ATOMIC DATA AND NUCLEAR STRENGTHS DATA TABLES OF GAMMA-RAY 23, 547-585 (1979) TRANSITIONS IN A = 45-90 NUCLEI P. M. ENDT Fysisch Laboratorium, Rijksuniversiteit Utrecht Princetonplein 5, 3508 TA Utrecht, The Netherlands The present tables list the strengths (in Weisskopf units) of over 1200 gamma-ray transitions in A = 45-90 nuclei, classified according to character (electric or magnetic, multipolarity). It appears that E 1, Ml, and it42 transitions are weaker here than in the A = 6-44 region, whereas E2 transitions are slightly stronger. The following recommended upper limits for the A = 45-W region can be deduced from the data: 0.01,300, 100, and 100 W.U. for El, E2, E3, and E4 and 3, 1, 10, and 30 W.U. for Ml, M2, M3, and M4, respectively. 0092-640x/79/060547-39$02.00/0 Copyright 0 1979 by Academic Press, Inc. All rights of reproduction in any form reserved. 547 Atomic Data and Nuclear Data Tables, Vol. 23, NO. 6. June 1979 P. M. ENDT Gamma-Ray Strengths, A = 45-90 CONTENTS INTRODUCTION ........................................... Scope.. ................................................ Input Data .............................................. Strong Transitions and Recommended Conclusions ............................................. EXPLANATION OFTABLES Upper Limits 548 548 549 549 551 ........ ............................... TABLE I. Strengths of EO Transitions TABLE II. Strengths of E 1 Transitions TABLE III. 552 between O+ States. ....... 554 ......................... 555 Strengths of E2 Transitions ....................... 558 TABLE IV. Strengths of E3 Transitions ....................... 568 TABLE V. Strengths of E4 and ES Transitions TABLE VI. Strengths of M 1 Transitions TABLE VII. TABLE VIII. TABLE IX. REFERENCES Strengths of M2 Transitions. ................. 569 ...................... 570 ..................... 579 Strengths of M3 and M4 Transitions ............. 580 Recommended Upper Limits in the A = 6-20,21-44, and 45-90 Regions .......................... FOR TABLES ............................... 581 58 2 INTRODUCTION increased the amount of work involved in collecting the additional input data, not yet quoted in the A-chain reviews. As to the y-ray strengths, there are three notable differences between the A = 6-44 and A = 45-W regions. First, isospin is of.no importance in the latter. Most transitions listed here are of the normal T-allowed nonretarded type since they occur in nuclei with neutron excesses. In addition some nonretarded E2 transitions in even-even self-conjugate nuclei have been observed. The few transitions with known strengths from analog states are also of normal nonretarded type. Second, almost all transitions listed occur between bound states. The number of transitions with known strengths from neutron resonances is quite small (about lo), but the main difference is that (p, y) resonances have dropped out as a source of -y-ray strengths. At low proton energies where resonances can be resolved the proton width is too small to be measured by means of the (p,p,,) reaction; at higher energies the resonances are no longer resolved. Third, the importance of internal conversion increases considerably with A. Of the about 1200 Gamma-ray strengths in the A = 6-44 region have been discussed extensively, the most recent review appearing in 1979.’ The input data for this last paper (excitation energies, J” values, branching and mixing ratios) could be taken predominantly from relatively recent A-chain reviews (the oldest dating from 1975) by Ajzenberg-Selove2 and Endt and Van der Leun.3 An additional 30 papers supplied input information not yet quoted in the A-chain reviews. The main purpose of the y-ray-strength reviews has been to arrive at recommended upper limits (RUL) for transitions of different characters (E or M, multipolarity, T-forbiddenness). These upper limits are an indispensable tool in nuclear spectroscopy for the exclusion of “impossible” J" values. In the present paper the discussion of. -y-ray strengths has been extended to somewhat heavier nuclei, that is, the A = 45-90 region, which more or less covers the lf2p shell. The A-chain reviews covering this region (Nuclear Data Sheets; hereafter to be quoted as NDS) are on the average not quite so recent (ranging from 1971 to 1979), which considerably 548 Atomic Data and Nuclear Data Tables. Vol. 23. No. 6. June 1979 P. M. ENDT Gamma-Ray Strengths, A = 45-W transitions listed 7% have conversion coefficients exceeding 0.10. In such cases, to calculate the strength of a given y-transition from lifetime, branching, and conversion coefficient, one has to know the total branchings instead of just the photon branchings usually measured and given in the A-chain reviews. It proved a timeconsuming task to convert the photon into total branchings, the more so because in some source papers it is not clear which of the two is reported. It has been remarked already that the NDS forms the backbone for the retrieval of input data. It should also be said, however, that the format and presentation of the NDS are not particularly suited for the extraction of y-ray information. For a given nucleus, data on branching and mixing ratios obtained from different reactions may be found in many tables and figures, often many pages apart. Gamma-ray intensities in different tables may be normalized in different ways. For most A-chains the calculation of “best” branchings and mixings is left to the reader. Conversion coefficients have been calculated for A < 30 and A 2 30 by means of the tables in Refs. 4 and 5, respectively. The y-ray strengths listed in Tables II through VIII are expressed in Weisskopf units,6 based on a nuclear-radius constant r0 = 1.20 fm. The Weisskopf estimates Iw (in eV) are given below as a function of E, (in MeV) and A: Input Data The criteria for the selection of transitions were the same as those used in Ref. 1. They are repeated below. 1. Transitions are included only if the error in the strength does not exceed 50%. The strength error is compounded quadratically from the errors in the input data. In some cases there is a strength error smaller than the error compounded from the listed input data. This may occur, for example, if the strength has been derived directly from an accurate B(E2t) value which has also been used, with the aid of the measured ground-state branching and mixing ratios, to compute the lifetime. r&El) = 6.8 x 1O-2 A2’3E3,, Tw(E2) = 4.9 x lo-* A4’3E;, rw(E3) = 2.3 X IO-14A2E;, rw(E4) = 6.8 x lo-*] As’3E9,, Tw(E5) = 1.6 x 10-27A10’3E~1, 2. Transitions are listed only when the character (E or M, multipolarity) has been determined unambiguously. This does not necessarily mean that, in addition, the J” values of the initial and final states have to be known unambiguously; the character may have been determined, for example, from the measured conversion coefficient. A summary of the bases for unambiguous J” assignments is given in the introduction of each issue of NDS. Some additional rules are given in the introduction of Ref. 3. An unpleasant surprise to the present compiler was the large number of experimental papers on&shell nuclei in which J” determinations are based on weak arguments. Most of the high-spin work with (a,xny) or (ZZZ,xny) reactions is of this type, but luckily there are also a few sound exceptions. In view of the large number of source papers in addition to the NDS, it proved impractical to discuss in detail (for example, in notes to the tables) why many published J” values were not accepted. 3. Transitions which in principle can be mixed are generally listed only if the mixing ratio 6 has been measured. Transitions with unknown S are included, however, if it can be shown (by computing Iv corresponding to the RUL for the admixture) that the admixture contributes less than 50% to the total Iv. Such cases are indicated as S = [O]; they constitute well over 25% of the number listed. r,(Ml) = 2.1 x 10-2 E3y, I-&42) = 1.5 x lo-* A2’3E5,, I’&43) = 6.8 x IO-l5 A4’3E;, I-&l44) = 2.1 x 1O-21 A*E;. The strengths of EO transitions (Table I) are expressed in Wilkinson units (Wi.u.). The definition of this unit and the derivation of the EO strength from the probability fore+ + e- pair formation are indicated in Refs. 7 and 8, respectively. In Fig. 1 the strength distributions for the most common transitions (Ml, E 1, and E2) are compared for the A = 6-20, 21-44, and 45-90 regions. Strong Transitions and Recommended Upper Limits In the present section the strongest transitions of each character are discussed. They determine the corresponding RUL value to a large extent. For a discussion of a possible dependence of the strengths on A, the average strength is not a very good measure (as argued in Ref. 1). Instead we take (as in Ref. 1) the (logarithmic) average of the strongest transitions, defined as the strongest 10% of the group of transitions of given character. 549 Alomic Data and Nuclear Data Tables, Vol. 23, NO. 8, .lune 1979 P. M. ENDT Gamma-Ray Strengths, A = 45-90 GAMMA- Ml El RAY STRENGTH l-l DISTRIWJTIONS E211 llO- A= 6-20 z s go- A = 45-90 1 60- i5 t 7060- Fig. 1. Strength histograms of Ml, El, and E2 y-ray transitions for the A = 6-20, 21-44, and 45-90 regions. The logarithmic abscissa scale indicates the strength in Weisskopf units. ForE2, the curves for the lower and middle A-regions differ so little that they could be replaced by a single histogram. The figure clearly shows a large decrease in strength with A for E 1, a small decrease for Ml, and a small increase for E2. one can note a small but definite increase for A = 4590. The (S),, (strongest 10%) increases from 25 W.U. for A = 6-44 to 55 W.U. Among the 515 E2 transitions listed there are 2 (with 160 ? 30 and 140 -+ 20 W.U.) exceeding the RUL of 100 W.U. for A = 6-44. For A = 45-90 the RUL is set at 300 W.U. The increase in E2 strength occurs in the upper half of the A = 45-90 region. There are only 21 transitions (out of 375) exceeding 32 W.U. in the A = 45-67 region, whereas there are 41 (out of 140)for For the A = 6-44 region it has been shown’ that the dependence of -y-ray strength on Ezi, if any, is very small. For the A = 45-90 region an investigation of possible E,i dependence would be impractical, because the tabulated transitions originate mainly from the decay of low-lying bound states. The RUL’s for A = 45-90 discussed below are listed in Table IX, compared to those for A = 6-20 and 21-45. El. In Ref. 1 it was shown (by comparing the A = 6-20 and 21-44 regions) that El strengths show a marked decrease with A. It is clear from Fig. 1 that this trend continues up to A = 90. In fact (S),, , the average of the strongest lo%, amounts to 130,9, and 0.9 mW.u. for the A = 6-20, 21-44, and 45-90 regions, respectively. Of the 127 transitions there are only 2, of 1.1 I 0.3 and 3.6 rfr 1.2 mW.u., exceeding 1 mW.u. in strength. A RUL of 10 mW.u. is proposed, to be compared with values of 100 and 300 mW.u. for the A = 21-44 and 6-20 regions, respectively. E2. Whereas there is very little difference in E2 strength between the A = 6-20 and 21-44 regions’ (they are represented by a single histogram in Fig. l), A = 68-90. The strongest transition (of 160 _t 30 W.U. in ‘?Se) is of 0: + 2: type. Several such transitions in neighboring nuclei are also quite strong, for example, 53 k 7 W.u. in ‘OGe, 77 ? 5 W.u. in 74Se, 47 f 18 W.U. in “Se. The large strengths are understandable, compared to’2+ + O+ transitions, because the former are favored by the statistical factor (2./f + 1)/(2Ji + 1) = 5. The very weakest of all E2 transitions in the A = 6-90 region, however (320 ? 20 ~W.U. in 58Ni), is also of 0: -+ 2: type! The extreme weakness of this transition is largely explained by a simple shell model calculation9 with two valence neutrons in 2~~,~, If,,,, or 2p,,, orbits. 550 Atomic Data and Nuclear Data Tables. Vol. 23, NO. 6. June 1979 P. M.ENDT Gamma-Ray Strengths, A = 45-90 Conclusions About 1200 transitions are listed in the present tables covering &heA = 45-90 region. This is certainly not much as compared to the 2400 transitions listed for the slightly narrower A = 6-44 region in Ref. 1. This comparison is illustrated in more detail in Fig. 2, in which the number of transitions listed in Ref. 1 and the present tables is plotted as a function of A. Because of the broadening of the valley of stable nuclides the number of nuclei for each A-value easily accessible for experiment certainly increases with A. On the other hand, as mentioned above, the contribution of (p,y) resonance decay drops out above A 2 40, but this explains only part of the difference. One should conclude that less experimental effort has been expended on the heavier nuclei. This applies in particular to A = 70-90 nuclei on which, apparently, nuclear spectroscopy has hardly begun. The very high point at A = 3 1 is explained by an unusually large contribution from 3oSi(p,y)31P resonance decay. The present survey shows that E 1 strengths drop sharply with A, with slower decreases for M 1 and M2, and a small increase for E2. All this is explained by a decreasing single-particle character and an increasing collectivity of the states concerned. -A Fig. 2. The number, as a function of A, of y-ray transitions with known strength listed in Ref. 1 and the present tables. E3, E4. The strengths of E3 and E4 transitions do not seem very different from those in the A = 6-44 region. There are 5 E3 transitions (out of 45) with strengths between 20 and 25 W.U. and the strongest E4 transition has 5.5 + 1.1 W.U. (17 cases). In view of the poor statistics, however, it seems unjustified to set the RUL’s for E3 and E4 at values lower than the value for A = 6-44 (100 W.U.). EO, E5. The statistics are too meager to permit any conclusions as to A-dependence or RUL. MZ. The decrease of M 1 strength with A noted in Ref. 1 seems to continue to higher A-values, although in a less pronounced way (see Fig. 1). The (S >,, values (strongest 10%) for A = 6-20, 21-44, and 45-90 are 3.5, 0.7, and 0.5 W.U., respectively. There are 5 A = 45-90 Ml transitions in the range l-3 W.U. (with the strongest, in 56Fe, of25 2 0.4 W.U.). Consequently the RUL may be decreased from 10 W.U. for A = 6-44 to 3 W.U. for A = 45-90. M2. The M2 strengths also decrease with A. Here we compare the average strengths of the strongest 50% to improve statistics. The values are (S),, = 1.0, 0.5, and 0.09 W.U. for A = 6-20, 21-44, and 45-90, respectively. The A = 45-90 RUL can be put at 1 W.U., to be compared to 3 W.U. for A = 6-44. M3. There does not seem to be a good reason to change the RUL from that for A = 6-44 (10 W.U.). The strongest transition (out of 7) has 4.2 t 0.1 W.U. M4. Of the 8 transitions listed there are 4 of .‘/i- -+ g/2+ and 3 of g/2+ + r/i- type. The strength averages of these 2p,,, + lg,,, groups differ by a factor 4.8, almost exactly equal to the statistical factor (2Jf + 1)l(2Ji + 1) = 5. The RUL may be put at 30 W.U. References for Introduction 1. P. M. Endt, ATOMIC TABLES 23,3 (1979) DATA AND NUCLEAR DATA 2. F. Ajzenberg-Selove, Nucl. Phys. A 248, 1 (1975); 268, 1 (1976); 281, 1 (1977); 300, 1 (1978); 320, 1 (1979) 3. P. M. Endt and C. Van der Leun, Nucl. Phys. A 310, 1 (1978) 4. 1. M. Band, N. B. Trzhaskovskaya, and A. M. Listengarten, ATOMIC DATA AND NUCLEAR DATA TABLES 10,477 (1972) 5. F. Rosel, H. M. Fries, K. Alder, and H. C. Pauli, ATOMIC DATA AND NUCLEAR DATA TABLES 21, 92 (1978) 6. D. H. Wilkinson, in Nuclear edited by F. Ajzenberg-Selove New York/London, 1960) Spectroscopy B, (Academic Press, 7. P. M. Endt and C. Van der Leun, Nucl. Phys. A 235, 27 (1974) 8. D. H. Wilkinson, Nucl. Phys. A 133, 1 (1969) 9. P. W. M. Glaudemans, M. J. A. de Voigt, and E. F. M. Steffens, Nucl. Phys. A 198,609 (1972) 551 Atomic Data and Nuclear Data Tables. Vol. 23. No. 6. June 1979 P. M. ENDT Gamma-Ray Strengths, A = 45-90 EXPLANATION OF TABLES The excitation energies of the initial and final states have been rounded off to 1 or 10 keV for E, below or above 100 keV, respectively. For the calculation of the Weisskopf estimates for some low-energy transitions, however, it was necessary to use the full energy information available so as not to introduce unnecessary rounding-off errors. The adopted mean lives generally are weighted averages of all measured values. To the errors of some published lifetimes derived from Doppler shift attenuation (DSA) measurements a 15% systematic error has been added quadratically. If the adopted lifetime results from DSA measurements only, an error of at least 10% was adopted (even if the error in the weighted average was smaller). EL, ML Esi, E.rf .I;; Jp (L/2-“/2)’ (M-5/22’) Tm J-Y r7r Total branching @o) Electric (magnetic) transition of multipolarity L Excitation energy of initial (final) state Spin and parity of initial (final) state The possible J” values are M+, K+, 5/2+ The possible J” values are 1/*, 3/zr, 5/2f Mean life Gamma-ray width Width for e+ + e- pair decay Branching with conversion included. If the photon branching for the kth branch from a given level is denoted by bk (normalized to Ck bk = lOO), the total branching for this branch amounts to ck = 100bk(l + (Yk)/ cl bl(l + CQ),where e!k is the total conversion coefficient of branch k ; the photon width of branch k is then found as ryk = o.ol~,ckfi-l(l + a$‘. For a mixed branch with mixing ratio Sk the photon widths of components 1 and 2 are given by r ?‘ka = o.oh,c,&-‘(1 r Ykt = respectively, ak 6 6=0 6-O 6 = [O] + @-‘(I + (Y&l, %rYk19 with = (ak, + %(Ykz)(l + %)+, where (Yk, and akn are the conversion coefficients of the two components Mixing ratio The transition has to be unmixed because of the angular momentum addition rule (as for J + 0 or M -+ M transitions) The (measured) value of 6 is so small that the strength of the higher-L admixture can be neglected in the calculation of the strength of the lower-L main component The transition (with 6 not measured) can be assumed to be unmixed; even if the strength of the higher-L admixture were up to its RUL value, the corresponding decrease in strength of the lower-L main component would be below 50%. 552 Atomic Date and Nuclear Data Tables. Vol. 23, No. 8. June 1978 Gamma-Ray Strengths, A = 45-90 P. M. ENDT %t rw(EL), rw(ML) rwt(JW S R = r,,A1/3 PN B(ELT) Total conversion coefficient (oK + (II~ + . . .); for a mixed transition the (measurable) quantity (Y = (a, + (r&P) x (1 + P-l, where (Ye and CQ are the conversion coefficients of the two components, is listed Weisskopf estimates for EL, ML transitions as given under Input Data Wilkinson estimate for EO transitions as given in Ref. 6. Strength of a transition in Weisskopf units (S = Tv/Iw) or (for EO transitions) in Wilkinson units (S = I,,/Iwi) Nuclear radius (r,, = 1.20 fm) Nuclear magneton = (2J + ‘) B(EL&), @Jo + 1) where J and J,, are the spins of the excited state and the ground state, respectively. This definition and the following one for B(MLi) were inadvertently listed without the curly brackets in Ref. 1 B(MLi) = [-i( qr JI~~~2L-‘r,ir,(~~~~‘Lp); B(MLT)= (2J+ ‘) B(MLS) (250 + 1) RUL Recommended units upper limit of -y-ray strength in Weisskopf 553 Atomic Data and Nuclear Data Tables, Vol. 23, No. 6. June 1979 554 EOTransitions between O+ States See page 552 for Explanation of Tables I. Strengths of TABLE Nucleus Exi + Exf Total 'm branching WV) ;$a Ge 72Ge 72se go2r 4.28 1.22 0.69 0.86 1.76 + + + + + 0 0 0 0 0 321 f 4.6 f 603 k 27 + 89i4 16 ps 0.6 ns 9 2 ns ns ns rn (X) 22.5 f 0.8 1.4 100 27 f 12 100 (Wi 'U.) (ev) (4.6 (2.0 (1.1 ( 7 (7.4 f * * f: f 0.3) 013) 0.1) 3 ) 0.4) s I CO""4 + ce (-7) (-8) (-9) (-8) (-8) 30 m 2.4 (3.5 (3.6 (3.2 (1.6 (2.4 f f f f f 0.2) 1.8) 0.1) 0.7) 0.1) (-2) (-2) (-2) (-1) (-2) TABLE II. Strengths of El Transitions See page 552 for Explanation of Tables Nucleus Exi +E xf moor J; + J; r Total Y branching (MeV) 0.38 + 3/2+ 5/2+ 5/2- -, 7/2+ 3/2+ -t 0 l/2+ 7/2+ + 3/2+ 7/2- + 0 -+ 0 9/2+ 5/2+ + 7/2+ 7/2- -t 0.037 3/2+ -f 3/2- 1.59 * 0.02 ns + 0.037 + 0 5/2+ + .3/2- 7/2+ + 7/2* 5/2- 15.1 4.0 f 2.5 f 0.9 ps ps 4- -+ 5+ 1.6 r 0.3 ps 3.06 + 0.77 + 2.01 + (5)+ 3- + 4+ 10 t 3 ps 100 3.17 + 0 1- + o+ 34 f 10 fs 90 f 35 1.4 + 0.4 fs ps 41 + 5 59 f 5 0.18 + 0.05 + 3/2-t 5/2- 580 2 120 fs 5/2+ a. 5/2- 1.1 * 0.4 3/2+ + 7/2+ 3/2- 0.94 0.97 1.43 1.80 0.33 0.74 1.23 + 0.012 + 0.38 + 0.040 1.12 + 0.28 + 0.89 1.30 + 0.77 1.40 + 0 5/25/2+ 2.00 + 0.81 + 0.81 3/2+ 2.26 + 1.30 + 0 0.26 + 0.16 + 0 0.52 + 3.83 + 0.31 + 0.42 1.10 0.75 4- + 4+ 3/2+ + 5/2- 1.14 + 0.15 + 0 5/2+ fs ps 2.7 r 0.3 ps 7.6 f 0.3 150 f 50 ps fs + 7/2+ 5/2- 91.7 41.3 3.5 f 0.3 f 0.5 f 0.5 17.3 k 0.6 58.3 11.9 f. 0.3 f 1.3 12.0 + 1.2 100 821 5.1 k 1.0 5.7 * 1.0 84 k 9 ps 13 f 2 3.91 f 0.09 ps ns 33 f 4 + 0.3 t 0.9 ps ps 100 44.6 t 0.6 1.9 f 0.7 ps 55.4 51.8 t 0.6 i.1.3 26.4 f 0.9 16.6 25.3 t 1.5 f 0.6 58.9 ?: 1.3 7/2+ + 7/2+ 5/2- 680 + 250 fs 1/2+ + 3/2- 3.2 t 1.1 ps 69 f 2 3/2+ + 5/2- 190 * 65 fs 2.39 + 0 5/2+ + 3/2+ 7/2- 24 + 1 39 f 2 82 f 26 fs 2.81 + 0.091 + 0 5/2+ -f 5/2+ 7/2- 7+1 17 + 1 455 + 75 fs 65 f 11 3/2+ -s 3/2- 1/2+ 3/2+ -, 3/2+ 3/2- 900 + 200 110 f 20 fs fs 100 100 475 f 60 fs 45 ? 3 390 f 130 1.15 f 0.35 fs ps 55 f 3 = 100 100 112 f 23 48 + 16 fs fs 100 54 + 7 210 * 40 ps 17 f 4 18 i 4 100 1.15 f. 0.50 235 ?: 45 ps fs 74 + 2 55 c 11 2.71 2.97 4.78 1.52 3.04 3.76 -t 0.74 + 1.41 + 2.54 + 3.30 + 1.02 + 1.40 -. 1.77 l/2+ + 3/21/2+ + 3/23- + 2+ t +4 +4 t 9/2+ + 7/29/2+ + 7/23- * 2+ t 0.3)(-4) f 0.6)(-5) (1.8 (4.1 f 0.2)(-4) + 0.5)(-6) f 0.4)(-4) f. O.l)(-5) =0 (1.2 (5.2 f 0.3)(-5) f 1.6)(-6) (6.5 + 1.9)(-6) (1.0 (2.1 f 0.2)(-4) * 0.4)(-4) [Ol to1 to1 [Ol =0 ( 0 101 m PI PI PI VI ro1 [Ol [Ol 15 87 i 1 6.5 7.6 (2.3 (7.1 (2.0 85 73 f 2 67 t 4 ?: 0.2)(-4) * 0.7)(-4) (1.1 13 ? 1 + 3/2- + 5/23- + 2+ to1 (2.3 (2.6 =0 =O + 0.091 + 0.15 + 2.00 + 3.77 + 1.29 =0 8+2 57 f 13 + 0.15 4.56 -0 =0 1.99 + 0.93 2.76 + 0.75 3.00 + 0.75 [Ol [Ol 69 + 3 1.65 2.68 =0 =0 13 1.9 ps Remarks (W.U.) 28 + 8 -f 3/2- + 0.091 + 0.15 + 0 + 0.091 320 + 25 10.5 + 0.7 + 5/23- + 2+ 1- -P 2+ t +l + 0 + 0.091 1.60 ps ps -+ 3/2- + 0.088 4.51 + 2+ -+ 3/2+ + 7/2- 61 f 5 8.1 t 2.3 S %ot (%) 3/2- 0.54 0.72 + 0.012 + 0 6 555 -0 90 =0 =0 -0 (1.0 (1.3 f 0.4)(-4) f 0.4)(-4) (2.1 f 0.8)(-4) (4.4 (1.0 f 1.4)(-4) f. 0.4)(-3) (5.0 t 1.8)(-5) (1.1 (4.4 e 0.4)(-5) + 0.5)(-4) (2.3 f 0.3)(-4) (1.3 (1.4 ? 0.3)(-4) 2 O.l)(-5) (6.1 t 0.7)(-5) (8.4 (1.5 2 0.4)(-5) t 0.2)(-4) (2.4 i 0.3)(-4) (1.2 90 =O ( ( 20 to1 [Ol [Ol "0 rf.4 LOI SO 101 LOI 101 =0 to1 LOI to1 [Ol [Ol )(-5) r 0.9)(-4) t 0.3)(-3) =O PI to1 WI ro1 7 * 2 (2.9 (1.1 2 0.4)(-4) 8 i: 3 6 i 2 )(-5) )(-5) ( 6 f 2 )(-5) (1.8 t 0.7)(-4) (4.6 f 1.6)(-5) (1.3 * 0.4)(-4) (2.4 (4.5 c 0.8)(-4) + 1.4)(-5) (1.2 (4.7 f 0.4)(-4) f l.l)(-5) (1.5 f 0.3)(-4) (7.2 (5.9 t 1.4)(-4) t 0.8)(-5) (8.2 (3.6 k l.O)(-4) i 1.2)(-3) (2.1 (5.3 (2.0 f 0.6)(-4) t l.l)(-4) f 0.7)(-4) (1.9 + 0.8)(-4) ( 8 r 3 )(-4) (2.4 +_ 0.5)(-5) ( ( 9 zt 4 8 f 2 )(-5) )(-5) 556 TABLE II. Strengths of El Transitions See page 552 for Explanation of Tables Nucleus Ex, + Exf J"I -c J"f T, or r branching WV) 62Ni 62cu 3.76 + 2.30 7.65 + 0 + 1.17 + 2.05 + 3.16 + 3.27 + 3.37 + 3.52 + 3.85 -. 3.86 + 3.97 + 4.06 + 4.23 2.29 + 1.37 63Zn 1.70 + 1.07 + 1.21 (j4cu 7.917 -, 0.16 -+ 0.28 + 0.61 7.918 + 0.28 + 0.61 7.919 + 0 + 0.34 + 0.36 + 0.61 3.00 -c 0.99 64Zn 65Zn 67Zn 67Ga 68Zn 6gGe 71Ga 72Ge 72AS 75AS 75Se 758r 76AS 76Se 1.07 + 0.86 1.68 + + 2.86 + 2.75 -, + 0.86 + 1.60 + + 3.75 + 1.49 + 2.51 0.046 0.21 0.31 0.40 0.29 0.13 0.046 2.43 0.093 0.39 2.07 1.08 2.34 0.40 0 0.37 2.76 1.11 + 1.40 + 0.83 + 1.46 + 1.73 + 2.06 + 2.40 + 0 + 0 + 0.21 * 0 + 0.27 + 0.28 + 0 -c 0 +0 + 1.22 * 2.03 + 2.13 3- + 2+ 1- + o+ +2 + -CO+ +2 + + u,*)+ + (I**)+ +2 + +2 + + (l.*)+ +2 t + (l.*)+ t +O 6- + 5t 9/2+ + 7/2-c 7/22- + 2+ + 2+ + 2+ 1- + 2+ + 2+ 2- + 1t +l t +3 t +2 t 3- + 2t 9/2+ -+ 7/2l/2+ + 1/2-+ 3/211/2- + g/2+ 3- + 2+ + 2+ 7/2- + 9/2+ 5/2+ + 5/2+ 3/217/2- + 15/2+ (7/2,9/2)+ + 7/2* (5/*.7/*13- + 2t +2 t +4 t +3 t +2 t 1+ -c 2(l-3)+ * 2(0-4)- + (l-3)+ 5/2+ + 3/2+ 3/2+ 5/23/2- + 5/2+ (l/2-5/2)+ + 3/2(l,*)t + 23- + 2+ + (2-4)+ + (~3)~ 235 i 45 1.37 f: 0.14 fs fs 23.3 f 1.9 ps 46 i 6 ps 520 f 40 meV 570 f 70 meV 580 t 50 meV 115 f 30 fs 830 f 40 ps 210 + 45 fs 1.25 i 0.30 ps 600 f 200 fs 3.1 f 0.5 ps 750 + 250 fs 9.4 f 0.8 220 t 20 ps 35 f 7 ps 16.4 f 0.3 115 i 3 24t4 2.5 + 0.1 ps ns ns ns ns 1.9 k 0.2 ns 8.1 ns f 0.6 6 T&al Y 2.78 + 0.09 ps 16.5 f 2.0 ps S "tot (%) 45 i 11 m 63 0 4.1 PI 16.4 0 1.7 VI 2.2 m 2.1 PI 1.5 PI 0.4 [Ol 2.1 to1 3.1 [Ol 2.1 [Ol 0 1.2 98.8 =0 85 2 1 101 15 f 1 =0 16.9 k 0.6 101 6.3 i 0.5 to1 1.5 + 0.4 WI 3.2 t 1.4 VI 4.1 f 1.0 m 5.3 f 1.0 WI 2.4 ? 0.7 PI 5.2 f 0.9 m 1.9 * 0.9 LOI ==O !=a100 95 f 1 -0 0 43 5 3 57 * 3 WI 31.6 t 1.4 =0 92.9 * 0.5 101 7.1 f 0.5 ro1 1.3 f 0.6 m 26 2 2 "0 19 f 2 -0 59 +- 2 -0 99 v4 0.067 f 0.007 [al 8.5 i 0.3 [Ol 59.2 f 0.7 +0.31*0.05 28.0 f. 0.7 to1 1.3 f 0.2 P-4 0.9 f 0.4 WI 100 WI 0.70 "0 41 + 5 71 =0 0.10 12.1 + 0.6 [Ol 62.8 f 1.0 WI 0.03 18.7 i 0.7 WI 0.05 '0 100 0.04 100 -0 100 to1 0.78 86.5 f 0.3 to1 1.2 f 0.1 ro1 0.45 '+ 0.05. to1 Remarks (W.U.) (3.9 (6.3 (6.8 (4.2 (8.4 (1.2 (1.2 (9.6 (3.3 (1.7 (2.9 (2.0 (1.4 (3.4 (4.5 (1.7 (1.7 (6.8 (1.8 (3.8 (5.5 (5.7 + k f t f f * i f + f + f i i i + r i f + f 1.2)(-4) 0.6)(-4) 0.7)(-5) 0.2)(-4) 0.8)(-5) O.l)(-4) O.l)(-4) l.O)(-5) 0.8)(-5) 0.2)(-4) 0.3)(-4) 0.2)(-4) 0.2)(-4) 0.3)(-5) 0.6)(-5) 0.2)(-5) 0.2)(-4) 0.6)(-5) 0.5)(-5) 1.7)(-5) 1.4)(-5) l.l)(-5) (2.9 + 0.9)(-5) (6.4 (2.6 (6.5 (8.3 (3.0 (7.4 (3.0 (1.9 (1.0 (2.5 (4.9 ( 8 (3.7 (4.4 (1.7 (2.6 (7.4 ( 9 (2.7 (1.0 (2.1 (2.1 (1.7 (4.1 (5.1 (2.2 (1.2 (2.9 (1.1 (1.6 (6.1 (5.4 f l.O)(-5) t 1.2)(-5) f 1.7)(-4) k 0.4)(-5) f 0.7)(-4) + 1.6)(-4) f 0.7)(-4) _+ O-6)(-4) * 0.3)(-3) f 1.2)(-5) t 1.6)(-5) k 3 )(-5) f 0.3)(-5) f 0.4)(-5) f 0.2)(-6) ?: 0.6)(-7) f 1.5)(-6) f 2 )(-6) f 0.7)(-6) f 0.5)(-4) f O.l)(-4) f 0.2)(-7) i 0.3)(-5) i 0.2)(-7) f 0.2)(-5) + O.l)(-5) i 0.2)(-5) f 0.2)(-5) f O.l)(-6) f 0.2)(-5) f 0.9)(-6) _+ 0.9)(-a) En = 0.58 keV En = 2.06 keV En = 2.66 keV 557 TABLE II. Strengths of El Transitions See page 552 for Explanation of Tables Nucleus Exi +E xf Jf + J; TV or r branching WV) 76Br 0.25 0.36 + 0 -P 0 0.63 + 0.045 + 0 0.25 0.44 + 0.22 -P 0.16 + 0.16 0.13 0.28 + 0 + 0 "Kr 0.067 + 0 78Kr 2.75 3.29 “AS "Se "Br "Br 8oBr B8Sr 0.76 0.037 2.73 (o-2)+ + 11+ + 1+ (o-2)- f 0.13 580 f 140 (W.U.) (1.1 f O.l)(-5) -0 (4.6 (5.1 f l.O)(-6) f 1.4)(-6) =0 =0 (3.6 (3.5 f 0.8)(-6) f O;')(-5) =o (1.8 (1.0 + O.l)(-5) f 0.4)(-5) (1.7 f O.l)(-5) ns ps 100 46 t 4 =O ps 35 f. 4 18 f 2 ro1 108 f 22 5/25/2- + 7/2+ + 7/2+ 13.4 f 0.6 33 t 3 ns ps 50 2 4 30.0 f 1.1 1.4 .I 0.5 5/2+ -+ 3/2-, 3/2- 13.4 2 0.4 130 f 30 ns ps - 100 8t2 170 f 17 ro1 2.3 f 0.3 2.9 f 0.3 ns ps 100 + 1.12 + 1.98 3/2- + 5/2+ 5- + 4+ 7- + 6+ 100 54 2 3 + 0.21 7/2- 1.7 f 0.3 m PI [Ol + 0 + 1.84 2- + 1 + 3- + 2+ 5/2+ 5/2+ + 3/2- 10.6 1.18 3- + 2+ 1.63 2.22 ++ 1.10 1.51 "Zr 2.75 + 2.19 (3/2,5/2)+ + 9/Z+ S ?ot (%) -, 3/2+ 3/2- 8gY 8gZr 5/2+ 3.14 6 Total Y VI 90 0.04 =0 0.29 (1.5 + 0.5)(-S) (8.1 (5.7 t 0.8)(-6) f 0.8)(-5) (4.4 f 0.5)(-5) (6.4 (3.8 k 1.3)(-5) f O.l)(-4) ps ps 3.6 2 0.4 i 1.3 f 0.11 ns ps 100 99.31 + 0.05 580 500 f 90 200 fs 13 f30 2 PI ro1 m (5.8 f 0.6)(-4) ( 8 t 3 )(-4) (7.3 + 1.6)(-4) 8.3 ps 93 t 2 PI (3.1 f l.O)(-4) t 2.6 =0 1.56 Remarks 558 TABLE III. Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus Exi +E xf ’ + J’ Ji fm or r f Total Y branching WV) 0.38 + 0 0.54 0.72 0.97 1.07 1.24 1.43 + 0.012 -+ 0 + 0.012 + 0 + 0 + 0.54 + 0.97 + 0 + 0.97 + 1.43 + 0 + 0.33 + 0.33 + 0.74 + 0 + 0.040 + 0 + 0 + 0.29 + 0 + 0.89 -. 0.89 + 2.01 + 0 + 0 + 0.16 + 0 + 0.16 + 0.09 + 0.15 + 0.15 + 0 + 0 -, 0.98 -c 0 + 2.30 + 0 + 0 + 0 + 0.43 + 0.52 + 0 + 0.75 + 0 + 0 + 0 -. 0 + 0.091 -+ 0.15 + 0.75 + 1.02 -f 0 + 0 + 0.27 1.66 2.03 2.56 0.037 0.74 1.23 1.35 1.47 1.35 1.12 0.89 2.01 2.61 3.30 1.15 0.16 1.25 1.55 1.27 1.30 3.83 0.98 2.30 2.42 3.33 0.31 0.43 0.63 1.06 0.75 1.86 1.38 0.15 1.02 1.16 1.51 1.60 2.26 0.27 1.08 3/25/2+ 5/27/2t 3/211/29/2+ + 7/2-+ 3/2+ -c 7/2+ 3/2+ + 7/2+ 7/2-c 5/2t + 7/2+ g/2- + 7/211/2+ + 7/2t 13/2+ + g/2+ 3/2- + 7/25/2+ + 3/2+ 7/2+ + 3/2+ + 5/2+ g/2- -s 7/2+ 5/211/2- -, 7/22+ + 0t 4- + 22+ + o+ 4+ + 2+ o+ + 2t 6+ + 4+ 11/2- + 7/27/2- + 5/2'3/2- + 7/23/2- + 5/2+ 7/2g/2- + 5/2-+ 7/2H/2- + 7/22+ * o+ 2+ + o+ 4+ + 2t 2+ + o+ 6+ + 4+ 2+ + 4t 5+ + 4+ 6+ + 4t + 5+ 3- + 12+ + o+ 4+ + 2+ 3/2- + 7/23/2- -i 7/211/2- + 7/2g/2- -. 7/2+ 5/25/2- + 3/27/2+ + 3/2+ 15/2- + 11/27/2- + 5/2g/2- + 5/2+ 7/2- 61 f 5 8.1 t 2.3 ps ps 2.7 f 0.3 ps 2.6 k 0.3 7.6 f 0.3 ps 146 2 13 fs 1.6 t 0.7 ps ps 2.0 4.5 15.1 4.0 2 0.7 f 0.4 f 2.5 f 0.9 ps us ps ps 148 i 15 fs 690 f 90 fs 5.2 +_ 0.4 ps 1.6 f 0.3 ps ps 8.2 2.6 110 1.6 4.5 f + f f f 0.4 0.3 30 0.2 1.6 ps fs ps ps 301 r g 210 f 20 ps fs 2.3 f 0.7 ps 430 + 65 fs 2.0 42 6.4 630 38 i 0.9 ps +_ 5 f 0.3 + 80 r 5 fs ps fs 12.8 ? 1.2 fs ps 10.23 f 0.04 ns 8.80 k 0.14 ps 111 i 9 ps 6.6 f 1.7 ps f 1.0 ps 1.9 f 0.5 ps 10.6 1.6 f 0.4 ps 45 f 19 fs 680 f 250 fs 930 * 410 19 f 4 220 5 40 fs ps fs "tot (96) 8.3 k 0.3 58.7 f 0.5 from B(E2) 31.3 ?: 0.5 from B(E2) 100 69.9 f 1.7 18.2 f 1.4 79 f 3 83 f 2 57 f 6 100 92 * 1 52 f 2 37 + 2 90 * 2 10 f 2 100 100 13 100 100 100 100 100 100 88 f 6 43 i 5 57 + 5 18 f 2 82 f 2 100 100 100 100 5.0 f 0.8 100 100 100 55 f 8 45 t 8 8k2 100 100 from 28.8 f 0;3 ns 4.8 f 0.9 ps 6 (W.U.) -0 tO.70 f 0.15 '0 -0 -0 to.28 T 0.07 -0.45 i 0.04 "0 -0 [Ol -0.40 t 0.03 -0 -0.28 f 0.03 to.46 f 0.08 16 [Ol =O 0 Ku 0 [Ol 0 to1 to1 to.030 f 0.007 to.29 * 0.03 -0.46 f 0.09 to1 =0 -0.43 f 0.06 =0 0 0 to1 0 to1 [Ol to.13 f 0.03 WI to.14 f 0.02 =0 0 [Ol B(E2) 65.0 f 0.3 100 74.7 f 0.7 25.3 f. 0.7 56.3 f 0.8 8.0 + 0.8 100 100 5.9 f 1.0 94.1 * 1.0 s to1 =0 -0.70 f 0.07 =0 to.57 f 0.05 [Ol "0 to.115 f 0.011 WI to.21 f 0.03 0.08 (1.5 f 0.2)(+1) ( 5 f 2 )(tl) (8.9 f 0.7)( 0) (1.2 f O.l)(tl) (8.4 f 0.8)( 0) (1.1 f o.l)(tl) (1.4 * O.l)(tl) ( 7*3 )(O) (5.9 f l.O)( 0) (3.2 + 1.4)(+1) (1.2 f 0.4)(+1) (1.7 f 0.2)(+1) (6.1 ? 1.3)(+1) (1.9 f 0.4)(+1) (2.1 + 0.6)(+1) (2.O.k 0.6)(d) (1.5 ?: 0.3)(+1) (1.8 + 0.2)(+1) (3.4 * 0.3)( 0) (1.7 + 0.3)(+1) (1.8 + O.l)(tl) (1.8 f 0.2)(+1) (4.1 + 1.1)(+1) (1.4 ? 0.2)(+1) ( g+3 )(O) (2.3 f l.l)( 0) (1.6 f 0.4)(+1) (2.9 f 1.3)(-l) (3.8 f 1.2)( 0) (1.4 f 0.3)(+1) (1.3 f 0.4)(+1) (2.0 f 0.9)(+1) (2.2 f 0.3)( 0) (1.3 f o.l)(tl) (3.1 f 0.4)(+1) (1.2 f 0.2)( 0) (5.2 f 0.5)( 0) (2.6 f O.l)( 0) (1.0 f 0.4)(+1) (3.9 f 0.6)( 0) (1.9 f 0.7)(+1) (2.0 r 0.7.)(+1) (3.3 f 0.3)(+1) (2.4 + 0.6)(+1) (3.2 ? 0.4)( 0) (1.9 f O.l)(+l) (1.4 * 0.3)(+1) (5.4 f. 1.4)( 0) 1 8 f 2 )( 0) ( 5 k 2 )(tl) (2.0 f 0.7)(+1) (2.7 t 1.2)(+1) (3.5 f l.O)(tl) (1.4 + 0.3)(+1) (3.8 f 1.2)(+1) Remarks TABLE III. 559 Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus E xi +E xf J; + J"f TV or r Total Y branching WV) 1.56 + 0.27 1.74 + 0.27 2.50 -+ 1.08 2.61 + 0.27 3.19.-t 1.56 1.55 + 0 2.67 + 1.55 [1.49 + 0.39 1.52 + 0.39 0.78 + 0 1.88 + 0.78 2.92 * 0 3.16 + 1.88 3.32 + 0.78 0.32 + 0 0.93 + 0 + 0.32 1.61 + 0 1.81 -+ 0 + 0.32 2.41 -f 0 2.70 + 1.61 0.75 + 0 1.16 + 0 1.48 + 0 1.56 -f 0.75 1.90 + 0 2.38 + 1.35 0.24 -f 0 1.14 + 0 + 0.24 1.49 + 0.24 1.43 + 0 2.37 + 1.43 2.77 + 1.43 2.96 + 0 + 1.43 3.11 -t 2.37 + 2.77 3.16 + 0 3.42 + 1.43 3.77 + 0 4.75 + 3.11 0.56 + 0 1.01 + 0 -c 0.56 1.29 -b 0 1.54 a. 0 2.17 + 1.29 2.32 + 0 0.38 + 0 1.29 + 0 + 0.38 1.44 + 0 1.62 + 0 11/2- + 7/23/2- + 7/213/2- + 9/23/2- + 7/215/2- + U/22+ + o+ 4+ + 2+ 1+ h. 2+ 2+ + 2+ 2+ + o+ 4+ + 2+ 2+ + o+ 6+ + 4+ 4+ + 2+ 5/2- + 7/23/2- -, 7/2-t 5/211/2- + 7/29/2- -, 7/2-, 5/23/2- + 7/215/2- -+ H/23/2- + 7/29/2- + 7/211/2- + 7/27/2- + 3/23/2- -P 7/29/2- + s/27/2- + 5/29/2- + 5/2+ 7/211/2- + 7/22+ + o+ 4+ + 2+ 4+ -f 2+ 2+ + o+ +2 t 6+ -f 4+ +4 + 2+ + o+ 4+ + 2+ 2+ + o+ 8+ + 6+ l/2- -, 3/25/2- -, 3/2+ 1/27/2- + 3/27/2- + 3/2U/2- -P 7/23/2- + 3/25/2- + 7/23/2- + 7/2+ 5/211/2- + 7/29/2- + 7/2- 530 f 80 fs 1.6 ps + 0.4 230 * 50 65 f 20 400 f 90 1.41 + 0.10 7.6 f 1.6 65 f 8 210 f 20 13.1 f 0.6 3.2 t 0.4 fs fs fs ps ps fs fs ps ps 13.5 f 2.0 fs 1.7 t 0.4 ps 140 f. 35 fs 265 i 7 ps 11.2 ?: 1.2 ps 760 k 70 fs 810?110 fs 27 k 9 7.9 f 0.6 10.6 + 0.4 fs ps ns 100 f 15 fs 740 6.0 450 600 20 360 f + f f + 150 2.0 60 180 3 fs + 100 720 fr 170 1.02 1.4 ps fs fs ps fs fs t 0.04 ps f 0.3 ps 3.7 2 0.9 600 A 110 60 f 2 ps fs ps 120 f 40 fs 460 f 90 fs 13+6 fs 920 f 300 fs 1.1 f 0.2 ps 6 (X) 49 t 2 29 * 2 10 f 3 59 f 2 52 f 5 100 100 8a+5 82 f 2 100 100 8*2 100 0.9 f 0.2 100 84.0 k 0.5 16.0 t 0.5 100 75 f 2 25 + 2 19 f 3 100 100 100 51.9 f 1.1 79.4 f 0.3 78 + 2 26 + 3 100 13 f 2 87 f 2 65 * 3 100 100 90 f 1 4.2 + 1.7 95.8 f 1.7 98.8 f 0.2 1.2 f 0.2 11 + 2 5.5 2 1.5 20 + 4 100 from 0.43 from f 2.5 fs 11 + 2 13.3 + 1.8 ps loo from 169 + 9 760 f 100 ps fs 760 f 135 fs 610 fs f 75 =0 '0 [Ol "0 WI 0 m to.58 f 0.03 to.06 f 0.01 0 WI 0 WI [Ol -0.42 f 0.02 "0 -6.8 f 0.7 to1 -3.8 f 0.7 a0 -0 =0 m to.17 f 0.02 "0 -0 LO1 "0 -0.103 + 0.011 tOI -0.32 f. 0.02 [Ol 0 LOI LOI 0 t6.25 r 0.15 WI [Ol 0 WI 0 101 -0.36 f 0.02 WI B(E2) 31.2 WI to1 B(E2) 100 56 c 3 44 f 3 100 89.0 f 1.1 s Remarks (W.U.) B(E2) 99.57 "tot -0.55 f 0.02 WI -0.167 + 0.019 PI -2.9 f 0.3 (1.9 f 0.3)(+1) (2.0 f 0.5)( 0) ( 5t.2 ~0) (1.0 f 0.3)(+1) (8.4 f 1.9)( 0) (5.8 + 0.4)( 0) (5.4 5 l.l)( 0) (1.5 f o.*)(+*)] (5.6 f 1.9)( 0) (1.9 f O.l)(+l) (1.4 f 0.2)(+1) (2.0 f 0.6)( 0) (1.3 ? 0.3)(+1) (4.4 f 1.5)(-2) (1.2 + O.l)(+l) (7.5 +- 0.8)( 0) (1.2 * O.l)(+l) (8.5 i 0.8)( 0) (3.1 f 0.4)( 0) (3.0 f 0.4)( 0) ( 6** l(O) (5.8 f 0.4)( 0) (2.8 f O.l)(-2) (1.0 + 0.3)(+1) (7.0 + 1.4)( 0) (2.7 f 0.9)(+1) (5.0 f 0.7)( 0) (2.6 f 0.8)(+1) (5.0 f 1.2)(d) (1.3 f 0.4)(+1) (2.7 f 0.8)(+1) (2.1 f 0.5)(A) (1.1 f O.l)(+l) (6.7 + 1.4)(+1) (3.9 f l.O)( 0) (2.1 f 0.9)(-2) (1.3 f 0.2)(+1) (5.1 f 0.2)( 0) (3.1 f 0.5)( 0) (2.0 f 0.7)(-l) (2.7 f 0.9)(-2) (1.4 f 0.7)(-l) 1 7 f 2 )I 0) (1.6 f O.l)(+l) (6.5 f l.O)( 0) (1.4 f 0.3)(+1) (1.1 f cl.l)(+l) (2.7 f 0.5)(-2) (1.9 f 0.3)(+1) (1.0 t O.l)(+l) (1.2 f O.l)(+l) (1.4 + 0.2)(+1) (1.7 f 0.4)( 0) (1.4 ? 0.2)(+1) (7.9 * l.l)( 0) a) ! TABLE III. Strengths of E2 Transitions 560 See page 552 for Explanation of Tables Nucleus Exi +E xf J’i + J”f T, or r Total Y branching W) 1.62 2.27 -. 0.38 + 0 g/25/2- . 5/2+ 7/2- 610 f 75 360 SE 55 fs fs 11.0 f 1.1 77 t 2 2.41 -. 0.38 + 0 3/2- + 5/2-, 7/2- 180 f 35 fs 23 + 2 38 t 6 2.69 + 1.44 15/2- + 11/2- 3.9 t 0.6 ps 100 3/23/2- + 7/2+ 7/2- 90 f 35 fs 5/2- -+ 3/2- 92 k 2 4.0 f 1.0 ns ps 100 76 .t 2 3/2- + 1/2+ 7/2- 340 f 70 fs 24 i 2 100 11/2- + 7/2- 76 f 17 fs 14 f 2 2.88+0 0.74 1.42 -+ 0 -s 0.74 2.04 + 0.77 + 0 2.34 + 0 + 1.33 2.95 -. 2.54 2.96 + 0 3.17 3.83 + 0 + 1.41 91 + 20 fs 91 * 3 4.07 + 1.41 3+ + 2+ 84 * 25 fs 92 f 3 4.26 -, 1.41 4+ + 2+ 120 f 30 fs 21 + 6 4.95 + 1.41 + 2.54 4+ + 2+ +4 t t +6 42 + 14 fs 35 + 6 55 i 5 + 0 -. 0.16 1.78 + 0.37 1.41 + 0 + 2.95 0.13 + 0 1.53 + 0 0.93 + 0.13 + 0 57Fe -0.038 100 1.42 1.76 * 0.04 f 0.03 ps ns 100 100 75 f 12 230 + 50 fs fs 55 f 3 81 A 3 ps f 0.4 1.32 1.41 + 0 * 0 7/27/2- + 3/2+ 3/2- 17 f 6 ps 58 + 4 ps 42 + 3 2.14 + 0.41 2.58 2.16 + 0.41 -. 0 5/25/2- + l/2+ l/2- 3/2- -a 7/2- 55 f 14 66 2 9 137 * 14 fs fs fs 2.56 + 0 600 f 80 fs 100 100 0.11 + 0 0.34 0.85 + 0 + 0 5+ + 3+ 2+ + o+ 7.3 f 0.2 2.9 t 0.2 ns ns 0.42 42 f 5 2.09 2.66 + 0.85 + 0 8.9 f 0.4 950 f 270 ps fs 40 f 10 fs 2.94 2.96 + 0.85 + 0.85 + 0 3.12 -c 0.85 + 0.85 4+ + 2+ 2+ + o+ +2 t t o+ + 2 2+ + o+ + 9 t 4+ + 2 4.18 2.70 0.014 0 2.09 0 0.97 0.16 + 2.28 + 0 + 0 + 1/2- 98.7 2+ 6+ 2+ 2' o+ 1+ + + + + * ‘+ o+ 4+ o+ 4t 2t 3+ 9+ + 7+ 2+ + o+ 3/2- + 1/2- 220 f 100 39 f 12 110 f 50 26 190 64 160 2.28 540 590 f f i i i f t 10 30 20 40 0.09 200 60 76 f 37 142 f 12 fs fs fs fs fs fs fs ns fs fs fs ns + 0.02 f 0.02 0 (2.1 f 0.3)( 0) (7.2 (7.9 + 1.5)(-l) f 1.7)( 0) f 0.5 (3.4 ( (1.0 (1.2 f 0.03 ?: 0.01 f 0.04 ( 0.02 f 0.02 0.33 f 0.015 0 0 f 0.009 KY 23 f 2 8 [Ol 0) )(-1) + 0.4)( i? 0.4)( 5 f 2 0) 0) )(-1) (2.2 + 0.6)(+1) (4.3 * 1.7)( 0) ( 7+2 )(0) (8.4 (2.2 t 0.9)(-2) f 0.8)( 0) (1.5 (9.9 f 0.5)( ?r l.O)( (9.6 f 1.3)(-l) (1.6 (2.1 f O.l)( f 0.3)( (1.6 (2.2 (2.7 f O.l)(+l) f 0.6)(+1) f 0.7)(-l) (2.6 f 0.8)( 0) 0) 0) 0) 0) ( 7 f 3 I( (1.6 f 0.5)(-l) 0) (2.2 0) ( 0 f 0.7)( 7 f 3 )(-2) ( 8 * 3 )(-2) (5.8 i 1.1)(-O) 0 ( g * 3 )(-2) (!.4 f 0.6)( 0) (1.1 f O.l)( 0) [Ol 0 VI [Ol 0 (2.4*0.2)x10-3 f 1.6)( 6 ? 2 ( 7*2 ~(0) (1.7 t 0.7)(+1) ( 9 * 3 )(-1) 0 0.8 k 0.1 1.5 ). 0.1 f 0.05 100 13.8 f 0.6 73 f 1 100 100 0) 0) 0 0 0;30 t 1.2)( _+ 0.4)( 0 [Ol -0.249 t 0.9)(+1) (5.6 (1.8 0) 0) 100 100 2.1 t 0.1 97.9 f 0.1 (3.5 f 0.2)( f O.l)( to1 [Ol to1 LO1 LO1 [Ol LO1 101 [Ol to.185 2 O.l)(-3) * 0.3)(+1) WI VI -0.34 )(-1) (3.3 (1.0 f 0.3)(+1) [Ol -0.07 -0.22 6 f 2 0) 0) (8.3 (3.1 VI PI to.36 )(-1) f 0.4)( f. 0.9)( (1.1 to1 -1.9 8 f 3 1 g+4 )(O) (1.4 f o.l)(+l) (2.3 A 0.5)(+1) f 0.003 = 100 2.3 f 0.1 f 0.1 ( 0 3?1 7+2 97.7 (1.7 (5.6 =0 10 f 3 1.3 f 0.4 ( VI 101 ps + 7/2+ 3/2- f 0.3 EJO 2 0.28 1.3 f 0.4 95 * 1 3.37 + 3.76 -F 3.86+0 0.97 + 1.45 + 1.72 + -0.36 1.05 5/2- (4.1 t 0.7)( 0) ( 7 f 3 )(-2) -0 to.11 100 96 f 1 4+1 f 0.04 [Ol ro1 ro1 100 100 ps fs 3/2- -, 7/2I+ + 3+ to.9 86 * 2 373 f 12 71 f 14 + 0.41 IO1 -0.18 ps ps + 5/2-S 5/2- Remarks (W.U.) 11.8 f 0.7 9.7 f 1.2 7/23/2- S ?ot (X) 15 + g/22+ + o+ 5+ + 4 t t 7+ + 5 2+ + o+ 6+ + 4 t t 2+ + 0 2+ + 0 t 4+ + 2t 0.83 0.37 6 (1.7 (3.1 8.2 f 0.6)( t 0.3)( ( 6+3 )(O) (3.6 i 0.6)(-l) 0) 0) 561 TABLE III. Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus Exi +E xf Jf -, J'f ~~ or r Total Y branching WV) 0.14 + 0 -+ 0.014 0.37 + 0 0.71 + 0 + 0.014 + 0.14 + 0.37 7.65 + 0.14 1.22 + 0 1.38 + 0 1.69 + 0 + 1.22 2.31 a. 1.22 + 1.38 0.77 -t 0 2.58 + 0 0.81 + 0 1.67 + 0 + 0.81 2.08 + 0.81 2.60 -. 0.81 + 1.67 2.78 + 0.81 + 1.67 1.45 + 0 2.78 + 0 + 1.45 2.94 + 1.45 + 2.78 3.04 + 0 + 1.45 3.26 + 0 + 1.45 3.53 + 1.45 3.90 + 0 1.10 + 0 1.19 + 0 1.29 + 0 [ -+ 1.10 1.46 -. 0 1.75 -t 0 1.19 + 0 1.34 + 0 + 0.34 1.77 + 0.34 1.95 -h 0 2.71 + 1.34 + 1.77 1.40 + 0 2.27 -, 0.49 0.82 + 0 2.11 -. 0.82 1.33 + 0 2.16 + 0 + 1.33 5/2- -s 1/2+ 3/2312- + l/Z5/2- * 1/2+ 3/2+ 5/2+ 3/2l/2- + 5/2g/2- + 7/23/2- + 7/211/2- + 7/z+ 9/27/2- + 9/2-,. 3/25/2- + 3/27/2- + 3/22+ + o+ 2+ + 0+ + 2+ 4+ + 2+ 4+ + 2t +2 + 1+ -s 2+ +2 t 2+ + o+ 2+ + o+ +2 t o+ + 2t +2 t 2+ + o+ + 2+ 2+ + o+ +2 t o+ + 2t 2+ +O + 3/2- + 7/29/2- + 7/23/2- -t 7/2-+ 3/211/2- + 7/27/2- -c 7/25/2- + 3/27/2- -. 3/2+ 5/2g/2- + 5/27/2- -, 3/211/2- -c 7/2+ 9/27/2- -, 3/23/2- + 5/22+ + o+ 4+ + 2+ 2+ -+ o+ 2+ + o+ q2 t 12.4 f 0.4 ns 600 76 27 350 ps f 100 mev + 10 +6 f 35 fs ps fs 290 f 60 Ps 4.6 f 0.6 68 f 9 ps 11.7 f 2.3 2.3 + 0.6 fs ps ps 440 f 110 fs 540 i 100 fs 265 + 40 fs 920 f 26 fs 580 + 160 fs 2.90 t 0.10 ns 72 + 7 fs 42 f 4 fs 260 ? 70 33 f 4 4.9 f 0.8 fs fs ps ?: 0.5 f 0.8 +. 0.6 * 0.3 f 0.5 100 100 46 f 2 54 t 2 70 t 2 20 * 3 100 100 100 44 f 1 56 c 1 100 30.1 f 0.9 17.7 f 0.6 48 f 3 22.2 f 1.3 100 4.1 t 0.3 95.9 k 0.3 11.4 A 0.7 10.6 f 1.1 42 f 2 57 f 2 63 f 2 37 f 2 100 24 f 2 100 790 * 40 1.6 f 0.2 fs ps frcin 400 f 45 1.45 f 0.26 fs ps 820 f 100 fs 200 f 60 fs 500 f 60 fs 580 + 250 fs 320 f 140 fs 11.6 f 2.2 ps 1.2 f 0.3 ps 1.05 f 0.01 ps 770 f 150 fs m -0.120 f 0.001 0.15 0.02 m to.465 + 0.008 -0.097 + 0.008 -0.083 + 0.005 UN -0.26 t 0.01 WI [Ol -0.08 f 0.01 -0.13 ? 0.02 101 -0.23 f 0.02 VI 0 0 to.69 + 0.05 PI ro1 [Ol to.17 ?: 0.04 to.18 ? 0.03 0 0 t1.18 + 0.15 0 0 0 -0.21 f 0.03 0 -0.46 +_ 0.13 0 0 [Ol B(E2) 93.3 2 0.4 6.7 + 0.4 95 + 1 WI -0.17 ? 0.03 WI B(E2) 89 f 5 29 f 1 71 * 1 93 72 f 3 90 10 91 f 2 46 i 5 100 100 100 13.3 f 0.8 86.7 f 0.8 S Remarks (W.U.) B(E2) 3.5 84.4 9.9 2.2 2.5 fran Yet (X) 12.3 f 0:2 87.7 f 0.2 from 4.2 + 0.7 6 to.56 i 0.17 "0 -4.8 f 0.9 -0 WI -0 to.95 f 0.39 -0 -1.9 f 0.7 0 [Ol 0 0 -0.82 i 0.15 0.08 (1.1 f O.l)(+l) (2.2 f O.l)( 0) (5.8 f r&7)(+1) (2.9 f 0.6)( 0) (1.4 t 0.2](+1) (2.2 f 0.5)( 0) (4.9 f 1.2)(-l) (5.8 t 1.5)(-2) E,=1.15 keV (1.9 t 0.3)(+1) (4.5 f 1*0)(-l) (5.8 t 0.6)( 0) (2.6 t O.')(+l] (1.6 t 0.4)( 0) ( 6 * 2 I(+11 (2.5 + 0.5)( 0) (7.9 t l.O)( 0) (1.5 f 0.3)(+1) ( 9 f 2 1(-l] ( gi2 I(01 (4.1 + l.O)(+l) (1.8 f 0.3)( 0) (2.8 f 0.5)(+1) (1.0 f 0.4)(-l) ( 9 f 4 )(-1) (1.0 f O.l)(+l) (2.5 f O.')(-2) (1.4 f 0.4)(+1) (3.2 f 0.2)(-4) (1.6 +_0.2)(+1) (1.3 ? O.l)( 0) (2.0 +_0.6)( 0) (2.4 f 0.2)( 0) ( 5*2 )m (5.9 f 1.6)( 0) (5.3 f 0.8)(-l) (7.6 f 1.2)( 0) (1.6 f 0.3)(+1) (2.0 f 0.1)(+1) b) (5.0 f 1.8)(+2)] (5.3 f 0.7)( 0) (2.1 f O.')( 0) (1.6 f O.')(+l) (2.7 t 0.5)( 0) (2.8 t 0.5)(+1) (1.1 f O.l)(+l) ( 7*2 )(o) (2.2 t 0.3)(+1) ( **3 1(O) (1.7 f O.')(+l) (3.7 f 1.8)( 0) (1.3 f 0.2)(+1) (1.3 f 0.3)(+1) (1.3 f O.l)(+l) (2.1 f 0.4)(-l) ( 7 f 2 )(+l) 562 TABLE III. Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus E xi +E xf J; + J; ‘cm or r Total Y branching WV 6oNi 2.61 + 1.33 + 2.16 61Ni 3.19 + 1.33 3.39 -, 2.16 + 0 4+ + 2+ t +2 4.7 3+ -c 2+ +2 t 2+ + 0 t 200 f 50 0.067 0.28 + 0 + 0 5/2112- -+ 3/2+ 3/2- 0.66 + 0 l/2- + 3/2- 0.91 + 0.067 + 0 5/2- + 5/2* 3/2- 1.6 + 5/2+ 3/2- + 0.067 50 fs (X) (W.U.) [Ol = 100 (7.6+0.5)x10-3 32.0 + 1.6 42 f 2 f 0.023 (5.3 t 0.8)( 0) (1.8 ?r 0.3)(-l) ( 5 f 2 )(-2) f 0.03 (1.6 f 0.4)(+1) 0 f 1.9)(-2) ?r 0.3)(-l) [Ol -0.106 -0.42 6+2 from B(E2) (4.4 (3.2 fs Remarks frun B(E2) (1.7 * 0.2)( ps from B(E2) (1.2 * 0.1)(+1) 0.5 ps from (2.5 (6.1 zt 0.7)( 0) f 0.9)(-l) i 0.20 6.8 f 1.0 ps (1.2 (1.8 f 0.4)(+1) + 0.3)( 0) f 0.16 25 + 6 WI 8*1 f B(E2) 19 + 2 25 f 1 -1.83 75 f 1 -2.46 0) + 0 + 0.067 7/2- 1.10 + 0 * 0 3/25/2- + 3/2+ 3/2- frun B(E2) (6.9 f l.O)( 0) ( 9 f 2 )(-1) from B(E2) (7.4 t 0.8)( 0) 1.19 + 0 3/2- + 3/2- from B(E2) 1.45 + 0 7/2- 1.20 f 0.34 ps f 0.4)( k 1.6)( 0) 0) + 0.067 1.81 -, 0.067 + 3/2+ 5/2- (2.6 (5.5 f 0.4 9/2- 1.60 f 0.34 ps 89 f 2 11 f 2 (2.0 (2.0 5 0.6)( f 0.4)( 0) 0) + 1.02 1.99 -, 0.067 -, 5/2-c 7/2- f 0.18 9/2- + 5/2+ 5/2- 900 + 250 fs 57 f 3 18 k 2 ( 6*2 l(O) (1.4 5 0.4)( 0) 5/2- + 3/2- fs 9/2- -+ 5/2-. 5/2- 60 i 12 280 + 45 fs 68 f 2 62 f 3 870 f 230 fs 12 f 2 100 1.4 f 0.5 ps + 0.17 ps 2.00 + 0.91 +D 2.41 + 0.067 + 1.13 -+ 5/2- 3.30 3.44 + 2.12 11/2+ + g/2+ + 2.12 0.97 + 0 + 0.48 13/2+ 5/2- + 9/2+ + 3/2- 1.31 1.39 1.90 2.20 2.30 2.34 2.40 2.61 -0 -0.97 =0 ‘0 t0.27 a0 20 * 0.1 0.9 f 0.1 (7.3 f 1.7)( 0) ( 8*2 )(O) (1.0 f 0.4)(+1) f 0.02 (6.3 f 1.3)( (1.8 (1.8 + 0.4)(+1) f 0.3)(d) PI (6.5 (9.0 t l.l)( f 1.5)( 0) 0) =0 HI.33 ( 8 f 2 )( 0) (1.3 f 0.6)( 0) (1.8 f 0.3)( 0) + 0.08 -0.63 100 99.1 * 0.06 [Ol + 3/2- 760 f 120 fs 5/2- + 3/2+ 1/2- 1.2 ps 93.8 85.3 ? 0.2 ?I 0.7 + 0 + 0.97 5/2- + 3/2+ 5/2- 260 f 40 fs 11.9 36.3 f 0.6 f 1.9 -0.69 t 0.08 (1.0 * 0.2)( 0) 41.6 * 1.3 to.18 f 0.03 + 0.48 5/2912- + l/2+ 5/2- 250 f 40 2.6 f 0.7 23.1 12.5 34.2 f 1.4 f 0.7 + 1.1 (4.1 (3.5 f 1.5)( -i 0.6)( 0) 0) 25.8 + 0.97 + 1.31 + 1.39 + 0.97 + 1.39 + 0.97 + 0 2.30 + 0 -t 1.17 + + + 3.18 + 1.17 0 2.34 1.17 + 2.30 + 0 + 1.17 + 0 f 0.2 fs ps + 7/2+ 5/2+ 7/2- t3.54 ‘JO + 0.14 0) 7/2- 1.17 3.26 3.28 3.52 -2.7 + 0 + 0.48 + 1.94 + 0.97 3.06 WI + 0 2.73 2.34 1.00 f-0 75 t 3 25 k 3 + 1/2- + 1.73 62Ni f ps s ?ot 1.02 1.13 %u 180 * 0.7 6 WI WI to.17 f 0.8 = -0.56 = 0 (6.5 f 1.8)(-l) (2.0 * 0.9)(-l) ( 9 f 2 )(-1) f. 0.04 0 (1.7 (1.4 + 0.5)(+1) f 0.2)(+1) (1.4 f 0.3)( f 0.03 9/2- + 5/2+ 5/2- 620 + 90 fs 19.9 + 0.6 75 * 2 7/29/2- + 5/2-. 7/2- 175 f 25 fs 1.2 A 0.2 58.2 t 1.0 HI.16 ? 0.02 410 fs 30.1 * 0.5 60 t 12 -0.25 t1.6 f 0.04 f 0.3 7/2- + 5/22+ + o+ 2+ + 0 t t +2 4+ + 2+ t 2+ + 0 + 4+ 4+ + 2+ +2 t 2+ + o+ t 4+ + 2 2+ + o+ f 60 330 f 50 2.09 f 0.03 950 f 170 fs ps fs 1.2 * 0.3 ps 3.3 * 1.5 ps 1.05 f 0.25 ps 1.03 i 0.28 ps 280 k 40 290 f 55 fs fs WI 100 57 f 4 43 f 4 = 100 11 ?: 2 16 f 3 93 t 2 7~2 2.9 f 0.7 100 5.3 f 1.8 0 0 -3.19 f 0.11 WI 0 to1 WI WI 0 to1 0 0) ( 8 f 2 )(-1) (1.8 f 0.6)(+1) (4.3 (1.2 f 1.2)( + o.l)(tl) (5.1 (1.2 (2.1 f 0.9)(-l) f 0.2)(+1) f 0.5)(+1) 0) ( 7 * 3 )(-3) (1.3 f 0.6)(+1) (1.5 * 0.4)( 0) ( 7+-2 J(o) ( 6 f 2 )(-3) (4.7 f 0.7)( 0) (1.8 A 0.7)(-2) 563 TABLE III. Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus E xi +E xf J; -+ 3; T, or r Total Y branching WW 3.52 -f 1.17 + 2.05 3.97 + 0 0.39 + 0.041 + 0.24 0.087 + 0 0.67 + 0 0.96 + 0 1.33 + 0 + 0.96 1.41 + 0 + 0.67 1.86 + 0 2.09 + 0 + 0.96 2.21 + 0.96 + 1.33 2.41 + 0 2.54 -c 0.67 2.68 -, 1.33 1.44 + 0.19 1.66 + 0 + 0.19 1.86 + 0.65 2.16 + 0.25 2.25 + 0.65 -t 1.07 2.59 + 1.70 2.83 + 1.70 2.94 + 1.44 4.50 + 4.16 1.35 -f 0 0.99 + 0 1.80 -t 0 + 0.99 1.91 a. 0.99 2.31 -P 0.99 3.01 + 0 3.08 + 0.99 + 2.31 3.99 + 2.31 4.24 + 2.74 0.064 + 0 0.77 + 0 1.12 + 0 + 0.77 1.48 + 0 1.62 -. 0.77 + 1.12 0.054 + 0 0.77 + 0.054 * 0.12 0.87 -+ 0 0.91 + 0 + 0.054 2+ + 2+ + o+ 2+ -t o+ 4t +2 + +2 + 5/2- + l/21/2- + 3/25/2- + 3/27/2- + 3/2-, 5/25/2- + 3/2+ 1/27/2- + 3/27/2- + 3/2+ 5/29/2- -+ 5/2+ 7/27/2- + 3/25/2- + l/211/2- + 7/29/2- + 5/2- 7/2- + 3/2+ 5/29/2- -t 5/23/2- + I/2- 9/2- + 5/2+ 7/213/2+ + 9/2+ 11/2+ + g/2+ 13/2- -f g/217/2+ + 13/2' 2+ + 0t 2+ + o+ 2+ + o+ + 2+ o+ + 2+ 4+ + 2+ 2+ + o+ 4+ + 2+ +4 t 6+ + 4+ 6+ + 4+ l/2- + 5/21/2- + 3/25/2- 7/25/2l/25/2l/23/2- + 3/2- -f 1/2+ 3/2+ l/2-, 5/2-P 5/2+ 1/2-. 3/2+ 5/2-t 5/2-t 1/2- 290 + 55 fs 160 f 50 fs 16.0 r 0.3 ns 2.38 300 850 780 f 0.06 us -2 20 fs f 40 fs + 60 fs 1.6 ? 0.3 ps 850 f 130 535 + 120 fs 445 f 105 fs 180 f 40 fs 310 f fs 60 840 f 220 1.0 f. 0.3 335 f 90 fs fs ps fs 710 ?: 230 260 t 70 fs 150 f 40 fs 5.1 f 0.4 ps fs 420 f 130 fs 310 f 90 fs 6.1 + 0.6 ns 100 ps 25 t 2 75 i 2 100 = 100 26 t 3 53 * 3 47 f 3 100 100 100 ps 115 f 30 fs 610 t fs 160 fs 175 + 50 fs 190 2 60 fs 105 t 7 US from 380 k 25 fs 475 t 5 1.3 f 0.3 fs ps 2.28 * 0.06 IIS 1.9 * 0.8 ps 800 t 300 fs 2.1 ps t 0.5 48 -0.44 f 0.09 0 0 WI [Ol to1 0.13 0.99 to.12 f 0.01 to.49 f 0.04 "0 tO.11 f 0.02 -0.62 f 0.05 L+iO =0 -0 -1.1 I? 0.2 =0 to.26 + 0.04 WI 0.2 "0 -0.9 f 0.2 PO -0.7 f 0.1 =0 =0 0 0 t3.3 f 0.7 0 to1 0 101 to.54 f 0.12 WI LOI [Ol 3.1 + 1 22 + 1 to.44 + 0.02 101 LOI PI -0.20 f. 0.02 to1 WI to.43 f 0.04 101 -0.25 t 0.04 to.96 f 0.20 1.3)(-l) 0.6)( 0) 0.5)(-l) &2)(-l) 0.4)( 0) O.l)( 0) 0.3)(+1) f 0.2)(+1) 0.1)(+1) 0.3)(+1) 0.3)( 0) l(O) 0.3)( 0) 0.6)(-l) 0.4)(d) 0.4)(+1) ( 923 l(O) (1.4 f 0.5)(-l) (5.8 * 1.1)(-l) (1.0 f 0.3)(+1) (1.8 A 0.6)(+1) (3.2 f 0.9)( 0) ( 5 t 2 )(-1) (2.0 t 0.6)(d) (6.2 t 1.7)( 0) (1.0 f 0.3)(+1) (5.0 f 1.8)(+1) (1.9 * 0.2)( 0) (2.3 A 0.8)(+1) (2.3 f 0.7)(+1) (1.9 f 0.2)( 0) (8.6 f 0.5)( 0) (2.1 r 0.1)(+1) (2.1 ?r 0.3)(-l) (3.4 f 0.5)(+1) (2.3 f 0.8)(+1) (3.1 + 0.9)(+1) =0 =0 =0 -0.18 f 0.03 =0 f i f t + f f + f (1.8 f (1.2 f ( 922 (1.6 f (2.5 + (1.4 * WI t2.3 (3.4 (2.2 (1.3 (6.2 (1.8 (2.3 (1.9 (1.5 (1.4 B(E2) !=Y100 (6.0~0.6)x10-3 84.0 r 0.6 8? 1 35 f 2 100 11 * 1 33 f 1 1.4 * 0.3 Remarks (W.U.) B(E2) ps 3.4 ?: 1.2 420 t 120 s ?.ot (%) 80 + 2 8.0 + 1.8 37 + 6 95.8 4.2 100 100 100 84.2 f 0.4 15.8 f 0.4 72.2 f 0.8 6.2 f 0.4 57 f 2 9.7 + 0.8 47 + 2 43 + 2 57 f 2 3.8 f 1.2 7.5 f 0.9 70 i 2 100 25 f 1 75 f 1 70 f 3 90 f 1 29 f 2 71 +- 2 100 100 100 100 from 2.65 f 0.10 3.0 + 0.4 6 6.9 (1.7 f (4.8 t 1.4)(-l) (1.1 (3.3 (2.3 (3.6 (1.5 (1.3 (1.3 (2.0 (1.3 (7.1 (1.7 (6.2 (1.2 (1.2 (1.8 (1.1 (5.5 + + f + t f * k f 2 f + + * f * 0.3)( 0) 1.4)(+1) 0.7)(+1) l.l)(+l) 0.1)(-l) O.l)(+l) o.l)(+l) 0.2)( 9) 0.1)(+1) l-9)( 0) 0.5)(+1) 0.2)( 0) 0.5)(+1) 0.5)( 0) 0.3)( 0) 0.5)( 0) f l.B)] 0) . 564 TABLE III. Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus Exi +E xf J'i + J'f TV or r 0 Total Y branching NW 65Zn 1.05 + 0.054 + 0.12 1.25 + 0.12 + 0.21 1.47 + 0.12 1.58 + 0.054 1.59 + + + 1.96 + + 2.14 + 66Zn 0 0.12 0.77 1.07 1.37 1.07 1.04 + 0 1.87 + 0 2.70 + 0 67Zn 0.093 + 0 0.18 + 0 0.39 + 0 0.81 + 0 + 0.18 0.89 + 0 1.36 + 0.39 + 0.89 1.52 + 0 1.60 + 0.60 1.80 + 0 + 0.18 + 0.39 67Ga 68Z" 68Ge 6gGa 1.88 + 0.39 0.36 + 0 0.83 -. 0 + 0.17 0.91 -P 0 + 0.17 1.20 -b 0 + 0.36 1.41 + 0 + 0.36 + 0.91 1.52 + 0.36 1.55 -b 0 + 0.36 1.64 + 0.17 2.26 + 0.91 + 1.20 2.86 + 1.52 3.03 + 2.07 1.08+0 1.88+ 0 + 1.08 + 1.66 1.02 -s 0 2.27 + 1.02 0.32 -. 0 0.57 + 0 5/2- + l/2+ 3/27/2- + 3/2+ 3/23/2- + 3/23/2- + 1/27/2- + 5/2+ 3/2+ 5/27/2+ + 9/2+ + 5/2+ 11/2+ + 9/2+ 2+ + o+ 2+ + o+ 2+ + o+ l/2- + 5/23/2- + 5/23/2- + 5/27/2- + 5/2+ 3/25/2- + 5/25/2- + 3/2+ 5/29/2- + 5/27/2+ + 9/2+ 7/2- + 5/2+ 3/2+ 312' 5/2- + 3/25/2- + 3/23/2- + 3/2+ 1/25/2- -, 3/2+ 1/27/2- + 3/2-c 5/27/2- + 3/2+ 5/2+ 5/29/2- + 5/25/2- + 3/2+ 5/23/2- + l/29/2- + 5/2+ 7/211/2- + 9/213/2+ + 9/2+ 2+ + o+ 2+ + 0t +2 t + o+ 2+ -b o+ 4+ + 2+ l/2- + 3/25/2- -, 3/2- 520 i 100 fs 2.3 f 0.8 ps 210 i 60 250 i30 220 f 70 600 f 290 fs fs fs fs 960 f 100 fs 2.28 i 0.09 ps 13.1 f 0.2 us 1.49 f 0.02 ns 9i2 ps 63 f. 2 20 f 2 44 * 2 67 29 * 2 68 f 2 22 i 2 10 t 1 79 f 1 21 f 1 100 100 from from 6.5 f 0.6 ps ps 2.2 f 0.4 ps from B(E2) 61 f 2 330 f 65 200 2 35 fs 170 f 30 fs fs 190 f 35 70 f 7 250 f 40 fs 360 f 95 fs 1.5 f 0.5 ps ps fs 900 * 300 fs 1.6 f 0.7 ps 230 t 35 fs 165 f 25 fs 980 f 250 fs 1.25 f 0.30 5.8 f 1.0 ps 1.3 f 0.3 19 i 3 ps ps [Ol [Ol -2.1 t 0.3 t2.5 * 0.3 -0.31 f 0.02 to1 to.23 to.27 -0.11 -0.67 + f f f 0 0.03 0.01 0.01 0.05 0 101 -0.39 f 0.02 39 f 2 (2.6+1.0)x10-2 100 100 from frm to1 B(E2) 37 f 3 8+-l 92 f 3 80 f 3 31 f 3 24 f 3 18 f 3 21 f 2 100 86.9 f 1.2 9.4 f 1.2 95.5 i 0.5 2.1 * 0.3 75 f 2 25 A 2 55 f 2 35 f 2 10.5 f 0.9 100 43 f 3 57 f 3 53 f 2 49.6 * 1.4 50.4 t 1.4 68.4 + 1.4 100 fs 101 to.43 i 0.04 B(E2) B(E2) 9+1 B(E2) B(E2) s (W.U.) B(E2) 77 f 2 100 86.7 ?r 0.2 from 260 f 55 Otot (X) 1.8 t 0.3 from 420 i 100 fs 6 to.31 f to.37 f =0 to.28 f to.38 f 0.06 0.05 0.03 0.08 [Ol WI to.8 + to.07 * to.16 f to.36 f -0.33 t -0 -0 t2.3 f -0 t1.7 * to.11 + '0 -0.42 * to.65 f to.16 f =0 t2.4 i t2.5 f -0 0.2 0.01 0.03 0.09 0.02 0.1 0.2 0.02 0.04 0.03 0.02 0.2 0.2 0 t1.46 f 0.14 0 0 VI 0.87 0.02 (1.8 f 0.5)( 0) (1.1 + 0.3)(+1) (2.4 + 0.9)( 0) ( 8 + 3 I( 0) (3.0 f 0.9)(+1) (6.1 f 0.7)( 0) (1.4 f 0.5)( 0) 1 7 * 2 I( 0) (2.2 f 0.9)( 0) ( 8*3 l(O) (2.7 i 1.3)( 0) (1.2 f 0.2)(+1) (1.8 f O.l)(+l) (5.7 f 0.8)(-2) (5.5 f 1.3)(-l) (2.9 2 0.1)(-l) (1.7 ? O.l)(+l) (4.6 + 0.4)(-l) (1.4 f O.l)(+l) (5.0 + 1.2)( 0) (5.8 f 0.4)( 0) ( 7*3 )(O) ( 8 f 3 )(+l) (1.7 ?: 0.3)(+1) (1.4 f 0.4)(+1) ( 6 + 2 )(-1) (6.2 i 1.3)( 0) ( 9*2 l(O) (2.8 + l.O)( 0) (5.8 A 1.8)(-l) (1.1 * 0.4)(+1) (1.7 t 0.8)(+1) (2.1 + 0.6)(+1) (1.3 i 0.4)(+1) (1.0 * 0.3)(+1) (1.8 e 0.6)(+1) (5.4 i 1.8)( 0) (1.1 f 0.4)(+1) (2.2 ? 0.8)( 0) (1.4 f 0.6)(+1) (1.5 f 0.3)( 0) (1.5 f 0.2)(+1) (5.0 f 1.4)(,1) (5.6 f 1.4)( 0) (1.6 f 0.4)(+1) (5.3 f 1.3)( 0) (9.3 f 0.9)( 0) (1.5 f 0.1)(+1) (5.6 i 0.8)(-l) (1.7 f 0.4)(+1) ( 9 f 4 )(+l) (6.7 zt 1.2)( 0) (1.2 f 0.3)(+1) (7.8 i 1.2)( 0) (3.4 A 0.5)(-l) Remarks 565 TABLE III. Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus Exi +E xf J; + J; ~~ or r -I Total branching WV) 6gGa 0.57 0.87 1.03 1.11 1.34 1.49 6gGe 0.087 0.23 [0.81 0.86 0.93 1.35 1.41 1.42 1.48 "Zn "Ga "Ge 'OAS 'lGa 'lGe 72Ge 0.88 1.76 0.88 1.04 1.22 1.71 3.30 4.43 0.032 0.51 0.96 0.17 0.83 1.46 72AS 72Se 73Ge 74Ge 74Se 0.21 0.31 0.86 0.94 1.32 1.64 2.47 0.013 0.60 1.20 0.63 0.85 + 0.32 +0 +0 +0 + 0.32 + 0 + 0.57 + 0 + 0.57 + 0 + 0 -, 0.40 +0 + 0.23 + 0.087 + 0.40 + 0.40 + 0 + 0.23 + 0.37 + 0 .+ 0 + 0.69 +0 + 1.04 + 0 + 1.04 + 1.22 -. 2.15 -+ 3.30 + 0 + 0 -, 0 + 0.39 + 0 + 0 + 0.69 + 0 -, 0.69 + 0.83 + 0.046 + 0 + 0 + 0.86 + 0 + 0.86 + 0.94 + 0.86 + 1.64 + 0 -. 0 + 0 + 0.60 + 0 -+ 0.63 5/23/2l/25/2- -, l/2+ 3/2+ 3/2-+ 3/2-f 1/27/2- -+ 3/2+ 5/27/2- + 3/2-, 5/2l/2- + 5/23/2- -, 5/25/2+ + g/2+ 7/2- + 5/2+ 3/25/2- + 1/211/2+ + 9/2+ 13/2+ -t g/2+ 5/2- -, 5/27/2- + 3/2+ 3/22+ + o+ 2+ + o+ 4- -t 22+ + o+ o+ + 2t 2+ + o+ +2 t + o+ 6+ + 4+ 8+ + 6+ 2+ + 4+ 3/2- + 3/25/2- + 3/2+ 1/25/2- -, 1/22+ + o+ + o+ 2+ + o+ +O t + 2+ (l-3)+ + 1+ (o-4)- + 22+ + o+ o+ + 2+ 2+ * o+ + 2+ -+O t (l-4)+ + 2+ (l-6)+ + (l-4)+ 5/2+ + g/2+ 2+ + o+ 2+ + 0 t +2 t 2+ + 0 t o+ + 2t 19 f 3 290 + 30 1.18 f 0.16 2.9 2 1.2 ps fs ps ps 7.4 ?: 0.4 us 252 t 17 ps 1.5 f 0.2 3.1 f 0.5 ps ps 2.2 f 1.0 ps 810 f 110 fs 1.5 f 0.2 1.4 i 0.6 ps ps 430 f 120 fs 4.6 k 0.4 ps from from B(E2) B(E2) from B(E2) ns 1.83 ps ns f 0.04 4.6 f 0.6 522 ps 700 f 150 fs 1.10 f 0.25 ps 138 + 4 2.1 f 0.3 US ps 114 f 3 ns 24 f 2 ps 4.0 * 1.0 ps 115 * 3 24 4.8 27 13 3.6 2.4 4.25 16.6 7.8 ?: 4 * 0.5 + 2 * 3 f f k i f 0.8 0.3 0.07 1.6 1.1 ns ns ps ns ps ps ps us ps ps 10.7 f 0.4 ps 1.08 f 0.07 ns %ot (X) 1.2 f 0.1 93.7 + 0.6 6.3 f 0.6 51 f 6 35 f 8 100 69 f 1 18 f 1 94.4 f 0.8 4.3 f 0.4 18.7 + 0.9 100 100 64 f 3 7?2 29 ?: 2 100 I01 101 '0 to.68 + 0.10 =0 -2.54 f 0.10 =0 -0.27 f 0.04 ==O -2.4 f 0.3 =0 -0 -0.6 ? 0.1 "0 to.65 2 0.10 1.3 WI -0 0 B(E2) 100 100 98.6 44.7 f 0.4 52.9 f 0.5 0.77 f 0.15 100 100 100 from B(E2) from B(E2) 2.0 f 0.2 100 - 100 0.015 f 0.001 12.3 f 0.3 0.15 * 0.03 87.6 f 0.3 59 t 5 29 100 73 f 12 51 ?: 2 39 f 2 10 f 2 100 100 100 100 32 f 1 68 f 1 100 RilOO s Remarks (WA.) 0.16 i 0.05 from 32.8 f 0.7 6 0.07 -0 0 0 0.11 0 t1.0 * 0.2 0 [ol (01 101 [Ol =o 51 0.09 0 0 0 0.23 0 t10.3 f 1.3 =0 "0 0 0 0 -4.6 f 1.5 0 ==O =0 "0 0 0 -3.3 f 0.2 0 0 0.16 2.2 1100 0.04 (3.7 * 1.3)( 0) (5.1 f 0.8)( 0) (4.4 + 0.9)( 0) (1.0 f 0.2)(+1) (6.2 f 0.8)( 0) (8.7 f. 1.2)( 0) (1.9 f 0.5)( 0) (1.1 f 0.4)( 0) ( 8*3 )(O) (5.6 f 0.3)(-l) (1.3 ?: 0.4)(+1) (4.9 f 0.7)(+2)1 (2.6 i 0.4)(+1) (6.6 f 1.2)( 0) (1.0 f 0.4)(+1) (2.0 f 0.6)(+1) (3.0 f 0.4)(+1) (1.1 f 0.5)( 0) (2.4 i l.O)( 0) (1.9 * 0.5)(+1) (1.9 * 0.2)(+1) (5.8 f 1.5)(-l) (5.8 f O.l)( 0) (2.1 f O.l)(tl) (5.3 f. O.')(tl) (2.9 * 1.2)(-l) (1.8 f 0.8)(+1) (2.5 f l.l)( 0) (3.3 * 0.7)(+1) (2.5 f 0.6)(+1) (2.0 f 0.1)(-l) (4.6 f 0.8)( 0) (1.2 f 0.2)(+1) (7.0 f 1.2)( 0) (2.6 * O.l)( 0) (4.8 t 0.4)( 0) (3.8 f 0.5)( 0) (2.1 * 0.5)(-l) ( 6 f 2 )(-2) ( 9 2 2 )(tl) (1.5 f 0.2)( 0) (1.9 t 0.3)(-l) (2.0 f 0.2)(+1) (1.6 ? 0.3)(+2) (4.4 f 1.0)(-l) (2.0 * 0.4)(+1) (4.4 * 1.3)(+1) (4.4 * l.O)(tl) (4.7 f 0.5)(+1) (2.5 * O.l)(tl) (3.2 t 0.3)(+1) (7.1 * 1.0)(-l) (4.3 + 0.6)(+1) (4.0 * 0.2)&l) (7.7 f 0.5)(+1) c) d) 566 TABLE III. Strengths of E2 Transitions See page 552 for Explanation of Tables Nucleus E xi +E xf J; + J'f ~~ or r Total Y branching WV) 1.27 + 0 2+ + o+ +2 + + 0.63 1.36 + 0.63 4+ + 2+ 2.23 + 1.36 6+ + 4+ 0.20 + 0 l/2- + 3/20.27 + 0 3/2- + 3/21 + 0.20 + 1/20.28 + 0 5/2- + 3/21 + 0.20 + 1/20.40 + 0.30 5/2+ + 9/2+ 0.57 + 0 5/2- + 3/20.82 + 0 7/2- + 3/2[O.ll -k 0 7/2+ + 5/2+ 0.13 + 0 9/2t + 5/2+ 0.56 -. 0 2+ + o+ 1.11 + 0 2+ + o+ + 2+ + 0.56 0.56 + 0 2+ + o+ 1.12 -, 0.56 o+ + 2t 1.22 -b 0 2+ + o+ + 0.56 + 2+ 1.33 + 0.56 4+ + 2+ 0.26 + 0 5/2- + 3/20.63 + 0.48 5/2+ + g/2+ 0.24 -. 0 3/2- + l/20.25 + 0 5/2- + l/20.44 + 0 5/2- + 1/20.61 + 0 2+ + o+ 1.31 + 0 2+ + o+ + 2t -s 0.61 0.46 + 0 2+ + o+ 1.12 -, 0.46 4+ + 2+ 1.15 -b 0 2+ + o+ 1.56 -P 0.46 3+ + 2+ + 1.12 +4 t 1.87 + 1.15 4+ + 2+ 1.98 a 1.12 6+ + 4+ 2.30 + 1.56 5+ + 3+ 2.99 + 1.98 8+ + 6t 3.29 .