57. Lissa was accurate (her average is 47.34) but not

Chapter 3 Assignment Answers
57. Lissa was accurate (her average is 47.34) but not precise.
Lamont was fairly accurate, and precise.
Leigh Anne was not accurate, but was precise.
58. a. infinite
b. 4
59. a. 98.5 L
b. 0.000763 cg
60. a. 43 g
b. 225.8 L
61. 59(a) 9.85 x 101
c. infinite
d. infinite
c. 57.0 m
c. 92.0 kg
d. 12.2 °C
d. 32.4 m3
59(b) 7.63 x 10-4
59(c) 5.70 x 101
59(d) 1.22 x 101
60(a) 4.3 x 101
60(b) 2.258 x 102
60(c) 9.20 x 101
60(d) 3.24 x 101
62. Error = (experimental value – accepted value)
Percent error =
63. a. second
|error|
x 100
accepted value
b. meter
c. kelvin
d. kilogram
66. K = °C + 273.
962 °C + 273 = 1235 K
67. A conversion factor is a ratio of equivalent measurements.
68. The two measurements must equal each other.
69. The unit in the denominator of the conversion factor must be
identical to the unit of the given or starting measurement.
This is so the units cancel out.
1𝑠
70. a. 157 𝑐𝑠 π‘₯
b. 42.7 𝐿 π‘₯
100 𝑐𝑠
= 1.57 𝑐𝑠
1000 π‘šπΏ
c. 261 π‘›π‘š π‘₯
1𝐿
1π‘š
= 42,700 π‘šπΏ
π‘₯
109 π‘›π‘š
1000 π‘šπ‘š
1π‘š
= 2.61 π‘₯ 10βˆ’4 π‘šπ‘š
d. 0.065 π‘˜π‘š π‘₯
1000 π‘š
1 π‘˜π‘š
1𝑔
e. 642 𝑐𝑔 π‘₯
100 𝑐𝑔
2
f. 8.25 π‘₯ 10 𝑐𝑔 π‘₯
π‘₯
π‘₯
10 π‘‘π‘š
1π‘š
= 650 π‘‘π‘š
1 π‘˜π‘”
βˆ’3
=
6.42
π‘₯
10
π‘˜π‘”
1000 𝑔
1𝑔
100 𝑐𝑔
π‘₯
109 𝑛𝑔
1𝑔
= 8.25 π‘₯ 109 𝑛𝑔
73. a. 283 mg
b. 0.283 g
c. 0.000283 kg
d. 6.6 g
e. 660 cg
f. 0.0066 kg
g. 0.28 mg
h. 0.028 cg
i. 2.8 x 10-7 kg
74. 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 =
π‘šπ‘Žπ‘ π‘ 
π‘£π‘œπ‘™π‘’π‘šπ‘’
76. Calculate the density of the bar, and compare it to gold’s
density.
𝑑=
π‘šπ‘Žπ‘ π‘ 
57.3 𝑔
𝑔
=
=
12
π‘£π‘œπ‘™π‘’π‘šπ‘’
4.7 π‘π‘š3
π‘π‘š3
According to Table 3.6 on page 90, this does not match gold’s
density of 19.3 g/cm3.
79. e, d, c, f, a, b
80. a. accurate and precise
b. inaccurate and precise
c. inaccurate and imprecise
82. Germanium’s melting point is 1210 K, or 937 °C. This is lower
than gold’s melting point of 1064 °C. So germanium would
melt first.
86. Use density as a conversion factor:
1 π‘π‘š3
50.0 𝑔 π‘₯
= 4.20 π‘₯ 104 π‘π‘š3
βˆ’3
1.19 π‘₯ 10 𝑔
Or you could use the density formula and solve for V.
88.
91.
1 π‘‘π‘Žπ‘¦ π‘₯
24 β„Žπ‘Ÿ
1 π‘‘π‘Žπ‘¦
1.5 π‘₯ 108 π‘˜π‘š π‘₯
93.
5.52
97.
112
𝑔
π‘π‘š3
π‘˜π‘š
β„Žπ‘Ÿ
π‘₯
π‘₯
π‘₯
60 π‘šπ‘–π‘›
1 β„Žπ‘Ÿ
1000 π‘š
π‘₯
1 π‘˜π‘š
1 π‘˜π‘”
1000 𝑔
1000 π‘š
1 π‘˜π‘š
π‘₯ (
π‘₯
π‘₯
0.15 s π‘™π‘œπ‘ π‘‘
1 π‘šπ‘–π‘›
1𝑠
3.0 π‘₯ 108
π‘š
10 π‘π‘š 3
π‘₯
π‘₯
60 π‘šπ‘–π‘›
π‘₯
1 π‘šπ‘–π‘›
60 𝑠
60 𝑠
1 π‘šπ‘–π‘›
) = 5.52
1 π‘‘π‘š
1 β„Žπ‘Ÿ
1 π‘šπ‘–π‘›
60 𝑠
= 3.6 π‘šπ‘–π‘›π‘’π‘‘π‘’π‘  π‘™π‘œπ‘ π‘‘
= 8.3 π‘šπ‘–π‘›π‘’π‘‘π‘’π‘ 
π‘˜π‘”
π‘‘π‘š3
= 31.1
π‘š
π‘