au f die E ntw icklung u n d ü b e r den Gasw echsel in den e rs te n E n tw ick lungstadien von Ra na tem por a r i a . B ull. I n te rn a t. A cad. S e i., C ravovie, 232. G reg g , J .R . (1948). C arb o h y d ra te metabolism of normal and of h y b rid am phibian em bryos. J . E x p tl. Z o o l., 109, 119-134. G reg g , J .R . (1960). R e sp ira to ry reg u latio n in am phibian developm ent. Biol. B u ll., 119, 428-439. G reg g , J .R . and R. Ballen tine (1946). N itrogen m eta bolism of Rana pipiens d u rin g em bryonic develop m ent. J . E x p tl. Z ool., 103, 143-168. 28 H errm an n , H. and M .L. Tootle (1964). Specific and g e n e ra l a sp e c ts of th e developm ent of enzym es and m etabolic p ath w ay s. P hysiol. R e v ., 44, 289-371. H olian, A ., C .S . Owen and D .F . Wilson (1977). C ontrol of re sp ira tio n in isolated m itochondria: Q u an titativ e evaluation of th e d ep en d en ce of re s p ira to ry ra te s on ATP, ADP an d P... A rch . Biochem. B io p h y s ., 181, 164-171. Lamy, L. an d C .G . M elton, Jr. (1972). R eversible re -fu sio n of fro g blastom eres and additional cleav age e ffects of chloram phenicol an d o th e r r e s p ira to ry in h ib ito rs . J . E x p tl. Z o o l., 180, 319-332. L andström , U. and S. L d v tru p (1974). O xygen consum p tion of norm al and dw arf em bryos of X enopus laevis. Wilhelm Roux' A r c h ., 176, 1-12. L andström , U ., H. L 0 v tru p -R ein and S. L 0 v tru p (1976). On th e determ ination of th e d o rso -v e n tra l p o larity in th e am phibian em bryo: su p p re ssio n by lactate of th e form ation of R u ffin i's fla sk -c e lls. J . Em bryol. E xp. M orphol., 36, 343-354. Legnam e, A .H . am phibian (1968a). R esp iration control e m b ry o g e n e sis. Acta Em bryol. E x p e r ., 10, 124-131. d u rin g M orphol. 29 Legnam e, A .H . (1968b). The e ffect of a rse n ite in isola te d m itochondria of am phibian e m b ry o s. Acta Emb ry o l. M orphol. E x p e r ., 10, 117-123. Legnam e, A .H . and F .O . B a rb ie ri (1962). El metabolismo re sp ira to rio en el d esarro llo inicial de Bufo a r e n a rum . A rch . Bioq. Quim. Farm . Tucum an, 10, 31-39. Legnam e, A .H ., S .N . F ern an d ez and D .C . Miceli (1971). R e sp ira to ry reg u latio n in Bufo a r e n a r u m e g g s. Biol. B uU ., 141, 154-161. L e h n in g e r, A .L . (1975). B iochem istry. W orths P ubli s h e rs , New Y ork. L iep in s, A. an d S. H ennen (1977). Cytochrom e oxidase deficiency d u rin g developm ent of am phibian nucleocytoplasm ic h y b rid s . Dev. B io l., 57, 284-292. L in d b e rg , O. and L. E rn s te r (1948). On c a rb o h y d ra te metabolism in hom ogenized sea u rc h in eggs. Bio- chim. B iophys. A cta, 2, 471-477. L d v tru p , S. E p ig en etics. John Wiley and S ons, London, 1974. L 0 v tru p -R e in , H ., L. Nelson and S. L d v tru p (1974). C hanges in th e co n ten t of ATP and GTP d u rin g the developm ent of X enopus 86, 206-209. laevis. E x p tl. Cell R e s ., 30 M es-H artree, M. and J .B . A rm strong (1980). Lipid metabolism d u rin g em bryonic and early postem bryonic developm ent of X enopus laevis. Can. J . Bio- ch em ., 58, 559-564. M etafora, S. b ry o s (1967). F ree amino acids in eg g s and em of h y b rid s . Bufo vulgaris, Bufo viridis an d th e ir Acta Em bryol. M orphol. E x p e r ., 9, 280- 302. M ikhailov, V .S . and G .G . m itochondrial DNA G ause (1974). R eplication of in th e early developm ent of M i s g u r n u s fo ssilis. D ev. B io l., 41, 57-71. P e tru c c i, D. nel corso (1961). Q .R . ed incorporazione di 14 COg dello sviluppo em brionale di Bufo bufo. R iv. B io l., 54, 339-352. P e tru c c i, D. and M. M iranda (1972). C orrelazione tra g licalisi e via dei p e n to si fo sfati nel citro so l di ovario di A nfibi. BoU. Soc. Ita l. S p e r ., 48, 915-918. P e tru c c i, D ., F. Amicarelli an d B. P aponetti (1977). NAD -lin k e d malic enzyme in m itochondria of am p hibian o ocytes. I n t. J . B iochem ., 8, 149-157. P e tru c c i, D ., F. Am icarelli, M. Di Cola and B. P aponetti (1975). Facies enzim atica dei m itocondri degli oociti di X enopus 115-122. laevis. Acta Em bryol. E x p e r., 1975, 31 Poliak, J .K . (1975). T he m aturation of th e in n e r mem b ra n e of foetal r a t liv e r m ito ch o n d ria. B iochem . J ., 150, 477-488. P ritc h a rd , D .J . (1981). T ra n sd iffe re n tia tio n of chicken em bryo n e u ra l re tin a into pigm ent epithelium : in d i cations of its biochemical b a s is . J . Em bryol. E xp. M o rp h o l., 62, 47-62. Salomon de Legnam e, H. (1969). Biochemical stu d ie s on th e e n e rg e tic s of Bufo arenarum segm enting eg g s. A rch . B io l., 80, 471-490. Salomon, H. and F .D . B a rb ie ri (1964). Some e ffects of anaero b io sis and flu o ride on th e developing eggs of Bufo aren aru m . Acta Em bryol. M orphol. E x p e r ., 7, 21-28. Salomon de Legnam e, H ., A .N . Sånchez R iera and S .S . Sånchez d u rin g (1971). Pathw ays Bufo aren aru m of glucose o n to g en esis. breakdow n Acta Em bryol. E x p e r ., 1971, 187-194. Salomon de Legnam e, H ., A .N . Sånchez R iera and S .S . Sanchez (1975). S ource of p re c u rs o rs fo r nucleotide b io sy n th e sis in Bufo arenarum segm enting Acta Em bryol. E x p e r ., 1975, 123-136. eggs. 32 Salomon de Legnam e, H ., S .N . F e rn a n d e z , D .C. Miceli, M .I. Mariano and A .H . Legname (1977). Modifica tions of th e m itochondrial u ltr a s tr u c tu r e related to m etabolic ch an g es d u rin g Bufo a r e n a r u m on to g en e sis . Acta Em bryol. E x p e r ., 1977, 93-107. Spiegelm an, S. and F . Moog (1945). A com parison of th e effects of cyanide and azide on th e developm ent of fro g e g g s . Biol. B u ll., 89, 122-130. Spiegelm an, S. and H .B . S teinbach (1945). S u b s tra te enzyme o rien tatio n d u rin g em bryonic developm ent. Biol. B u l l ., 88, 254-268. S u tto n , R. an d m atu ratio n J .K . of rat Poliak (1980). liv e r H orm one-initiated m itochondria a fte r b ir th . Biochem. J . , 186, 361-367. Thom an, M. and J .C . G e rh a rt (1979). A bsence of d o rsalv e n tra l d ifferen ces em bryos of X enopus in e n e rg y laevis. metabolism in early Dev. B io l., 68, 191 - 202. Wallace, R .A . (1961). Enzymatic p a tte rn s in the develop in g fro g em bryo. D ev. B io l., 3, 486-515. Wallace, H. an d T .R . Elsdale (1963). E ffects of actinomycin D on am phibian d ev elo pm ent. Acta E m bryol. M orphol. E x p e r ., 6, 275-282. 33 Wesolowski, M.M. and T . A. L yerla (1979). T he develop m ental a p p earan ce h y d ro g e n a se in of hexokinase an d alcohol de X enopus laevis. J. E x p tl. Z ool., 210, 211-219. Wills, J . A. (1936). T he re s p ira to ry r a te of developing am phibia with sp ecial re fe re n c e to tiatio n . J . E x p tl. Z ool., 73, 481-510. sex d iffe re n 34 ACKNOWLEDGEMENTS I wish to e x p re ss my sin ce re g ra titu d e to: Dr H u g u ette L 0 v tru p -R ein fo r her s u p p o rt and stim u latin g criticism th ro u g h o u t th e w ork. P ro fe sso r S0ren L 0 v tru p fo r valuable s u p p o rt and en co u rag em en t. Mr L a rs -E rik Sandström fo r tech n ical a ssis ta n c e . Mrs Mabel Jo n sso n fo r skilled ty p in g of th e m anu s c rip t . My o th e r frie n d s and colleagues at- th e D epartm ent of Zoophysiology fo r th e ir cooperation sh ip . and com panion
© Copyright 2026 Paperzz