+ 2.75 7- + 50.22 + 0 5/2- + 3/20.31 + 0 1/2- + 3/20.40 + 0 3/2- + 3/20.52 + 0 5/2- + 3/20.61 + 0 3/2- + 3/2+ 0.22 + 5/20.76 + 0 7/2- + 3/f 0.15 + 0 (l/2-7/2)-+(1/2,3/2)0.67 -. 0 2+ + o+ 1.45 + 0 2+ + o+ + 0.67 -P2 t 0.62 + 0 2+ + o+ 0.28 + 0 5/2- -c 3/20.57 + 0 3/2- + 3/20.84 + 0 7/2- + 3/2- 6 4.8 k 0.6 2.7 f 0.1 2.4 ?: 0.3 ps ps ps 1.25 A 0.04 ns 17.0 + 1.0 ps 400 A 14 ps 2.5 * 0.1 ns f f + + 0.4 0.17 0.9 0.2 13.1 + 1.4 ps 17.8 * 0.4 ps ps ns ns ps 16 + 6 ps 4.9 f 0.3 ps 2.20 500 108 39 f f * f 13.4 f 0.6 0.07 30 22 10 ps ps ps ps ns 33 i 3 ps 3.9 f 0.4 ps 33 3.6 5.8 6.4 f f + k 2 0.3 0.5 0.5 ps ps ps ps 1.9 f 0.3 ps 900 f 150 fs 1.8 f 0.4 450 f 60 2.9 * 0.3 2.9 i 0.3 1.7 + 0.3 113 f 2 ps (%) 31 ?: 3 69 it 3 100 100 100 97.57 i 0.06 2.43 ?r 0.06 100 0.090 * 0.015 6.4 f 0.4 from 3.6 1.00 7.6 26.2 from B(E2) 41.0 f 1.3 59.0 f 1.3 100 100 34 f. 4 85 k ! 15 f 3 58 ?: 8 100 70 +_ 3 100 ps 46 f 3 from B(E2) from B(E2) from B(E2) from B(E2) ps from B(E2) ps 12.6 f 1.6 34 f 2 100 from 1.5 f 0.3 ps 12.7 k 0.7 12 f 5 ps 920 f 220 fs ps from 0 t2.6 i SO -0 20.44 f to.045 f -0.19 f to.36 t 0.2 0.02 6.006 0.02 0.03 PI to1 0.51 1.7 0.88 [Ol to.35 t 0.06 =0 0 0 -3.4 f 0.4 0 0 0 -5.2 f 0.2 0.18 Ku a0 0 -2.7 ?r 0.8 0 to1 0 t5 * 2 tll * 2 to1 101 101 101 LOI +0.19 f 0.02 to1 =0 0 t5 f 4 0 -0.09 2 0.02 B(E2) 13 f 4 0.14 0.29 PI to.32 + 0.01 LOI -0.18 f 0.02 B(E2) 56 k 6 44 f 6 100 100 Remarks (W.U.) B(E2) 86.3 * 1.3 100 37 f 8 100 38 r 4 62 f 4 100 100 39 + 2 61 f 2 100 100 2.1 f 0.2 99.90 f 0.05 70.0 f 1.1 53 f 2 fs ns s %ot PI 0.22 (8.4 (4.9 (9.5 (3.6 (1.8 (3.7 (1.1 (7.1 (1.0 (6.4 (2.6 (2.7 (2.4 (i.7 (2.9 (7.2 (3.4 (4.3 (4.7 (1.2 (4.0 (7.0 (5.8 (7.1 (4.1 (2.2 (4.0 (3.3 (1.1 (3.3 (6.2 (9.0 (1.2 (3.2 (5.7 (6.3 (9.5 (7.0 (8.5 (1.4 (1.3 (2.0 (1.6 (3.2 (7.6 (4.8 (3.1 (4.2 (2.5 (2.3 (3.8 (3.4 (1.6 (1.2 (1.3 t 1.4)(-l) f 0.6)(+1) * 0.4)(+1) f 0.5)(+1) + 0.2)(+1) f 1.0)(-l) f 0.2)(+3)] t l.O)( 0) i 0.2)(+2)1 ?: 0.5)(+1) t 0.3)(+1) ? 0.3)(+1) f 0.8)(+2)1 + 0.9)(+1) f O.l)(tl) + 0.9)(-l) f 0.4)(+1) f O.l)(+l) +- 1.8)(+1) * O.l)( 0) t 0.3)(+1) + 0.2)(+1) f 0.5)( 0) f 1.6)(+1) ?r 1.4)(+1) f O.l)( 0) f 0.4)(+1) k 0.1)(+1) f O.l)( 0) f 0.4)(+1) f 0.4)(+1) f 0.8)(+1) f 0.2)( 0) f 0,.3)( 0) f 1.2)(+1) f 1.3)(+1) f 1.6)(+1) f 1.6)(+1) f l.l)(tl) f 0.2)(+2) f o.l)(+l) * 0.4)(+1) k 0.3)( 0) t 0.3)(+1) k 1.2)( 0) t 1.2)( 0) t 0.6)(+1) 5 0.1)(-l) + O.l)(tl) f 0.5)( 0) f l.O)(tl) f 0.2)(+1) f O.l)(tl) f O.l)( 0) A 0.5)(+1) e) f) g) TABLE 567 Strengths of E2 Transitions III. See page 552 for Explanation of Tables Nucleus E +E xi J; + J” xf ~~ or f r Total -I branching (Me'4 7/2- + 5/2- 0.84 + 0.28 0.66 + 0 2+ + o+ 920 +_ 220 (%) 87 fs (W.U.) f 4 from Remarks S %ot -0.193 f 0.012 B(E2) (2.4 t (1.7 f o.l)(+l) 0.6)(+1) 0.78 + 0 2+ + o+ 6.9 k 1.2 ps 100 (1.9 f 0.3)(+1) 0.88 + 0 2+ -t o+ 4.6 f 0.7 ps 100 (1.5 t 0.79 + 0 2+ + o+ 4.2 f 1.3 ps 100 (2.8 f 0.9)(+1) 0.15 + 0 3/2- + 5/2- (2.2 f 0.28 + 0 1/2- + 5/2- 420 f 90 ps (2.2 f 0.2)( 0.73 + 0 3/2- + 3/2- 6.4 t 0.7 ps 0.87 -+ 0 3/2- + I/2- 3.8 f 0.3 ps 1.08 + 0 2+ -f o+ 0.24 + 0 2- 0.75 + 0 2+ -f o+ B(E2) 4.5 fr 0.9 64 f 3 ns 100 2.0 ps 100 + 20 fs t to.8 f from + 3/2- 0.2 ( mw B(E2) 3 42 t 10.6 tOI 99 from + 4- 5/2- from -0 o.*)(+l) 0.2)( 7** 0) 0) )m (1.9 (1.0 f 0.2)(+1) f o.*)(+l) (1.0 2 O.l)( 0 (1.4 (1.6 f 0.3)(+1) f 0.2)( 0) 0 B(E2) 0) 0.40 + 0 1.84 + 0 (7.7 + 0.8)( 0) 1.51 + 0 3/2- + I/2- from B(E2) (2.8 + 0.4)( 0) 1.74 + 0 5/2- -, I/2- from B(E2) (2.8 t 0) 2.22 + 0.91 5/2+ + 9/2+ (1.2 ? 0.5)(+1) 1.63 -, 0 5/2+ (4.4 f 0.7)( 0) 1.83 +. 0 5/2+ (1.8 f 0.4)( 0) 2.10 + 1.10 5/2- f 0.5 (6.7 + 1.3)(+1) 0.20 + 0 3- f 0.06 (2.0 + 0.8)(+1) 2.19 + 0 2+ -+ o+ from B(E2) (5.5 f 0.5)( 3.31 + 0 2+ + o+ from B(E2) (5.6 2 1.5)(-l) (2.3 (1.7 f O.l)( f 0.3)( (8.8 f 0.3)(-3) 2+ + o+ + 9/2+ 580 f 90 fs 87 f + 9/2+ 810 f 170 fs 91 + 5 + 3/2- 110 ? 20 fs 75 A 3 + 2- 361 f 10 ps + 3.45 8+ + 6+ + 0 2+ + o+ 0.12 + 0 6+ + 8+ The large mixing mixing ratio ') One has to 72HsOl. The d) See discussion e) The mixing doubted; ratio results 6 = -0.17 conclude that J” = 5/2+ in ratio f, The The mixing branching ratio is from 0.81 assignment 98.68 (p,nr) work the MeV level would 74TolO. of six (decaying also lead to to an -0.28 =0 Analogous measured 3/2-, -0 work values 5/2- impossibly 0.31 B(E2) 100 us in average t3.5 + 0.09 from is 2 100 ns 91 + 3 WI WI WI 70 and strong 0.54 in 74Ri13 with large spread; states) is 9/2+ is M2 component perfectly compatible one should a doublet as in the 0.2)( r. 0) 0) with conclude already transition 0) 6 = 0. to 6 * 0 suggested (see Table in VII). text. for 6 m 0 seems g, the fs 195 f 5 from + 0.03 200 100 f 3.59 The 210 500 3.84 a) b) derived 6 ratio this weak more realistic. for has an been (a,ny) this branch weak obtained branch is derived from the angular distribution from suspect (very 75Ge(s-T) (see small) measurement y-y angular correlation work (see A = 75 compilation) must A = 75 compilation). measured (76Sa07); conversion'coefficient one should (745~03). conclude to 6 = 0. A value 6 = to.21 It 0.13 be 568 TABLE IV. Strengths of E3 Transitions See page 552 for Explanation of Tables Nucleus J'i + J'f Exi + Exf Total Trn VW 0.14 4.51 2.23 4.56 3.86 4.47 4.05 3.76 1.07 2.83 2.75 2.51 0.026 2.35 0.14 0.30 '%e "Ge "AS "Se "8, 78Kr "Se 7gBr 'gKr 8OKr + 0 1- + 4+ + 0 3- + o+ + 0 l/2+ -, 7/2+ 0 3- + o+ -. 0 3- + o+ +0 3- + o+ + 0 3- + o+ +0 3- + o+ +0 g/2+ + 5/2+0 3- + o+ +0 3- + o+ + 0 3- + o+ + 0 (l/2-5/2)-+(7/2,9/2)+ -. 0 3- + 0t -c 0 7/2+ + l/2+ 0 g/2+ + 3/2+ 0.28 + 5/2[ 3- + o+ 2.43 + 0 0.16 -W 0 l/2- + 7/2+ 0.48 + 0 g/2+ + 3/2+ 0.26 + 5/20.16 + 0 7/2+ + l/20.11 -N 0 g/2+ + 3/22.38 + 0 3- + o+ 3- + o+ 2.87 -, 0 0.096 .. 0 l/2- + 7/2+ 0.21 -, 0 g/2+ + 3/2(7/2,9/2)++(1/2,3/2)0.13 + 0 2.41 + 0 3- + o+ 2.96 + 0 3- + o+ 2.53 + 0 3- + o+ 3.33 + 0 3- -c o+ 0.042 + 0.009 l/2- -. 7/2+ 0.26 + 0 l/2- * 7/2+ 3- + 0t 2.70 + 0 3.10 + 0 3- + o+ 2.73 + 0 3- + o+ 0.39 + 0 1+ -b 48+ ; 50.67 + 0.23 5/2+ + l/22.22 + 0 2.53 + 0 7/2+ + l/22.32 + 2.19 5- + 2+ 2.75 + 0 3- + o+ 3.59 + 2.32 B+ + 53- -+ 0t 5.64 -c 0 5.78 + 0 3- + o+ a) The mixing obtained ratio from 6 branching of this a y-T angular low-energy 2727 s 13 f 2 ps 43.1 f 1.6 ns 830 f 40 35 f 7 56 f 3 from B(E3) from B(E3) from from B(E3) B(E3) from B(E3) 5+1 from B(E3) from 2.1 B(E3) f 0.2 ps from 69.7 f 0.3 s 25.30 f 0.11 ms s 6.17 min f 0.14 from from 5.64 f 0.07 min 7.04 f 0.07 s 72 f 4 s 1.168 t 0.003 s 8.3 f 2.6 ps 195 f 5 ns low-intensity is almost 5300 =JO 1.4 0.05 5600 WI -0.18 f 0.02 0 ==O -0.100 f 0.007 '(10 WI -0 '0 B(E3) B(E3) from from B(E3) B(E3) 0.08 0.86 6.0 1950 0.15 -0 =0 B(E3) B(E3) 0.69 f 0.05 100 100 =a0 from B(E3) fran B(E3) 13 ? 2 -0 0 Ml 2.6 0 WI B(E3) B(E3) (0.07% certainly 0.86 9.2 0.32 2.5 -0 of the most in error. unknown (2.7 f (6.7 f (1.0 + (6.1 f (9.9 f (1.6 i (1.1 f (1.3 f (4.2 f (2.3 k (2.0 f (5.3 f (3.8 f ( g*2 (2.8 f (6.3 i (3.8 i (1.7 [Ol 7*2 1.32 f 0.09 line =0 B(E3) B(E3) from from from (77PuO4) 0 100 100 1.18 f 0.11 ps 432 ? 4 I PS 20.0 f 0.3 ms (24 keV) to.13 A 0.02 B(E3) from from from measurement to1 100 100 100 2.64 i 0.03 h 7.14 f 0.17 5 0.61 0 = 100 822 92 f 2 2.1 * 0.2 21 f 2 3.3 f 0.3 96.7 f 0.3 100 100 16.5 f 2.0 ps 78k2 s 167 f 6 ,,s 25.2 f 1.4 to1 73 f 7 min Remarks (W.U.) 100 27 f 2 100 ps s %ot (%) transition (3.4 (2.2 (1.4 (4.6 (1.6 (1.7 (6.2 (1.8 (3.0 (2.8 (1.6 (4.0 (2.2 (1.5 (6.2 (6.7 (1.6 (1.2 (1.9 (5.8 (5.5 (1.8 (2.0 (1.5 (2.5 (4.6 (2.0 (4.2 in 0.7)(-l) l.O)( 0) O.l)( 0) 0.3)( 0) 0.9)( 0) 0.3)(+1) 0.2)(+1) O.l)(+l) 1.5)( 0) 0.5)(+1) 0.4)(+1) l.O)( 0) 0.4)(-2) l(O) O.l)(-2) 1.6)(-2) 0.8)(+3)] * 0.2)(+1) + 0.3)(-3) + 0.2)(-l) f 0.2)(+1) k 0.3)(-2) + O.l)(-2) f 0.3)(+1) f 0.9)( 0) f O.l)(-2) f O.l)(-2) f 0.2)(-2) f 0.2)(+1) f 0.6)( 0) f 0.3)(+1) f 0.2)( 0) f O.l)(-3) f 0.2)(-3) f 0.2)(+1) ?I 0.2)(+1) + O.l)(+l) i O.l)( 0) f O.l)(-2) f 0.2)(+1) * 0.2)(+1) f 0.2)(-2) i 0.3)(+1) i 0.3)(-2) f 0.3)( 0) i 0.6)(-l) the a) 75Se EC decay) TABLE Type Nucleus E xi +E xf J; + J; of Tables 6 Total 'rn branching WV) t S Yet (%) (W.U.) (3.4 * 0.6)( (1.4 t 0.1)(-l) B(E4) (1.6 f 0.2)( 0) B(E4) (3.5 f l.l)( 0) from B(E4) (5.2 f 0.6)( 0) 4+ + o+ from B(E4) (1.0 f 0.2)( 0) + 0 4+ + o+ from B(E4) (1.8 f 0.4)( 0) 2.34 + 0 4+ + o+ from B(E4) (3.0 f 0.3)( 0) 1.12 + 0 4+ + 0' from B(E4) (5.5 f l.l)( 0) 1.42 -, 0 4+ + o+ from B(E4) (2.3 i 0.5)( 0) 1.83 + 0 4+ + o+ from B(E4) (1.5 f 0.3)( 2.10 + 0 4+ + o+ from B(E4) (2.3 f 0.6)( 0.46 + 0 6- (3.9 f 0.4)(, 2.25 + 0 4+ + o+ from B(E4) (3.4 f 0.7)( 3.08 -, 0 4+ + o+ from B(E4) (3.3 * 0.9)( 4.32 -, 0 4+ + o+ from B(E4) (1.7 ?r 0.5)( 0) 0) -1) 0) 0) 0) 4.44 + 0 4+ + o+ from B(E4) (3.9 ?: 0.7)( 0) g"Y 0.63 + 0 7+ + 2- 0.33 2 0.03 (2.1 f 0.2)( 0) "Zt- 2.32 + 0 5- (8.4 i 0.5)( 0) 3.98 + 0 5- + o+ (1.0 + 0.4)(+1) E4 E5 569 V. Strengths of E4 and E5 Transitions See page 552 for Explanation 2.37 + 0 4+ + 0 0.38 -, 0 2+ -t 6 + from B(E4) 1.75 f 2.09 + 0 2.46 + 0 4+ + o+ from from * 0 4+ + o+ t 4+ + 0 2.51 3.13 + 0 3.67 + 2- + o+ 30.5 29.6 4.60 1.168 * 0.3 f 0.3 min min + 0.02 h f 0.003 s 0.04 28 + 3 87 from e 2 B(E5) WI WI Nl 0 0.05 0.04 0.03 0) 570 TABLE VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus Exi + E,f Jf + Jnf Total 'rn branching (MeV) 45SC 0.54 0.72 0.97 1.07 1.40 1.80 + 0.012 +0 + 0.54 + 0.38 + 0.72 + 0.97 + 1.07 + 0 + 1.24 + 1.43 + 0 + 1.07 + 0 + 0.33 + 0.74 + 0 -+ 0.58 + 0 -s 0.81 * 0.77 + 1.30 0.16 + 0 1.25 + 0.16 1.44 -. 1.25 1.43 1.56 1.66 2.03 2.09 45Ti 46SC 47sc 47Ti 47V 48Ti 48V 49% 4gV 0.040 0.74 1.23 1.35 1.12 1.30 1.55 + 0 2.16 -+ 0 2.17 + 0.16 0.088+0 0.146 + 0.088 1.27 + 0.146 2.42 0.43 0.63 1.06 2.37 0.091 0.15 1.14 1.16 1.51 1.60 1.99 2.18 2.35 2.39 4gCr 0.27 1.08 1.56 1.74 2.50 2.61 + 0.98 +-0 + 0.43 + 0.75 + 2.23 + 0 + 0.091 + 0.75 + 0 + 1.02 + 0.15 + 1.14 + 1.14 + 0.091 + 1.16 + 0 + 1.02 -+ 0.75 + 1.99 + 0 + 0.27 + 1.08 + 0 + 1.56 + 0 5/2+ 5/27/2+ 3/2- + 3/2+ -+ 7/2-, 5/2t + 3/2+ 5/29/2+ + 7/2+ (l/2,3/2)+ 3/2g/2- + 7/2+ + 11/211/2+ + g/2+ 5/2- -t 7/2+ 3/25/2- + 7/25/2t + 3/2t 7/2+ + 5/2+ 9/2- -+ 7/24- + 35/2- + 7/2-, 3/25/2+ + 3/2+ (3/2,5/2)- -, 5/27/2- + 5/2g/2- + 7/211/2- + 9/23/2- + 5/23/2- + 5/25/2- + 7/25/2- -t 3/27/2- + 5/2g/2- -t 7/22+ + 2+ 5+ + 4+ 6+ -s 5+ 3- + 23/2+ + l/2+ 5/2- + 7/2312- + 5/25/2+-t 3/2+ g/2- + 7/2+ 11/25/2- -, 3/27/2+ + 5/2+ 3/2+ + 5/2+ 7/2- + 5/2+ 9/2g/2- + 7/2+ 11/25/2+ + 3/2+ + 3/2+ 7/2- + 5/2g/2- + 7/211/2- + 9/23/2- + 5/213/2- -t 11/23/2- + 5/2- 8.1 f 2.3 320 f 25 2.7 * 0.3 500 f 140 ps fs ps fs 7.6 f 0.3 ps 390 f fs 146 * 13 fs 1.6 f 0.7 ps 140 10 * 3 fs 17.1 + 0.6 ns 15.1 f 2.5 ps 4.0 f 0.9 ps 148 f 15 fs 1.6 f 0.3 ps 90 * 35 fs 1.4 f 0.4 ps 300 * 90 fs 301 * 9 ps 210 f 20 fs 1.4 f 0.4 ps 2.3 33 24 950 f f f f ps 790 f 95 ps f k f f * f f f * fs 430 38 8.80 119 6.6 2.02 328 28.8 1.9 1.6 0.7 7 6 50 65 5 0.14 9 1.7 0.14 19 0.3 0.7 f 0.4 45 f 19 680 f 250 190 f 65 48*17 48 f 17 fs fs ps fs ps ps ps ns ps ns ps ps fs fs fs fs fs 82 f 26 fs 19 + 4 220 f 40 530 k 80 ps 1.6 f 0.4 ps 230 * 50 65 + 20 fs fs fs fs 6 S %ot (X) 58.7 f 0.5 96.5 f 0.5 10.4 f 0.5 76 r 2 24 r 2 18.2 + 1.4 100 79 f 3 21 t 3 37 f 5 83 + 2 10 f 2 100 92 f 1 37 f 2 90 f 2 66 91.5 + 0.2 8.3 f 0.2 23 + 3 50 f 8 100 88*6 94 + 3 43 f 5 100 100 100 99.0 2 0.5 82 2 2 95.0 f 0.8 100 45 + 8 92 f 2 7?2 100 35.0 f 0.3 5.2 f 0.6 74.7 f 0.7 2.9 f 0.6 56.3 f 0.8 6.9 f 0.6 37 f 2 57 f 4 20 t 5 53 f 2 26 ?: 1 59 2 2 10 +_ 1 100 94.1 +_ 1.0 51 f 2 71 + 2 90 f 3 41 f 2 (W.U.) to.70 + 0.15 -0 to.41 f 0.15 "0 SO to.28 f 0.07 101 -0.45 f 0.04 "0 =0 "0 a0 =0 -0.40 f 0.03 -0.28 f 0.03 to.46 5.5 * 0.08 =0 =0 to.21 2 0.04 to.72 * 0.28 101 =0 to.29 * 0.03 =0 -0.46 k 0.09 -0 20 20 WI 0.04 0.10 -0.43 f 0.06 -0 -0 =0 =0 WI WI 101 to.26 * 0.12 -0.70 f 0.07 -0 to.57 5 0.05 -0 "0 =0 [Ol to.54 f 0.23 "0 to.36 ? 0.15 "0 "0 to.21 f 0.03 =0 =0 "0 "0 0.03 0.08 (1.0 f 0.3)(-2) (2.5 (1.3 (1.4 (3.7 (7.2 ( 7 (3.0 (6.0 (3.4 (2.9 (3.0 (5.2 (2.3 (2.2 (6.4 (8.2 (1.5 (2.3 (1.4 (4.2 (2.6 f 0.2)(-l) f 0.2)(-2) f 0.4)(-l) f 1.0)(-l) k 0.6)(-3) i 2 )(-1) f 0.3)(-2) f 0.9)(-l) e 1.5)(-2) ?r 0.9)(-l) * 1.1)(-l) k 0.3)(-3) f 0.4)(-2) k 0.5)(-2) k 0.7)(-2) f 1.6)(-2) f 0.6)(-l) f 0.9)(-l) f 0.6)(-2) + 1.4)(-l) f O.l)(-2) (9.3 f (1.3 f 0.4)(-2) (1.3 (1.0 (1.6 (4.6 (1.8 (3.6 (2.6 (4.5 (1.6 (1.5 (3.9 (1.2 (1.5 * 0.4)(-3) f 0.2)(-l) f 0.4)(-l) * 0.3)(-2) f 0.2)(-l) f 0.6)(-2) f 0.3)(-l) f O.l)(-2) ?: 0.3)(-2) f 0.4)(-l) f l.l)(-4) f 0.1)(-l) f O.l)(-3) (1.4 f 0.5)(-2) (6.2 (2.4 (1.2 (3.3 (1.0 (4.1 (1.2 (2.1 ( 7 (4.5 ( 6 (8.4 (2.4 (2.7 (2.6 (1.5 (1.1 f f + f f f f f f 2 + t f f f * f l.O)(-2) 1.6)(-3) 0.8)(-2) 0.5)(-l) 1.2)(-2) 0.3)(-l) 1.5)(-2) 0.4)(-l) 0.8)(-2) 2 )(-2) 1.4)(-2) 2 )(-1) 1.8)(-2) 0.4)(-l) 0.4)(-2) 0.7)(-3) 0.3)(-l) 0.3)(-2) Remarks TABLE 571 VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus J; + J"f Exi + E,f Total 'rn branching (MeV) 4gC, 5oV 5oC, 51V 51Cr 51Mn 52V 52C, 53Cr 53Mn 3.19 + 2.50 0.84 + 0 + 0.32 0.91 + 0.23 1.30 -+ 0.36 + 0.39 1.33 + 0.39 1.49 + 0.39 1.52 + 0.39 2.92 + 0.78 3.16 + 0.78 3.32 + 1.88 0.32 + 0 0.93 + 0.32 1.81 -, 0 0.777 + 0.749 1.16 + 0 1.48 + 1.16 1.56 + 0 + 1.35 2.00 + 0 2.31 + 1.16 2.38 + 1.48 2.39 + 1.48 2.77 + 1.48 2.95 + 1.56 3.11 + 1.16 + 2.00 3.21 -t 1.16 0.24 + 0 1.14 + 0.24 1.49 -f 1.14 2.14 + 0 2.84 + 1.96 0.017 2.77 2.96 3.16 3.42 3.77 4.02 4.04 0.56 1.01 1.29 1.54 0.38 1.29 1.62 2.27 2.41 + 0 + 2.37 -N 1.43 -f 1.43 + 2.77 + 1.43 + 3.42 + 3.62 + 3.47 + 0 * 0 + 1.01 + 1.01 + 1.29 + 0 -. 0.38 -. 0 -f 0 -. 0.38 + 0.38 + 1.29 15/2- + 13/2- 5+ + 6+ +4 t 4+ + 5+ 2+ + 3+ + 2+ 1+ -s 2t 1+ e 2+ 2+ * 2+ 9 2+ 4+ 5/23/29/21/29/2n/2- + 2+ + 2+ + 4+ + 7/2‘t 5/2+ 7/2-+ 3/2+ 7/2+ 9/2- 7/2- -, 7/2+ 5/25/2- -s 7/27/2- -, 9/2- 9/2- + 11/2- 13/2- -t 11/29/2- + 11/2- 5/2- + 7/27/2- + g/2+ 5/27/2- + 9/27/2- + 5/29/2- -+ 7/211/2- + 9/23/2- -t 5/2(l/2,3/2)+ (l/2,3/2)(2,3)+ -, 3+ 4+ + 4+ 2+ + 2+ 2+ + 2+ 4+ + 4+ 2+ + 2+ 5+ -t 4+ + 5+ 4+ + 3+ l/2- + 3/25/2- + 3/27/2- + 5/27/2- + 5/2+ 7/25/2- + 7/23/2- + 5/29/2- + 7/25/2- -+ 7/2-+ 5/23/2- + 5/2-+ 3/2- 400 + 90 80 i 30 fs 100 f 10 65 f 6 fs fs 24 f. 8 65 f 8 210 5 20 fs fs 13.5 ps fs ns fs 100 100 fs fs 15.7 f 2.3 140 f 35 fs fs 265 f 7 11.2 f 1.2 810 + 110 8.00 f 0.10 ps 740 + 150 fs 6.0 f 2.0 ps 27 29 600 80 75 175 80 +6 f 8 + 180 f 20 ?: 20 ? 30 f 20 fs fs 80 20 360 720 52 I! f f k f fs 25 3 100 170 14 fs fs fs fs fs ps fs fs 390 f 150 fs fs 1.6 +_ 0.3 ns 3.7 2 0.9 ps 600 f 110 fs 120 f 40 fs 460 ? 90 fs fs 13 + 6 880 f 300 fs 735 + 280 fs 830+170 fs 1.1 * 0.2 1.64 31.2 ps r 0.10 ps k 2.5 ps 169 * 9 610 + 75 + 1.1 15.5 f 0.3 5.1 * 0.1 100 85 f 3 18 * 3 100 22 f 2 36 ? 2 29 f 6 51 + 8 100 100 87 f 2 35 f 3 98 t 2 72 100 10 * 1 95.8 f 1.7 89 f 2 94.5 f 1.5 80 t 4 38 + 2 17.5 f 0.8 100 100 99.57 4.2 f 0.2 58 t 3 31 t 3 ps 760 f 100 fs 360 2 55 fs fs 180 k 35 fs 100 44 89.0 77 23 17 45 + f f 2 f f wJ.1 to1 [al "0 =0 -0 =0 101 to.58 f 0.03 "0 -0 20 FJO -0.42 + 0.02 -6.8 * 0.7 -3.8 f 0.7 WI 48.1 3 1.1 2 2 4 6 s "tot (I) 48 + 5 51 49 100 33 f 4 67 f 4 100 88 f 5 82 f 2 92 + 2 100 90.1 f 0.2 100 16.0 f 0.5 75 f 2 fs * 2.0 100 f 15 6 0.88 to.17 f 0.02 =0 to.38 f 0.11 KJI -0 101 -0 =0 =0 -0 -0 101 to.4 f 0.2 -0 -0.32 f 0.02 JO FJO [Ol -0 VI t6.25 f 0.15 00 to.22 -i 0.08 -0.58 f 0.11 to1 PI LOI =O -0.36 + 0.02 =O =+O =O -0.55 f 0.02 -0.167 t 0.019 -2.9 f 0.3 -0.18 f 0.04 to.9 f 0.3 =0 =+O 3.2 (1.1 (8.4 (1.4 (1.0 (1.9 (4.3 (1.6 (2.4 (8.7 (2.2 (1.5 (6.7 (3.6 (4.2 (3.2 (9.5 (1.9 (6.2 (1.9 (2.9 (1.5 (6.1 (1.3 (5.2 (4.3 (2.4 (1.5 (1.5 (2.9 (1.2 ( 9 (3.6 (6.0 ( 8 ( 9 (1.3 (3.6 (4.5 (2.2 ( 8 ( 8 (1.2 (2.3 (2.1 (2.4 (3.7 (3.9 (2.0 (2.6 (2.3 (1.1 (5.3 (1.6 (3.5 (5.5 f 0.3)(-l) * 1.3)(-l) + 0.5)( 0) f O.l)( 0) * 0.3)(-l) f 0.4)(-l) ?: 0.5)( 0) f 0.3)(-l) f 0.9)(-2) f 0.3)(-l) f 0.2)(-l) t 1.7)(-2) ?: O.l)(-3) i l.O)(-5) f 1.3)(-4) f 1.2)(-2) f 0.3)(-l) f 1.3)(-l) * 0.7)(-4) f l.O)(-2) k 0.3)(-l) f 1.7)(-l) f 0.4)(-2) f 1.3)(-l) 5 1.2)(-2) + 0.4)(-2) f 0.5)(-2) f 0.4)(-l) f 0.9)(-l) f. 0.2)(-l) * 3 )(-2) + 0.9)(-l) f 1.6)(-2) f 3 )(-2) f 2 )(-1) ?I 0.3)(-2) f 0.7)(-4) f 1.5)(-2) t 0.5)(-l) f 4 )(-2) t 3 )(-2) f 0.4)(-l) + 0.9)(-l) * 0.4)(-l) 2 0.5)(-2) t 0.3)(-2) * O-7)(-3) + 0.4)(-2) t O.l)(-3) f 0.3)(-2) + 0.3)(-3) f 0.8)(-3) + 0.6)(-3) f l.l)(-3) e 1.3)(-2) Remarks 572 Nucleus TABLE VI. Strengths of Ml Transitions See page 552 for Explanation of Tables E,, J”1 -. J”f + E,f Total Tm 6 branching NW 2.56 2.88 + 1.44 + 0.38 3.18 13/2- + 11/2- 15.8 i 1.9 ps 90 f 35 fs 100 85 + 5/2- + 0.38 3/2- + 5/2- 3.44 -c 2.56 + 2.69 15/2- + 13/2+ 15/2- 130 l/2- + 3/2- 2.9 f 0.3 ns 100 9/25/2- + 7/2+ 3/2- 25 i 10 fs 4.0 f 1.0 ps 100 76 f 2 0.774 + 0.741 1.33 + 0 1.42 + 0.74 2.34 + 1.33 n/2- + 9/2- f 45 61 +a = 0. 24 f 3 76 i 3 to1 fs + 0 * 0.16 4+ + 3+ 5+ -c 4t 289 f 20 ps 9.7 ps 0.84 + 0 4+ + 3t 530 f 110 fs + 5+ 3t + 2t + 0.16 + 4+ 6+ + 5+ 7+ + 6 t t 2+ * 2 2+ -c 2t 4+ + 4 t 1.07 + 0.37 1.93 + 1.07 2.96 + 1.41 3.17 + 1.41 4.26 4.95 + 2.54 + 2.54 0.13 + 0 7/2- + 5/2- 1.53 2.57 + 0 -c 0 3/2312’ + 5/2+ 512’ 0.93 1.32 + 0 + 0.93 5/2712’ + 312’ + 5/2- 1.41 + 0.93 7/2- + 5/2- + 1.32 4+ * 4+ fs 319 f 13 ps 1.1 i 0.5 ps 54 t 3 37 i 3 100 75 * 12 fs 230 f 50 fs 19 f 3 -0.6 120 30 fs 42 t 14 fs 79 f 6 55 f 5 to.53 to.36 373 f 12 ps 100 fs 96 f 1 100 71 f 14 7*2 1.3 f 0.4 fs ps 98.7 f 0.4 5*1 ps 58 f 4 ps 51 f 3 ns 100 1+ + 2+ 4+ + 3 t 7.3 * 0.2 43 f 3 ns 99.58 100 + 0.21 5+ -c 4+ 2.9 * 0.2 ns 2.66 + 0.85 2.96 + 0.85 2+ + 2+ 2+ + 2* 40 * 10 39 i 12 3.12 + 2.09 3.37 3.76 + 0.85 + 3.39 0.58 0.97 * 0 + 0.16 4+ + 4+ 2+ + 2* t 6+ * 6 5+ + 4 t t 2+ + 3 t 5+ + 4 + 0.027 + 0 0.34 1.01 + 0 + 0.58 + 0.83 + 5+ + 4+ 1.72 + 0 + 0.83 + 0.97 3+ -c 4+ +4 t 1+ + 2+ 1.93 + 1.45 + 0.97 1.11 2.06 + 1.11 2.64 + 1.45 2.73 + 1.45 + 2.06 + 2.23 3.08 + 1.45 + 2.06 (2,3)+ + o+ * 2+ 2+ + 3* 1+ + o+ 1+ + o+ +2 t * (1.2? 1+ + o+ t +2 55 * 14 12.5 ps f 0.02 i 0.8)(-l) ‘0 =0 (2.8 (3.5 (5.4 i 0.2)(-2) f 0.4)(-l) * l.l)(-2) (2.1 (3.1 f 0.4)(-l) t 0.6)(-l) =O (3.4 * 0.7)(-l) -0 (2.9 + 0.1)(-4) 0.15 (3.8 (5.1 i 1.8)(-2) i 0.9)(-2) i 0.3 (3.5 i 1.3)(-3) i 0.24 i 0.03 (3.2 (2.5 i l.O)(-2) + 0.8)(-2) to.40 f -0 (3.7 f O.l)(-2) f 0.04 (1.1 (2.6 f 0.2)(-l) i 0.7)(-l) i 0.02 =0 (2.5 (1.6 i 0.8)(-2) i 0.6)(-3) =0 (2.5 i 0.3)(-3) 2.0 (4.7 (3.6 (4.5 * 0.9)(-2) i 1.0)(-l) i 0.3)(-2) 0.06 (6.9 f 0.2)(-3) (7.6 (3.1 i 0.5)(-2) i O-3)(-3) (1.2 f 0.3)(-l) -0.22 =0 -0.34 101 PI PI PI PI fs f 0.07 f 0.015 fs 97.9 * 0.1 -0.249 i 0.009 110 t 50 26 f 10 fs 99.2 98.5 f 0.1 f 0.1 190 * 30 fs 410 f 85 fs 160 f 40 fs 520 i 110 fs 99.70 88.9 7.1 4.0 280 i 60 fs 540 f 200 fs 84.2 11.0 49,7 36.5 * 0.5 f 1.2 14 1.0 1.0 0.9 0.8 fs 52 f 5 34i8 20 f 9 99 f 22 fs 53 f 6 loo 14 f 4 32 f 10 fs fs 25 14 75 18 i f f f 6 3 3 3 ( 8 * 2 )(-2) (2.6 + 1.2)(-l) ( 7 * 3 I(-21 (2.5 f 0,4)( 0) =O -0 1+10 -0 47 i 10 fs =O =O f 0.05 f 1.2 f f f f (1.7 f 0.2)(-l) ( 5 f 2. )(-1) i 0.4)(-2) -0.21 tO.185 77 f 2 100 i l.l)(-2) (3.4 58 f 5 97.7 f 0.1 fs (2.5 (1.7 -0 17 f 6 i 0.2)(-3) i 0.7)(-2) -0 WI -0 -0 57 f 3 43 f 3 fs 0.11 0.21 -0.36 100 45 f 3 t 0.77 -0 100 100 f 0.7 + 1.32 * 0 -0 86*2 (1.4 (1.6 ( 8 f 3 I(-21 (4.3 f 1.5)(-l) WI 6.8 f 1.3 36 f 5 2.14 0.027 -c 7/25/2- + 7/2t 2+ * 3 64 i 13 f 0.3 fs 0.16 0.37 + 0.37 1.01 + 0.05 -0.4 fs 76 i 17 * 1.2 (W.U.) -0 3/2- 35 f 15 S %ot (X) PI =O -0 -0 0 101 PI 0 0 I01 101 0 PI (3.9 (3.6 f 0.8)(-l) i 0.9)(-l) (5.3 (5.4 f l.l)(-2) f: l.l)(-2) (4.1 (7.0 i 1.5)(-l) f 1.5)(-2) (5.6 * 1.2)(-l) ( 7 * 2 )(-2) (1.1 * 0.4)(-O) (3.9 (5.7 f 0.9)(-l) t 1.5)(-l) f 9 * 4 If-11 (2.1 f 0.8)(-2) (2.6 (3.6 (1.7 (1.7 i i f i 0.9)(-l) 1.1)(-l) 0.5)(-l) 0.6)(-l) Remsrks 573 TABLE VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus T J” + J” E,, + Exf i f branching NW 3.60 + 1.72 3.64 4.18 0.014 o++ 1+ + + 2.64 +l + 2.73 + 2.28 + 3.64 t +l 8+ + 7+ 9+ + 8 t + 0 3/2- + 1/2- 0.14 + 0.014 5/2- + 3/2- 0.37 + 0.014 + 0.14 3/2- + 3/2-s 5/2- -+ 0.014 5/2- 0.71 + 0.14 + 0.37 1.22 + 0 1.50 + 1.38 1.69 + 1.22 1.90 2.13 + 1.22 + 0 2.31 + 1.38 + 0 0.77 + 1.22 + 0 1.11 + 0 1.67 2.60 + 0.81 + 2.08 + 2.13 2.78 + 0 + 0.81 + 3/2- g/2(l/2,3/2)u/2- + 7/2+ 3/2+ 9/2- 7/25/2- + g/2+ 7/2+ 3/2- 7/2- + 7/2- 5/2- + g/2+ 3/2- l/2- + 3/22+ + 2+ 4+ + 4+ t +3 1+ + o+ + 2+ t +2 + o+ 2.88 3.08 + 0.81 + 0.81 2+ -c 2+ 2+ + 2+ 3.23 0.11 + 2.60 + 0 (3s4;: ++2 “I + 0.053 + 0 0.46 + 0.025 + 0.11 fs 80 * 35 fs 590 * 60 142 f 12 fs ns 12.4 f 0.4 10 f 2 ns ps 4.2 * 0.7 ps + 5/2+ 3/2- + 1.67 -+ 2.26 0.37 26 f 7 +4 6 Total m 76 f 10 300 * 30 fs ps 350 i 35 149 f 15 fs fs 580 f 70 fs (X) (W.U.) 0 ( 17 f 3 32 f 4 0 (2.3 (5.9 (1.6 f 0.7)(-l) * 1.8)(-l) f 0.7)(-l) (9.1 f l.O)(-2) (7.9 (1.2 * O.‘)(-3) f O.l)(-3) (5.4 (2.1 f l.l)(-2) f 0.5)(-2) 0 100 27 f 1 =0 -0 100 87.7 76.3 f 0.2 t 1.7 8.3 * 1.1 84.4 9.9 f 0.8 f 0.6 2.2 f 0.3 100 ==O -0.120 =0 to.465 59 + 4 83 f 2 (4.2 (2.1 f 0.9)(-3) f 0.3)(-l) "0 (5.1 (4.6 f 0.5)(-2) i 0.5)(-l) =a0 (3.9 k 0.5)(-l) =0 (4.6 (1.6 f: 0.6)(-3) f 0.3)(-2) f 0.01 f 0.14 10 k 2 to.4 f 0.6 -0.13 -0.23 f 0.02 f 0.02 f 0.6 ps fs 100 2.3 f 0.6 540 i 100 ps fs 56 t 1 265 f 40 fs 22 f 3 135 f 20 fs 22.2 f 1.3 7.8 f 0.4 100 36 f 7 fs 310 f 70 260 f 40 fs ps 2.0 f 0.9 1.3 f 0.4 ps ps 38.9 13.3 t f 0.05 (1.4 t 0.2)(-2) (2.1 f 0.3)(-l) ( 8 * 2 )(-3) (1.6 f 0.3)(-l) [Ol [Ol + 1.2 * 0.5 48*3 ( 8 + 4 )(-4) (5.8 t 1.2)(-2) [Ol to.69 0 (7.4 (1.2 i 1.4)(-2) f 0.2)(-3) t0.17 + 0.04 (6.6 f l.l)(-3) t0.18 f 0.03 0 f 0.15 (1.8 (6.6 k 0.3)(-2) ? l.l)(-2) (2.4 ?: 0.4)(-2) (7.4 (7.0 f 1.5)(-2) f 1.7)(-2) (4.8 (2.2 f O.‘)(-2) f 0.4)(-l) to.33 100 17.4 f 1.6 ‘QO 57 * 4 =0 43 fr 4 99.3 "0 '0 (3.2 f 1.4)(-l) 83 "0 (2.5 f 0.8)(-l) .SOl 580 f 160 fs 3.04 + 1.45 + 2.78 2+ + 2+ +2 t 72 f 7 fs 57 * 2 t1.18 -0.21 3.26 3.90 -s 1.45 + 1.45 2+ + 2+ 2+ + 2+ 42 t 4 33 f 4 fs fs 1.0 + 0.2 37 i 2 -0.46 1.19 + 0 76 f 2 100 -0.21 1.29 1.75 + 1.10 + 1.19 0.34 0.88 1.19 + 0 + 0 + 0 1.30 + 0.47 + 0.88 0.34 1.19 1.34 1.77 * O.‘)(-3) =0 to.35 -+ 0.37 + 1.45 + + + + f 0.3)(-2) (3.9 fs 110 f 17 )(-2) (1.5 ro1 14.8 1.5 95.9 + 0.3 1.34 1.74 1.77 2.71 f 0.008 9 ?: 3 =0 -0.26 3+ + 2+ 4+ + 5+ t +3 t +3 + 2+ + 2 2.78 * 0.001 8.2 0.02 =0 100 54 * 2 70 f 2 100 4.6 Remarks 51 f 3 14 * 2 290 f 60 5 "tot 0.03 0.19 to1 LOI f 0.15 f 0.03 WI 0.05 ( g * 3 )(-2) (4.4 i 1.4)(-l) 1 g * 3 )(-3) (6.0 i 0.6)(-2) -k 0.13 (2.4 (3.8 f 0.5)(-l) f 0.6)(-2) f 0.02 (5.4 (2.3 f O.‘)(-2) f 0.2)(-l) -0 g/23/2- + 7/2+ 3/2- 76 + 8 790 f 40 fs fs 6.7 i 0.4 -0 (3.5 f 0.3)(-l) 7/2- + g/2- 5/23/2- + 3/2+ 3/2- 590 + 160 99 f 10 fs ps 32 100 =0 *0 (1.0 (8.0 f 0.3)(-l) i 0.8)(-3) 5/21/2- + + + + 660 f 70 400 f 45 fs fs 220 + 25 fs 0 (6.8 (3.1 (3.0 f O.‘)(-2) i 0.4)(-2) f 0.6)(-2) WI (2.7 f 0.3)(-l) ( 6 (1.8 (3.4 (4.0 f i i t 7/23/29/211/2- 3/21/23/25/2- + 5/2+ 7/2+ g/2- 1.45 i 0.26 ps 170 f 30 820 f 100 500 i 60 fs fs fs 98.6 f 0.1 89 f 5 12 f 2 14 i 1 71 f 1 16 + 3 7 10 =0 to.56 i 0.17 -4.8 f 0.9 PI =0 to.95 f 0.39 3 )(-4) 0.5)(-l) 0.4)(-2) 1.6)(-3) a) 574 TABLE VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus Exi T J” -, Jr + E,f if branching VW 5gcu 6oNi 0.49 1.40 + 0 -P 0.91 2.16 + 1.33 3.186 * 1.33 + 3/2- a40 + 300 fs 580 f 250 fs 770 + 150 fs 100 9*2 86.7 f 0.8 200 f fs 32.0 7/2- + 2+ + 2.51 1+ * 0’ +2 + 2.28 + o+ fs 2 26.0 f 1.3 16.2 f 0.7 29.6 + 1.4 16.2 + 0.7 2.89 f 0.14 ns 5/2- + 3/2- 7.43 2 0.20 ns + 0 + 0.28 1/2- + 3/2- 34 f 4 ps 1/2- + 1/2- 25 f 6 ps 100 16 + 1 + 0 5/2- + 3/2- ps 77 + 2 6ocu 0.061 + 0 6oNi 0.067 +o 0.66 0.91 + 0.067 17 f 4 1.6 * 0.5 fs + 5/2- 55 f Remarks (W.U.) [ol (3.2 (4.1 f 1.1)(-l) * 2.0)(-2) f 0.15 (2.9 + 0.7)(-2) + 0.03 ( a f (5.1 f [Ol -0.82 =0 1.6 1+ + o+ 1+ -b 2+ + 0 -0.42 (1.3 f 0.3)(-l) (2.6 f 0.9)(-3) (1.4 f 0.5)(-l) 0 (1.1 f 0.4)(-l) 0 (1.6 f. 0.4)(-2) (3.8 (1.3 f 0.2)(-2) f O.l)(-2) (4.1 (3.9 f 0.5)(-2) f 0.9)(-3) =0 0 -0 5 ro1 100 100 2 )(-3) 1.3)(-2) 0.20 0.14 -0 -0 0 to.18 -1.83 f 0.05 + 0.20 (1.9 + 0.6)(-2) 19 f 2 (1.4 * 0.5)(-3) 1.02 + 0.067 7/2- + 5/2- 6.8 * 1.0 ps 75 * 1 -2.46 f 0.16 (5.7 f l.O)(-4) 1.13 + 0 512- + 3/2- 440 k 65 fs 63 + 1 to.47 f 0.09 (2.5 f 0.4)(-2) (2.2 ?r 0.3)(-2) (1.1 (1.2 f 0.2)(-l) f 0.2)(-l) f 0.4 (2.9 f 1.2)(-4) f 0.14 (6.7 * l.l)(-3) (1.2 f 0.2)(-2) (3.1 + 0.9)(-2) + 5/2- + 0.067 1.19 -b 0 312- + 3/2- 1.45 + 0.067 7/2- -s 5/2- 1.61 + 0 5/2- + 3/2- + 0.067 + 5/2- + 1.13 + 5/2- 1.81 e 1.02 1.99 + 1.02 + 1.45 9/2- + 7/2- g/2- + 7/2- 2.00 + 0 5/2- -, 3/2- 2.02 + 0.067 7/2- + 5/2- 2.41 -+ 1.45 9/2- 3.30 + 2.12 11/2+ 0.48 0.97 + 0 l/2- + 0 -s 0.97 5/2- + 3/2- 7/2- -, 5/2- + 0 -b 0.48 5/2- + 3/2- 1.31 1.39 1.66 + 1.39 1.90 -b 0 2.20 2.34 3/2- 5/2- fs 1.20 370 88*1 9t1 kO.14 f 0.34 ps 25 + 3 -2.7 i 60 fs 37 f 1 to.33 [Ol 4+1 1.60 900 + 0.34 ps 11 f 2 -0.97 f 0.18 (2.2 f 0.7)(-3) A 250 fs 12 f 2 13 ?: 1 to.70 f 0.23 (3.1 * 1.2)(-3) (2.9 f o.a)(-2) to.27 (4.1 f o.a)(-2) =0 (6.5 f =0 (2.1 A 0.4)(-2) (1.6 * 0.4)(-2) (3.0 f 0.4)(-l) (3.0 + 0.5)(-2) (6.5 f l.O)(-2) f 0.14 f 0.4 (5.6 f 0.9)(-4) f fs + 7/2- 580 f 110 280 f 45 fs 17 f 2 + g/2+ 870 + 230 fs + 3/2- 950 * 130 fs 100 100 1.00 * 0.17 ps 99.1 f 0.1 760 f 120 fs 6.2 t 0.2 1.2 f 0.2 ps 85.3 14.4 f 0.7 f 0.9 4.6 f 0.3 36.3 k 1.9 -0.69 [Ol f 0.08 (2.7 (4.3 ?: 0.7)(-3) to.18 f 0.03 (6.0 f 0.9)(-2) (1.3 + 0.2)(-l) (3.1 A 0.5)(-2) [Ol +0.17 f 0.03 (1.4 f 0.2)(-l) (4.1 f -0.56 (1.0 + 0.3)(-2) (2.0 f 0.6)(-2) (9.5 f 1.4)(-3) (1.5 f 0.2)(-l) + 0.02 (3.5 f 0.5)(-2) f 0.3 (4.2 f -0.36 f 0.10 (5.8 k 0.9)(-2) -0.25 + 0.04 (7.2 f (3.6 e 0.5)(-2) + 1/2- 270 12 k 30 fs fs + 3/2- 260 + 40 fs 22.1 f 1.0 46.8 f 11.4 + 0.8 ?: 1.1 250 f 40 fs + 7/2g/2- -+ 7/2- 2.6 f 0.7 ps 34.2 + 1.73 + 7/2- 19.9 f 0.6 + 1.94 + 7/2- 7.6 f 0.4 + 1.31 1.93 + 0.97 + 1.73 'J/2- + 7/2- 620 3/2- + 3/2- 285 f 45 fs 11.1 f 0.6 7/2- + 5/2- 175 fs 58.2 41.8 58.6 30.1 1.4 f f * f i + 1.31 22.0 f i 25 + 7/29/2- + 7/2- 410 i 60 fs -, 7/2- + 2.30 + 0.097 fs + g/27/2- + 5/2+ 7/2- 330 f 50 fs 60 33.2 ?r 0.08 to.33 1.3 1.0 1.0 0.9 0.5 0.1 * 0.02 -0 t3.54 to.6 “0 =0 0.6 f 90 0.06 PI -, 7/2+ 5/2- f -0.63 + 1.31 + 1.31 -0 68 + 2 90 60 f f 1.3 5/2- =0 54 f 2 41.6 + 0.97 * 0.01 WI -, 5/2- + 1.94 2.73 20 + 5/2- + 1.31 2.61 f =0 1 + 0.97 2.36 + 2.40 150 -c 7/2- + 1.73 2.30 37 f + 1/2- + 0.66 %u 60 * 20 + + 2.16 f 42 f + 4+ -P 0 4.02 0.28 50 S %ot (X) -, 5/2+ 2+ + 2 + 3t -+ 2 l/2' + 2.16 3.194 6 Total m f 0.04 =0 to.25 f 0.08 Nl -0.16 -0.6 WI ( 1.2)(-3) 7 f 3 )(-3) 0.3)(-l) 1.2)(-3) 1.3)(-2) l.l)(-2) f 2 -1.6 f 0.3 (2.9 f 0.9)(-3) f 1.6 -0.4 f 0.6 (9.5 f 1.4)(-3) TABLE 575 VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus E +E xi xf T J; + Jpf branching U+W 2.73 3.02 2.30 3.06 3.52 0.041 0.67 0.96 1.33 1.41 1.55 1.86 2.01 2.06 2.09 63Z” 64c” 64Z” 2.21 2.41 2.54 2.68 0.19 0.25 1.39 1.66 1.69 1.86 2.16 2.25 2.64 2.83 0.16 1.80 3.08 3.19 3.37 3.43 4.46 64Ga 65C" 0.13 0.77 1.12 1.48 1.62 1.73 2.33 65Z” 2.66 0.12 -, 2.40 + 0.48 + 1.17 + 1.17 + 1.17 + 3.06 +0 + 0 + 0 + 0.96 -f 0 + 0.96 + 0 + 0.96 * 0.96 * 0.96 + 1.55 + 0.96 + 1.33 + 1.33 + 1.33 + 2.09 + 2.21 + 0 + 0 -e 0 + 0.19 -t 0 -t 1.07 -. 0.25 + 1.07 + 1.21 + 1.70 + 0 + 0.99 -f 2.31 -t 1.91 -+ 0 + 1.91 + 2.61 * 0 + 1.91 -+ 0 -f 1.91 + 0 + 0 + 0 + 1.12 -P 1.12 + 0 + 1.12 + 0 + 1.12 + 1.73 + 0 7/2- + 7/23/2- + l/22+ + 2+ 2+ + 2+ 2+ + 2+ + 2+ 2+ + 1t l/2- a. 3/25/2- + 3/27/2- + 5/25/2- + 3/2+ 5/23/2- + 3/2+ 5/27/2- + 5/23/2- + 5/2(1/2,3/2)- + 3/27/2- + 5/2+ 7/29/2- + 7/27/2- + 7/25/2- + 7/211/2- -+ 9/25/2- + 3/2l/2- + 3/23/2- + 3/27/2- + 5/25/2- + 3/29/2- + 7/23/2- + l/29/2- + 7/27/2- + 7/211/2+ + g/2+ 2+ + 1t 2+ + 2+ 4+ + 4 t 1+ h. o+ 1+ + o+ + o+ + o+ 1+ h. o+ + o+ 1+ -t o+ + o+ 1+ + o+ l/2- -t 3/25/2- + 3/27/2- + 5/25/2- + 5/23/2- -f 3/2-f 5/23/2- + 3/2+ 5/25/2- + 3/23/2- + 5/2- 330 f 50 100 * 20 fs 950 fs f 170 fs 3.3 f 1.5 290 + 55 ps 6.6 300 850 780 + * f f 0.2 20 40 60 ns 1.6 f 0.3 ps 160 f 15 fs 850 f 130 55 * 9 440 f 110 535 f 120 fs fs fs fs fs fs fs fs 445 f 105 fs 180 f 40 fs 310 f 60 fs 840 f 220 760 f 170 48tll fs ps ps 125 f 35 fs 335 f 90 fs 120 f 30 fs 710 f 230 fs 260 f 70 fs 150 f 40 fs 270 420 30 3.0 f * f f fs 610 * 160 75 130 5 0.4 580 * 240 40 * 7 fs ps ps fs fs fs f 63 f 14 fs 4.6 f 0.8 fs 10.0 A 1.0 ns 150 * 9 fs 380 + 25 475 t 5 fs 1.3 f 0.3 ps 123 + 13 fs 21 ? 2 fs 83 f 23 635 f 9 6 Total m fs fs ps 2.7 71 43 39 80 6.2 s Otot (9) f 0.3 f 4 f 4 f 4 f 2 f 0.9 100 100 100 15.8 * 0.4 72.2 * 0.8 21.6 * 0.7 80.1 t 0.4 17.7 + 0.4 43 f 2 30 f 2 30 f 4 47 f 2 43 f 2 57 + 2 32 f 3 6.3 f 1.5 30 f 2 100 100 48 f 1 75 f 1 8851 26 f 3 90 f 1 71 + 2 70 f. 2 100 100 75 f 2 47 * 3 20.8 f 0.5 52.0 f 1.0 7.4 f 0.4 4.9 f 0.3 69.4 + 1.6 3.0 f 0.6 60 f 5 14 f 3 = 56 100 = 100 16.0 f 0.6 35 f 2 72 2 2 26 f 2 45 23 69 f 3 84 f 2 (W.U.) VI +0.6 -3.19 -0.65 -0.44 f f * f (7.1 0.3 0.11 0.18 0.09 [Ol '0 "0 to.49 f 0.04 -0 -0.62 * 0.05 0.65 PI 'JO =0 "0 to.23 * 0.12 LO1 -1.1 f 0.2 =0 to.26 ?: 0.04 JO [Ol "0 20 101 -0.36 f 0.12 -0.18 f 0.03 =o -0 t2.3 r 0.2 -0.9 f "0 -0.7 + 'CO t3.3 * -0.54 + 0 0 0 0 0 0 0 0 0 -0 to.44 f =0 -0.20 f '0 0.2 0.1 0.02 0.7 0.12 0.04 0.02 0.02 to1 =0 [Ol IO1 =0 0.05 f 1.3)(-2) (1.0 f 0.3)(-2) (8.8 f 1.6)(-4) (3.7 f. 1.8)(-4) (5.6 + l.l)(-3) (6.9 f 1.6)(-2) (4.2 f 0.2)(-2) (3.5 f 0.2)(-l) (3.3 f 0.2)(-2) (1.2 * 0.1)(-l) (3.6 f 0.7)(-3) (4.7 k 0.9)(-2) (4.2 f 0.4)(-l) (1.7 + 0.2)(-l) (2.2 k 0.3)(-2) (1.4 + 0.2)(-l) (1.6 f 0.4)(-l) ( 9 f 3 )(-3) (5.8 f 1.3)(-2) (5.5 + 1.3)(-2) (4.3 f l.l)(-2) ( 7 f 2 )(-2) (1.1 f 0.3)(-l) (5.7 f 1.3)(-3) (4.3 f l.O)(-2) (4.0 f l.O)(-2) (2.1 f 0.6)(-2) (4.9 + 1.2)(-2) (2.3 + 0.8)(-2) (2.5 + 0.8)(-3) (5.0 f 1.7 (-2) (2.8 i 0.8 (-2) (3.5 ?: 1.1 (-2) (2.6 + 0.4 (-2) (1.2 2 0.5)(-3) (4.1 ?: 1.2)(-2) ( 5 + 2 )(-3) (1.1 ?r 0.2)(-2) (1.9 ?: 0.3)(-2) (8.8 t 1.5)(-2) (8.6 f 1.9)(-3) (4.2 f 1.3)(-3) (4.6 t 0.9)(-2) (5.7 f 1.6)(-2) (8.0 f 0.8)(-4) (4.6 A 0.3)(-l) (4.9 i 0.3)(-2) (2.2 f 0.1)(-l) (6.5 + 1.5)(-2) (3.5 f 0.4)(-2) (2.9 r 0.4)(-l) (5.3 f 0.5)(-2) (1.9 ?: 0.2)(-l) (3.3 + 0.9)(-l) (2.6 f O.l)(-2) Remarks 576 TABLE VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus E +E xi xf J'i + J'f Total 7s branching VW 65Z” @jZ" %a 67Z" (j78a 0.12 + 0.054 0.21 + 0 + 0.054 0.77 + 0 + 0.115 0.87 + 0.054 + 0.12 0.91 + 0 + 0.054 + 0.12 1.05 + 0.12 1.25 + 0.77 1.47 + 0.054 + 0.12 1.58 + 0.054 1.59 + 0 + 0.77 1.96 + 1.07 + 1.37 2.14 + 1.07 4.30 + 0 4.81 + 0 0.044-,0 0.19 + 0 + 0.093 0.39 + 0 + 0.093 + 0.19 0.81 + 0 0.89 + 0 1.36 + 0.19 + 0.39 * 0.89 1.54 -, 0 1.60 + 0.60 + 0.98 1.8O-co + 0.89 1.88 -P 0.89 0.36 + 0 0.83 -c 0 + 0.17 + 0.36 0.91 -b 0 1.09 + 0.17 + 0.83 1.20 + 0.36 1.41 + 0.36 + 0.91 1.55 + 0 + 0.36 1.64 + 0.17 + 0.91 2.26 -c 1.20 2.86 -. 1.52 3/2- -c l/23/2- -+ 5/2+ 1/25/2- -c 5/2+ 3/21/2- -+ 1/2+ 3/23/2- + 5/2+ 1/2+ 3/25/2- + 3/27/2- + 5/23/2- + l/2-, 3/23/2- + l/27/2- + 5/2+ 5/27/z+ + g/2+ .+ 5/2+ 11/2+ + g/2+ 1+ + o+ 1+ -b o+ 1+ -b o+ 3/2- + 5/2+ 1/23/2- + 5/2- 635 * 9 830 f 40 ps 1.9 f 0.8 ps ps 800 f 300 fs 2.1 * 0.5 ps 520 i 100 fs 2.3 f 0.8 ps 210 f 60 fs 250 f 30 220 f 70 fs 600 k 290 fs 960 6.5 5.5 23 1.49 f f f f f 100 2.2 1.9 3 0.02 fs fs fs fs ns ns 17 i8 ps 9*2 ps + 1/2- -+ 3/27/2- + 5/25/2- + 5/25/2- + 3/2+ 3/2+ 5/23/2- + 5/27/2+ * g/2+ + 5/2+ 7/2- + 5/2-c 5/25/2- + 3/25/2- + 3/23/2- + 3/2- 4.0 f 1.7 ps 260 f 55 fs 270 i 45 200 i 35 170 f 30 190 + 35 70 f 7 250 i 40 fs fs fs fs ps fs + 1/2- + 5/25/21/2- + 3/2+ 1/2- + 3/27/2- + 5/27/2- + 5/2-c 5/25/2- + 3/2-, 5/23/2- + 1/2-c 5/29/2- + 7/211/2- + g/2- 360 f 95 fs 400 f 150 fs 1.5 i 0.5 ps 900 f 300 fs 230 i 35 fs 165 f 25 fs 980 f 250 fs 1.25 i 0.30 ps 16 23 76 53 33 1.5 95.7 48 22 23 63 36 6 %ot (X) f 2 + 2 * 2 f 1 A1 f 0.2 f 0.5 f 1 f 1 t 1 f 2 A2 19 67 29 f 2 68*2 10 f 1 79 r 1 21 f 1 100 60 f 1 80.6 f 0.3 100 86.7 f 0.2 13.3 f 0.2 19.4 i 0.8 70.4 i 0.8 10.2 f 0.5 91 f 1 49 f 2 27 * 3 37 f 3 8~1 64 f 5 80 f 3 20 i 3 31 + 3 27 i 3 21 f 2 100 86.9 f 1.2 9.4 * 1.2 3.7 f 0.4 95.5 f 0.5 68.8 f 1.6 7.6 f 0.6 25 f 2 35 f 2 10.5 f 0.9 43 i 3 57 f 3 53 f 2 26 f 2 50.4 f 1.4 68.4 f i.4 s (W.U.) 0.24 "0 -0.27 f 0.09 -0 -0.27 f 0.06 to.43 f: 0.04 0 [Ol -0.25 f 0.04 to.96 f 0.20 -0.40 i to.43 f =0 -0.24 + -2.1 f 0.12 0.04 0.05 0.3 t2.5 f 0.3 -0.31 to.23 f 0.02 f 0.03 to.27 f 0.01 -0 -0.67 f 0.05 0 0 0 -0.39 f 0.02 =0 =0 -0 'CIO -6.0 * 0.7 +0.14 f 0.03 to.28 f 0.07 +0.31 + 0.06 to.37 f 0.05 -0.5 f 0.3 to.28 + 0.03 -0 to.38 f 0.08 =0 t0.8 t 0.2 =0 to.16 t 0.03 to.36 f 0.09 PJI -0.33 ? 0.2 0 WI t2.3 f 0.1 t1.7 f 0.2 =0 -0.42 f 0.04 to.65 +0.16 f 0.03 f 0.02 to1 t2.4 f 0.2 +2.5 f 0.2 0.73 0.02 0.08 (3.0 f 0.4)(-2) (9.1 f 0.9)(-4) (8.2 f 0.4)(-3) (1.8 + 0.8)(-2) (1.7 f 0.7)(-2) (1.1 f 0.4)(-3) ( 9 * 3 )(-2) ( 9 f 2 )(-3) (2.7 f 0.8)(-3) (6.0 f 1.5)(-3) (4.0 f 0.8)(-2) (4.4 + 1.5)(-2) ( 9 + 3 )(-3) ( 8 * 3 )(-3) (1.4 f 0.3)(-3) (2.2 f 0.7)(-2) (2.4 f 0.8)(-2) ( 5 * 2 )(-2) ( 5 f 2 )(-2) (1.8 f 0.2)(-2) (3.6 f 1.2)(-2) (4.1 f 1.4)(-2) (1.6 ?: 0.2)(-2) (2.5 A O.l)(-3) (3.4 f O.l)(-3) ( 6 * 3 I(-31 1 5 * 2 I(-2) (2.1 f l.O)(-2) (1.6 f 0.5)(-4) ( 5 f 2 )(-3) (1.8 f 0.4)(-2) (4.4 t l.O)(-2) ( 8 f 2 )(-2) (1.6 f 0.5)(-Z) (1.2 t 0.2)(-l) (1.3 f 0.3)(-l) (8.6 f 1.7)(-3) (6.6 f 1.4)(-2) (6.4 f 1.8)(-3) (1.0 f O.l)(-2) (1.8 f 0.3)(-l) (3.6 f 0.7)(-2) (4.4 f 0.9)(-2) (1.0 f 0.3)(-l) ( 7 * 3 )(-2) (3.8 f 1.4)(-l) (1.4 f 0.5)(-3) (2.7 f 1.0)(-J) (2.9 f l.O)(-2) (1.3 f 0.2)(-2) (3.2 f 0.5)(-2) (3.1 i 0.5)(-2) (1.3 f 0.2)(-l) (2.0 f 0.6)(-3) (1.0 f 0.3)(-3) Remarks 577 TABLE VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus E xi +E J; + J”f xf 6 Total 'rn branching WV) + 1.08 2+ + 2+ 3.35 + 0 1+ -b o+ 0.57 + 0 5/2- -+ 3/2- 0.87 + 0 3/2- + 3/2- 350 f 30 fs 94.8 + 0.5 -0.14 1.11 + 0 5/2- + 3/2- 290 t 30 fs 96.4 0.80 A 0.1 t 0.08 to.41 + 0.57 + 5/2- + 0.87 + 3/2- 0.4 ps 39 f a.4 t 2.9 f fs 61 + 9 ps =100 1923 2 Remarks (W.U.) 1.88 2.2 s "tot (96) +I.46 f. 0.14 (3.4 f O.B)(-3) 0 (6.0 i 1.4)(-2) (8.9 f 1.4)(-3) f 0.04 (1.3 2 0.1)(-l) f 0.05 =0 1.6 f 0.2 (6.5 i 0.7)(-2) ==O (5.5 f O.B)(-3) =0 (1.3 ? 0.2)(-l) + 0.57 7/2- -t. 5/2- 1.18 + 0.16 ps 6.3 f 0.6 to.68 i 0.10 (2.5 1.49 + 0.57 7/2- + 5/2- 2.9 f 1.2 ps 35 f 8 -2.54 + 0.10 ( 0.23 3/2- -P 5/2- 252 i 17 ps 69 f 1 -0.27 + 0.04 (6.6 2 0.4)(-3) 31 f 0.5 ps 94.4 + 1 f 0.8 1.34 + 0 + 0.087 0.86 + 1/2- + 0 1.00 + 0.087 7/2- -, 5/2- 3.1 3/2- + l/2- 1.8tO.B -0 -2.4 t 7 f 0.5)(-3) 3 )(-4) (1.2 f O.l)(-2) f 0.3 (2.2 i 0.6)(-3) ps 68 f 1 -0.31 + 0.06 (1.4 + 0.6)(-2) 1.31 + 0.087 3/2- + l/2- 720 t 250 fs 49 f 1 -0.3 f 0.1 (1.1 A 0.4)(-2) 1.35 + 0.40 11/2+ + g/2+ 810 2 110 fs 100 -0.6 f 0.1 (3.3 t 0.5)(-2) 1.42 -, 0 5/2- -. 5/2- 1.4 f ps 64 + 2 +0.65 (3.5 f 1.5)(-3) 15 * 1 -0.49 f 0.10 i 0.10 (1.6 t 0.7)(-3) (4.8 2 1.7)(-2) + 0.23 3/2- 1.48 1.71 + 0.93 + 1.04 7/2+ 5/22+ + 2t 0.51 + 0 3/2- + 0.39 0.96 + 0 5/2- 0.069 0.067 + 0 120 5?2 32 i 12 -c 3/2- 11 f 2 fs ps 52.9 f 0.5 ps 90.2 * 0.9 9.8 2.1 f 0.3 2+ + 2+ (7/2,11/2)+ 5/2- t1.0 -0.37 4.0 t 1.0 ps + g/2+ 2.3 f 0.2 ns 100 + 3/2- 7.2 f 0.2 ns 100 87.6 f 0.3 + 0.60 2+ + 2+ 7.8 f 1.1 ps 68 1.27 + 0.63 2++ 2+ 4.8 5 0.6 ps 69 f 0.20 + 0 l/2- + 3/2- 1.25 ? 0.04 ns 0.27 + 0 3/2- + 3/2- 17.0 f 1.0 ps + 1/2- 2.43 + 1 3 * 0.4)(-3) (2.6 * O.l)(-3) (9.3 f 0.5)(-3) (1.0 (3.1 * 0.1)(-l) * O-2)(-3) 0.06 'QO t 0.06 =0 + 0 5/2- + 3/2- 4.1 f 0.5 ps 98.6 f 0.3 0.82 * 0.57 7/2- + 5/2- 3.6 f 0.4 ps 5.5 f 0.8 0.113 + 0 7/2+ -+ 5/2+ 1.00 + 0.17 ns 0.134 + 0.113 g/2+ + 7/2+ 7.6 f 0.9 ns 63 f 2+ + 2+ t 2+ + 2 13.1 f 1.4 ps 62 f 4 -3.4 * 0.3 ps 61 f 2 -5.2 + 1- 1.63 + 0.09 ns f 300 ps 0.45 (o-2)- y+ + 0.316 1+ + -*l -+ 0.25 1+ + (o-2)+ + 0.317 * 700 580 + 140 ps -0.39 f (3.2 i O.B)(-4) (2.2 t 0.6)(-3) (3.1 i 0.2)(-3) (5.7 f (5.1 i 0.5)(-2) (6.6 f (1.1 ? 0.3)(-l) to.32 -0.18 t 0.01 f 0.02 f 10 ps 0.44 + 0.24 5/2- -c 3/2- 33 f 3 ps 43 f 2 ‘0 0.28 + 0.13 + 5/2+ 130 i ps 92 f 2 =0 0.25 + 0.067 ps w 100 1.31 + 0.61 2+ + 2+ 3.9 f 0.4 ps 1.56 -. 1.12 3' + 4+ 6.4 f 0.5 ps 0.31 + 0 l/,2- -F 3/2- 12.0 f 2.5 ps 0.40 + 0 3/2- + 3/2- f 4 ps -c 3/2- f (01 1.3 15 f 3 -2.7 100 f 0.7 * 0.10 7.9 f 1.7 1.9 ? 0.4 ps 100 t tll 0.28 -+ (3/2.5/2)5/2- 1.7)(-4) =0 39 + 0.26 f 0.5)(-4) -0 -c 1/2- + 0 (4.8 0.2 0.5 3/2- 0.52 t f * 1.0 -N 0 91.9 (7.0 * 0.5)(-2) k l.B)(-3) 0.24 19 f 0.6)(-2) f 0.4 101 100 Fa 100 + 5/2- (3.5 2 0.1)(-l) ps + 0.22 f 0.3)(-2) 7.1 (1.2 (3.7 f 30 59.0 (1.9 (1.0 500 30 * 0.5)(-2) 0.14 1.1 + 3/2- 4Bi13 + 0.5)(-3) 0.13 1.6 5/2- + 3/2- (3.5 (3.0 =0 -, 0 5/2- 0.05 =0 0.26 (3/2,5/2)+ f [Ol f 3 4.7 0.03 f 0.06 8 f 0.3 f 101 to.35 1.3 10.2 (o-2)+ 0.35 to.36 100 34 f O.l)(-2) ? 0.2)(-3) (2.2 0.57 + 0.25 0.3)(-2) 0.27 ?: 0.02 ps + 0 O.B)(-4) f 5 0.2 14 0.36 t (3.4 * 0.2 * 0.045 (2.4 0.23 -3.3 400 4.9 1.7)(-2) +2.6 f 100 f (1.1 (1.1 kO.44 = 100 (4.9 ( 5 t 2 )(-3) (3.3 + 0.6)(-2) f 1.3 -0 + 3/2- -+ 0.56 )(-3) f 0.1 t10.3 5/2- 1.22 )(-3) 6+2 101 + 0 + 0.56 5 ? 2 ( 0.06 k1.2 0.28 1.11 ( t 0.06 WI 100 97.57 f 0.2 =0 20 k 2 1.20 + 0.20 =0 k 0.9 78 f 2 ps + 3/2- + 0.83 -c 0 i + 1/2- + 0.51 1.46 + 3/2- 430 0.6 -0.19 0.8 b 2 (1.7 ( 1.5)(-2) 1.5)(-2) f O.B)(-3) 7 f 3 )(-5) =0 (9.1 f l.B)(-2) -0 -0 -0 (2.4 i 0.5)(-2) ( 8 * 3 )(-4) (5.2 f 1.5)(-2) f 0.04 (1.1 f 0.2)(-l) 578 TABLE VI. Strengths of Ml Transitions See page 552 for Explanation of Tables Nucleus E xi + Exf J; + J"f Total 7s branching (MeV) "Br 0.61 + 0 3/2- + 0.22 + 0.31 + 0.40 0.76 + 0.22 + 0.52 7/2- 0.83 3/2- 170 f 23 + 3/2-s 5/2- fs 6+1 76 f 3 870 i 190 fs + 0 (l/2,3/2)- + 3/2- + 0 (3/2.5/2)- + 3/2+ 5/2- 7/2(5/2-g/2)+ 0.009 + 0 0.005'-, 0 920 f 220 + 5/2+ 7/2+ 12.1 f 1.4 212 i 6 7/2+ -+ g/2+ 3/2- + 5/2- 0.15 + 0 0.28-r 0.15 3/2l/2- -, 5/2-, 3/2- 0.73 * 0 + 0.28 3/2- + 3/2+ 1/2- B5Sr 0.23 + 0 2 Y 3.49 1.51 + 0 + 0 3/2- + l/2- 1.87 2.10 + 1.10 + 1.10 3/25/2- + 3/2+ 3/2- (5/2-g/2)+ + 1.45 + 0 103.1 1.07 = (3,4)+, which (n.y) reaction. + (7/2,9/2)+ 1+ + o+ + 5/23- + 2- is consistent ro1 101 ? 1.2 + 0.07 with the -0 (2.3 f 0.9)(-2) -0 (1.0 (5.7 f 0.2)(-l) + 1.2)(-2) 100 fs 13 f 1 a7 t 4 ns ns 100 100 ps 36 f 3 100 4.4 r 0.7 20 i 7 fs fs 100 100 250 i 40 fs 74 * 5 110 f 20 fs 75 f 3 25 + 3 fact * 0.5)(-l) f 0.5)(-l) 87 f 1 300 f 70 361 2 10 f: l.l)(-2) fs ps ps 64 t 3 ps 100 101 ro1 -0.193 f 0.012 ‘0 -0 -0 =0 (01 +O.B ? 0.2 +0.6 f 0.3 the level is excited ?r 0.4)(-l) (1.0 (1.1 (2.5 (a.0 f + k f 0.08 (3.0 +_ 0.6)(-2) (4.9 It l.l)(-3) (1.4 -I 0.4)(-2) ( 8 f 2 )(-3) (1.7 f 0.3)(-l) 2 0.05 (4.4 + 1.5)(-l) to1 +3.5 (2.0 * 0.3)(-l) ( 7 f 2 )(-3) f 0.5 v4 -0.28 + 0.06 in the O,l)(-2) O.l)(-2) O.l)(-2) 0.5)(-3) 0 would lead to an impossibly strong 3.23 the en = 1 component quite weak. Accepting that (1.6 0.97 16 85 0.05 =0 -0.15 f l.O)(-2) f 0.5)(-l) (5.1 ps 100 100 95.5 f 0.9 (3.6 (2.1 (1.2 (2.3 "0 ns ns ( 8 f 2 ~-2) (2.4 f 0.3)(-l) ro1 [Ol ro1 101 100 100 420 f 90 6.4 + 0.7 a) The J'(3.23 Rev) = 2+ assigmaent from the A = 58 compilation This asslgmaent was based on e,(d,p) = 1 t 3 (72Ral7) with at J"(3.23 W) but not in the ps + 3/2- + 0 f 0.8)(-2) ( B f 2 )(-2) (6.4 f l.l)(-2) 2.3 t 0.4 522 f 0.3)(-2) i 0.4)(-2) (4.6 4.6 + 1.2 17 f 3 610 t 130 (3.3 (2.5 “0 (l/2,3/2)- 0.77 f 0.02 =0 ps 5/2- =0 to.19 ? 1.6 12 + 5 0.65 0.20 1.7 f 0.3 (W.U.) 6.8 f 1.5 56 ?r 3 + 3/2- + 0 + 0 + 0.28 0.84 * 0.28 9OY 11.4 + 3/2+ 5/2- S Qtot (I) 67 t 2 12.6 t 1.6 + 1/2+ 3/2- + 0.40 BgZr ps -P 5/2- + 0 0.28 0.54 0.050 2.9 + 0.3 + 1/2- + 0.22 + 0.31 BIBr + 3/2+ 5/2- 6 5BCo(a-) (2.6 f 0,6)(-l) (9.6 i 0.3)(-3) + 2.60 MeV E2 transition. $,(d.p) = 3 one arrives decay (log ft = 6.09). TABLE 579 Strengths of M2 Transitions VII. See page 552 for Explanation of Tables Nucleus Exi + Exf Jf + J; Total 'rn branching W-W 45SC 47SC 62c" 65Zn 67Zn 6gGe 0.012 + 0 0.77 + 0 2.29 + 0.39 1.07 + 0 'lGe 72Ge '3As 75As 0.60 0.40 [0.81 0.198 [2.51 0.43 0.304 + + + + -t + + 76Br 0.103 + 0.045 “As 0.48 + 0.26 [0.63 + 0.22 + 0.26 0.54 + 0.28 0.042 + 0 'IBr 83Rb 85Rb 0.51 0 0 0 0.175 1.46 0.067 0.280 + 0 3/2+ 3/2+ 6g/2+ 9/2+ 9/2+ 5/2+ 9/2+ 39/2+ 9/2+ (o-4)+ 9/2+ 5/2+ + + + + + + + -t + + + 7/27/24+ 5/25/25/25/25/22+ 5/25/2- + (o-2)- + + + g/2+ * 9/2+ + (7/2.9/2)+ + 5/23/25/25/25/25/2- 470 f 6 390 f 17 23.3 830 480 4.0 1.5 31.6 35 f f f t f f f ms ns 1.9 ps 40 ps 20 ns 0.1 lls 0.2 ps 1.4 ms 7 ps 8.1 + 0.4 11s 25.30 f 0.11 ms 2.15 f 0.03 167 f 6 s PS 108 ?: 22 ps 52.0 +_ 1.4 ps 11.2 ms 1.38 f 0.02 PS 6 S Otot (46) 100 100 1.2 5t 1 100 100 58 + 2 100 59.2 ?: 0.7 100 92 2 2 100 96.7 f 0.3 50 f 4 30 f 4 100 100 100 Remarks (W.U.) =0 481 PI =0 to.13 f 0.02 ==O FQO to.13 f 0.03 SO to.31 f 0.05 =0 -0.18 f 0.02 -0 -0 -0.087 + 0.019 to.290 f 0.009 a0 PO WI 208 I89 9.8 0.08 0.05 40 (6.2 (3.2 (5.9 (1.1 (7.1 (6.6 ( 5 (6.1 i f f f + f * f O.l)(-2) O.l)(-2) 0.5)(-2) 0.2)(-l) 0.3)(-2) 0.2)(-2) 2 )(*l)l 0.3)(-2) (2.9 + l.O)( 0)] a) b) (5.0 f 0.2)(-2) (3.3 i O.l)(-2) (2.0 2 O.l)(-4) (2.5 f O.l)(-2) ( 7 * 3 11 011 b) ( 8 f 2 )(-1) (3.6 f O.l)(-2) 3.7 (-2) (4.8 f O.l)(-2) a) For comment see note ')';f Table III. b) These mixing ratios in Ge and "As result from 72Ga(s-T) pectively. The authors do not comment on the ensuing large (74Ch07) and "Ge(B-T) (75Ch32) T.T angular correlation which should be considered suspect. M2 strengths work, res- P. M. ENDT Gamma-Ray Strengths, A = 45-90 TABLE VIII. Strengths of M3 and M4 Transitions See page552 for Explanation of Tabies Nucleus Type Exi + Exf Jn + 3” i f Total 'rn branching WV M3 %o + 0 5+ + 2 + 0 + 0.037 2+ + 5 6oco 0.025 0.059 *OS, 0.086 ‘lSe 82Br 84Rb 0.10 + 0 0.046 + 0 0.46 + 0.25 "Rb 0.11 -I. 0 M4 + + 5- + 27/2- + l/2’ 2- + 56- + (3,4)‘ (4-) + (13 6gZ” 0.44 + 0 g/2+ + l/2- 85Kr B5Sr 0.30 0.24 -c 0 + 0 1/2- + g/2+ 875, 0.39 + 0 1/2- + (7/2,9/2)+ + g/2+ 87Y 8gY 0.38 0.91 -+ 0 + l/2-c l/2- 8gZ, 0.59 + 0 + 0 g/2+ 9/2+ 9OY 0.68 + 0.20 (l/2,3/2)- a) The Jr value of the initial s,(d.p) = 4 value of 65LiO8 an impossibly The conversion 6 1/2- + g/2+ 7+ + 3- S Yet (X) Ramarks (W.U.) 13.20 f 0.14 h 100 r*O 2840 (5.4 f 0.2)(-l) 15.10 * 0.03 min 6.37 82.60 k 0.02 f 0.13 h min 99.75 100 r*O -0 44 305 (4.2 (5.9 99.9 -0 9.1 (4.4 f O.l)( 0) f O.l)(-2) i O.l)(-2) 8.85 f 0.12 min -0 400 (2.9 f O.l)( 29.6 * 0.3 min -0 0.90 11.5 (2.2 (7.3 f 0.6)(-3) i l.l)(-3) -0 0.05 (1.4 =O -SO 0.51 2.1 (1.2 (1.5 f O.l)( 0) f 0.1)(+1) f O.l)(tl) 372 + 4 20.2 6.46 100.3 4.50 t 0.4 i 0.01 s h h 100 72 f 3 to.8 2.3 f 0.3 - 100 21.0 f 0.8 1.1 f 0.3 f 0.7 min i 0.02 h w 100 -0 0.22 (1.1 f O.l)(tl) 18.3 i 0.3 h w 100 CrO 0.26 2.38 i 0.01 s 100 (3.0 (3.9 i O.l)( f O.l)( 6.02 4.60 f 0.02 f 0.02 min h 0.05 (1.2 f O.!O (1.6 f O.l)( 93.76 99.67 IOJ f 0.06 f 0.03 101 -0 based on the (not state is listed in the A = 81 compilation'as J’ = 7/2’, and the measured conversion coefficient. The latter would lead to 6(M4/E3) very a) 0) b) 0) 0) o.i)(tij 0) convincing) - to.177 i 0.01t4with I44 component of (2.3 i 0.4) x lo4 W.U. and an exceptionally weak E3 component of (7.0 f 0.1) x 10 W.U. (aK, oL ). however, can almost equally well be explained by pure M3 character; the resulting M3 strength is apparently quite reasonable. b) Although of this transition is determined spins nor parities of the initial and final states are known, the W3 character through strong data a measurement of the conversion coefficient. 580 Atomic Data and Nuclear Data Tables. Vol. 23. No. 6. June 1979 P. M. ENDT TABLE IX. Recommended Gamma-Ray Upper Limits Strengths, A = 45-90 in the A = 6-20, 21-44, and 45-W Regions See page 552 for Explanation of Tables Character Number a) A = 6-20 of Transitions 21-44 45-90 A = 6-20 (W.U.) 21-44 45-90 a 13 4 EIIV E1lS 139 36 567 100 127 E21s 112 562 515 100 100 E21V 11 E3 16 10 37 45 10 100 10 100 100 E4 3 1 7 1 17 3 100 100 100 559 31 470 M1lS 135 13 M21V a 37 4 15 4 1 7 EO E5 %V 4 9s M31V M31s “4 With 0.3 0.003 0.1 0.003 0.01 300 10 0.03 10 0.03 3 3 0.1 3 0.1 1 10 10 10 a “5 a) RUL 30 1 the indices 1V and 1s denoting isovector and isoscalar character, respective- ly. 581 Atomic Data and Nuclear Data Tables. Vol. 23. No. 6. June 1979 Gamma-Ray Strengths, A = 45-90 P. M. ENDT REFERENCES FOR TABLES (in addition to those in the most recent Nuclear Data Sheets) 77%12 J. Btycren 79Dox P. Doll 79P1X V.U. et et Pail al., Phys. al., J. and P..G. of Se”. C g, Pllys. G s-, Kulkami, G.D. Dmcoulis, 1323. (1978) see 79Dox A - D.C. 1421 Cm. A 7SDr06 1704 - V.N. Polishchuk et 7wao9 S.K. Warburton, J.U. (1977) C l8, (1979) J. 7SPoO4 Phys. z, 1196 (1979) 79Pix P. Pintz 79G”lO G. Cuillaume 79pao1 se* 79Rao5 D.C. and A.R. Polatti, J. of Phys. 77k.06 Guichsrd, B. Baas, G. P. 253 I.0 (1977) B.J. Linard 79Ek03 L.P. Ekatr&n 79llax H. 7SMa35 P.A. 2& 709 79E.m see * I3 W. Senenson, - Taras, J.C. Kadford et al.. P. see .4 - 53 see * 52 79TO05 N. - Toulemade tl. Nann. Ilerdinger, Phys. and P.A. Nucl. al., J. Somshdj, R. Kev. C l2. SO6 Vaillsncourt. (1975) Nucl. Phys. 76AdO4 Mando. Pbys. of G. AZ. Phys. and and 214 G 2, N. Poggi. Rud. Phys. Rev. C l5. 76Ne04 (1978) SO3 Bobertson, (1975) Phys. 40, Nucl. N. I Machi et C.P. Neal al.. J. LO. Nelson J. of A 111. 193 Correia et Nathan, J.Y. Fe”. see 7SKaO2 U.0. Kampp 7Sta33 U.D. Kmpp, 77Gi18 A. Giormi et 77Kel7 0.L. 8. Taccetti, and G. libereti, Nuovo Sickel et al., S. Nucl. Tanaka, al., Kennedy, Nucl. S.J. Phys. 150 Il. Ada&i, A 232, Phys. Phys. Linsrd, As, Natsuzaki, Phys. Nucl. 200 AZ, 417 213 J.C.P. Neggie. and E.R. Cim. Lecrare Boloein, (1977) and H. Taker&, J. Phys. SW. Japan 7SNa11 H. 78!&09 J.C. 72Sa17 9, Kasagi snd H. Ohmma, J. Pbys. Sot. Japan 2, Kasagi and R. Ohnuma. J. Pbys. Sm. Japan to 79pao1 J.E. Park. U.Y. Daehnick, and M.J. Balamurh A - Phys. 819 Cm. J. (1979) Nucl. I92 Tousley. 0. Cline. and Spisak, 1099 be Phys. (1978) published Se”. C a?,“2 (1979) Sryeren and et C. al., Brow,. Nucl. B.N. Horoshko. Nucl. Phys. A - paerwsle A - C.J. Liseer. 2169 (1978) and R.G. Kulkami. Olness, and I73 Phys. 51, (1976) C 2. A26’, 614 427 AZ, E.K. Phys. (1976) (1976) 322 Warburton, (1977) and J.B. McGrory. (1977) and E.G. et Adelberger, al., Phys. Awl. Phys. Be”. AZ&. C l6, 513 928 (1977) 2. Physik (1977) and S. guhl. K.H. 167 2. Physik As, Bodemiller, A. I17 Nngel, (1978) and S. Subl, (1978) Namn. J. A. S&a. Wells, S. Rbpaport, and Rarmn. A. 25 S. Raman, Phys. and G.G. Slaughter, Trier, T.A. Be”. Belore, C I&. 1619 Phys. sod Y.S. Se”. (1978) C c, Dormbusch, 707 Nucl. (1978) Phys. (1972) 77Ca28 S. 77Fu03 H.W. Cavallsro Pulbrighc et et 788035 H.N. Baloein. LB. 75 al.. Nucl. al.. Phys. Nucl. AZ, Phys. Stuchbery, I25 A 2&, K. Amos, and A 264. 132 (1977) 329 (1977) I. Ilorrison, Nucl. Phys. (1978) 52 Nuel. Phys. A 250, Phys. A z, A E. 295 I 59 381 (1975) Uatson Caseel. Be”. Phys. Olness, B. A 263. Phys. A - 78Li21 G 2. 55 11 x, A - al., Bendjaballab A E, (1977) J. P.N. (1979) (1974) J. see 409 (1977) 79Kax 7SKa32 G 1, (1974) A 2X, 7SKa32 77Pa22 Rev. (1979) 7md2 and 3. Phys. (1979) Phys. and Nucl. C 16, (1978) Tomita D.L. IS9 df Phys. Chagnon, al.. J.A. 45 Sona, et A.N. Phys. Phys. Nucl. P.R. 7md2 D.P. D.C. C.Y. Poletti. (1979) A=, Micklinghoff, al., and N. Y. 752006 511 Phys. Polecti, M. 77COl5 (1979) Nucl. B.C. 2631 77Se27 P. 74T010 369 de A.R. et 77Ba50 Mando, - and Molho. et 74Kil3 T. J. al.. and 79stx A E, 77Ha22 A.R. 51 79Kao5 76&O N. Hansen, Bud. (1978) rind 48 (1975) Bimco. 2245 78L.i 1145 45 h. ‘LE. 2. Nathan, G 4, 75Ro28 75Eao3 al., et - Pi=. A.M. (1978) ec * Yad. Olness, 46 Sadford, * 750~13 1637 al., (1978) (1979) 76PiO5 N. Pichevar et al., Nucl. 77ca14 Y. Cauchois et al., Comptes 77Pa1S R.C. 77ScO2 p. 77wSlO E.K. Psrdo Sen and et al.. C. Sen, 2. et al.. Yarburrau Pbys. Phys. Rendus Rev. 65 370 (1977) 211 (1977) C E, Physik A=, Phys. Rev. (1976) B 2, C 16, 1027 (1977) (1977) 53 J. of Phys. G 2, 1245 A (1977) - 60 51 J.W. I.P. Johnstone, Whys. Kev. 751x.04 C I& N.A. trmsl. 582 lvmov et No. Atomic 0 p. al., Isv. Akad. Nauk, Ser. Pis. 2, 1695 (1975); 108 Data and Nuclear Data Tables, Vol. 23. No. 6. June 1979 P. M. ENDT Gamma-Ray Strengths, A = 45-90 REFERENCESFORTABLES (in addition to those in the most recent Nuclear Data Sheets) 77uUa10 76Pa03 7SNoo3 B.A. LOMB”. U.R. Dixon, R.S. Stofey, and A. Ljubi;ii. Can. J. Phys. 55, 142 (1977) see A - 59 8. ~ausc et al,. .I. of Phys. G 5, 247 (1978) E.S. Noman. C.N. Davida, NJ. Murphy. and R.C. Pardo. Phys. Rev. 7BNno 5 )9x006 C II, 2176 (1978) E.B. Norman. C.N. Davids. and C.E. G. Noysc tc al., Nucl. Phys. A la. 77LcQl 76SZ36 76SuO6 ,7Ca14 77uao3 77yao7 77”115 7SnelO 78VaOP S. 8oodberS.s J.R. Uilliupe R.N. gritton G.A. Hurtlin et et and et see A - 59 R. h'adsvorth R. Uads”orth B. Uadeuarth et al.. et al.. et al.. Rev. CE, 75Rc.15 75waOS 76SrM 76Kz.09 102 (1978) 76SwGl 77Ca14 77Hz.13 77too3 77Pol8 al., Z. Phyaik A 2& 43 (1975) al.. Hucl. Pbya. A@. 365 (1975) D.L. b’strort, Nucl. Phys. AZ, 91 (1976) al.. Nucl. Phys. A 263, 445 (1976) Neyer et al., see A - 53 R.A. J. of Phys. J. of Phye. J. of Phys. Phys. 7BKoll 782e04 78WaO9 D.L. Kennedy, 8.8. A ,os, 14 (1978) see A - 53 Rev. C 11, Solotim, I. J.C. wells er al., et al., J. of Phys. Phys. 1127 (1978) 2162 (1978) see S.A. see K.S. see A - 61 Vender A - 61 ~rsne, A - 63 and J.A. S.S. Car.eron, Nuel. nmenblum, Phys. and W.A.SCeyert, see A - 59 A.G. Hartss et al., Nucl. Phys. A P.R.C. Lornie ec al,, J. of Phya. V.N. Polishehuk et al., Yad. Piz. A. Kogan et al.. J. of Phyo. G 5. 332 (1975) Ax, Phys. Se". C fi, 650 (1976) E, 413 (1977) CJ, 493 (1977) 2, 20 (1977) 75s (1978) see A - 63 A - 66 IS22 (1978) 7X+025 75rhO I 76Le03 76Nc06 77cat4 Morrison. C 4. Rev. C l8, G 2, 35 (1977) C 2, 833 (1977) G 2, 1377 (1977) A - 62 7Sull D.N. Sinister A - 65 61 A- 75Rol5 7SWi28 Woss, Phye. 236 (1979) 78SilO 7BWl5 and K. Amos, Nucl. Phys. see A - 61 see A * 64 W. Leitz et al.. 77PUO3 77Mo20 see see see C. A - 64 * - 59 A - 58 &brand. 3.P. 77Ne05 3f& 1319 (1977) see A - 64 Nucl. Pbys. Bruandet, A z, 103 (1976) A. Giarni, and T.U. Ghan, 3. de Phya. A - 63 A - 67 76Br36 76DaO 1 76SvO I 77Br27 77chx 77PSl5 7SIla27 7Bwe17 7SXuO2 782~04 79tlUY see A - 61 R. Dayras. B. bjec, and I.H. Sdghy, Nucl. Phye. A 257, II8 C.P. SWUM, Phys. Rev. C I,, 1104 (1976) H.E. Brandan and U. Hpeberli, Nucl. Phyys. A 2tJ. 205 (1977) T.V. cbm et al., Proc. Plorenee (1977) P. 536 C.T. Papadopouloa et al., Phys. Rev. C 2, 1987 (1977) A.G. “arta and D.H. “an Patter, Nucl. Phys. A E, 379 (1978) P.A.S. ,,etford, T . Taylo,r. and J.A. Car~erm, Hucl. Pbya. A MS, 0.H. nuscaffa et al., J. of Phys. GA, 99 (1978) 8. Zeidman and J.A. Nolen, 0.X. Hustaffa et a,., J. of 75Ro25 77Abo2 (1976) 77A135 77LOO3 77tie04 210 (1978) 77PaoS 78A132 78Du04 7SIaO6 78HBIO 79200 I Phys. Rev. C le. 2122 (1978) Phys. G 1, 1283 (1979) _A-64 732a07 1.1. 74-42 74HiOS 74-16 L.P. Hansen et aI., PhyyS. Rev. C’, III, (1974) LA. Hinricha and D.H. Patterson, Phys. Rev. C IO, 1381 (1974) R.G.H. Sabertson and S.H. Auatin, Phys. Rev. CL, 1801 (1974) S. Raman, N.B. Gove, and T.A. Ualkievicz, NYcI. Phys. A z, 73Ba28 75ThO I 76SrlZ 76Grl3 76yhOl Zalyubovskii et al., Irv. Akad. Nauk, Ser. Piz. 37. see A - 5s P.. Neuhausen, Nucl. Phys. A z. I25 (1977) J.C. Yells et al., Phys. Rev. C la. 2259 (1977) R.R. Bars, N. Stein, J.W. Sunier and C.W. Woods. 78SiO2 E, 47 (197B) D.N. Simiater et al., .I. of Phys. G 4, III see A - 65 G.P. Neal. Z.P. Save.. P.P. As, 161 (1977) T . Paradellis. Nucl. Phye. Venesia, AZ, and P.R. Cba$non, et al., Nucl. Phys. AZ, Nucl. Phys. 293 (1977) A.“. Al-Naser et al., J. af Phys. G 4. 1611 (1978) R. Duffait. A. Charvet, md R. Chirp, Pbys. Rev. C c, P.&G. Lomic et al., 3. of Phya. G 5. 923 (1978) see A - 61 V. Zabel G 1, 2031 (1978) 165 (1979) 1076 (1973) A - 68 131 (1975) N.J. Throop, Y.T. Cheng., and D.K. ~cD.miela, Nucl. Phya. A=, 333 (1975) J.P. Sruandet et al., J. de Pbys. Lererea 31, ‘-63 (1976) P.W. Green and D.“, Sheppard, Nucl. Phys. AZ,‘, I25 (1976) R. Nd,ausen. Nucl. Pbys. A 263. 249 (1976) D.C.s. Whitr, W.J. l&Donald, D.A. Llutehecm. and G.C. Neilson. Nucl. Pbys. “260, 189 (1976) see A - 59 77PUO3 77NcOS 77we10 78Be25 see A - 61 A.I.. Abu-Ghazaleh, 1.H. Naguib, and G. Sewn, J. of Phyr. 253 (1977) A.H. bl-Nsser et al., J. of Phys. G 1, 1383 (1977) 74NoOS 752iOt 76Br23 E. NOLW et al., 2. Physik 268% 267 (197L) V.K. Tikku and S.K. Mukherjee, J. of Phys. G 1. 446 (1975) J.P. Smandee et al.. Phys. Rev. C 14. 103 (1976) 76Ne06 77C.14 see A - 64 see A .. 59 P. Guilbault et al., Pbys. Rev. C ", 894 (1977) see A - 66 see A - 64 B.C. Parda et al., Phys. Rev. C's, 181, (1977) G. Rotbard et al., Pbys. Rev. C &, 1825 (1977) 77GuO2 7714020 77Ne05 77pa>3 778022 A - 69 Phye. lett S 72"aOl 75Eb02 (1978) 583 T.H. Bsu et al., Nucl. Phys. Ai, SO (1972) U. Eberth, J. Eberth, E. Eube, and V. Zobel, Z. Physik 411 (1975) Atomic Data and Nuclear Data Tables. A Es Vol. 23, NO. 6. June 1979 Gamma-Ray Strengths,A = 45-W P. M. ENDT REFERENCES FOR TABLES (in addition to those in the most recent Nuclear Data Sheets) 75P.21 T . P.rsdellis, 76SbOt (1975) 0. Sbarth. A. Xenoulis, 1. Sberrh, md C.A. E. Subc. 78p.08 78P.15 285 0. T. T. 7811014 79AlO8 472 (1978) G. Borbard et .l., Phys. Se”. A.A. Aleundrov, W.P. Kudoysrov, 79suo2 NucL. Phys. A 121, 189 (1979) 8.8. Subb. Sm, J.S. crsvford. 792.02 (1979) V. Zobel 7611009 Kslfss, 2. Physik .nd Y. Zobel, NucI. &z, phys. 269 * d 257. 75c.37 (1976) t&e, S. Sh.stry. p. Se”, md H. Bskhru, 2. Physik A276, 341 (1976) Pmsdellis. snd o. Vmrvopoulos. Phys. Rev. c I& 660 (1978) Psr.dellis, I. c.1mmk.i‘. snd c. Vaurwpoulos. Nucl. Phys. Ax, c la, 86 (1978) I.K. Ic&zrS. smd S.X. and AA. 76RoO8 78Le22 79PiO5 Psst‘msk. 2. Physik Nsrk, 76S.10 A=, Phys. Rev. c 2, 75ze02 7681104 77Cu12 7R(o20 1. 77Bo28 77Tsx 78ClOS 78Rox 79T.X K.L. Sobin‘on B.O. Ten Brink L. clecmmn et R.L. Robinson ouilbsult sac A - 66 et ‘1.. Phys. Bav. c 16, 1840 (1977) 765.07 76Scl3 et .l., Phys. Rrv. c 16. 2268 (1977) et ‘1.. Proc. Tok,o (1977) p.279 .I., Phys. Sev. c 18, 1049 (1978) et sl.. Bull. Am. Phys. Sot. 2& 573 (1978) 1.0. Ten Brink, to be Published J. ~kkcrmans, P. Vsn Ncs, snd A. Verheul, Nucl- 767004 77Ce02 77PrO8 7 7PuO4 PhW. 7ac.24 79Shx 74SiO8 742eo 1 S.11 et .l.. Nucl. N. hsgcu et .l., Nucl. J.C. Wls., S. Ssrasrd. Shy.. A=, Ph,.. J.A.M. AZ. Nucl. Pby‘. A 227. 399 (1974) A. Kiecato .snd P. D&d. Nuel. whys. AZ, 1. Zeidun, P.H. Siemssen, C.C. Norrison, (1974) T . Su+itsu, MB (1975) sea A - 69 Y.A. Yoh, S.B. Dsrdeo. .nd S. San, Nucl. Ph,.. J.A. Biessk, 1. N.mt.struq”e, s.d S.E. Dsrden, 1333 (1977) LT. klly, K.S. ~rme, P.V. Ph,.. N. Ksto. P. Vs. de? Wmtc, 461 (1974) snd L.L. Le.. 76Eb02 76YaO4 778108 snd T . Kuroymagi, or..., smd J.A. Kuehner. Rev. C 2, 2213 (1978) A E, Phys. Nucl. PhyS. J. 770.18 77L‘lI 781~04 78Sc30 BaV. Phys. Sm. 7X.&8 76S.o I 76K.i I2 76M.20 77LiD6 78Sel3 H. chsn. P.L. G‘rdulski, Phys. A E. 73Ch26 61 (1977) 740cz.4 74SrIO 75h32 md Kc. Vindmbeck, Nucl. Phys. A=. 365 (1974) 768~13 762.03 J.E. m.par, N.S.P. Lir.g, end Y.C. qckoff, Phys. nav. C 2, 948 0974) J.H. llrd1ron at ‘1.. Ph,‘. n‘". Idtt. 11, 239 (1974) W.P. Nicsisa. lad A.V. Waltzer, 2. Physik 261. 83 (1974) P.J. Eli,,., I.P. &,er, J.C. 8er6strm, snd B.C. C@m. Nucl. phy‘. * s 435 (1975) K.E.C. