FPC 10 Trigonometry: Special angles. Name:______Key______ (0°, 30°, 45°, 60°, 90°) Equilateral Triangles. 3 equilateral triangles with different side lengths are given below. All equilateral triangles have 3 equal sides and 3 interior angles of 60°. If we draw a line labeled as height from the vertex to the base line in each equilateral triangle, then we have 2 identical right triangles in each diagram as shown below. These right triangles all have special interior angles of 30°-60°-90°. tan 60° = 3 1.73205 , tan 60° = 2 3 3, 2 25 3 25 = 3 tan 60° = 3 is the exact value. sin 60° = 3 2 , sin 60° = cos 30° = 3 2 , cos 30° = cos 60° = 1 2 , 3 2 3 , 2 4 cos 60° = 3 2 3 , 2 4 2 1 , 4 2 Did you notice that sin 60° = cos 30°? sin 60° = 25 3 3 50 2 cos 30° = 25 3 3 50 2 cos 60° = 25 1 50 2 Isosceles Right Triangle. 3 isosceles right triangles with different side lengths are given below. These isosceles right triangles have 2 equal sides and 2 interior angles of 45°. These right triangles all have special interior angles of 45°-90°-45°. tan 45° = 1 1 1 sin 45° = 1 2 , sin 45° = cos 45° = 1 2 , cos 45° = , tan 45° = 2 1 2 2 2 2 2 2 2 , 1 , 2 1 , 2 tan 45° = 13 1 13 sin 45° = cos 45° = 13 1 13 2 2 13 1 13 2 2
© Copyright 2026 Paperzz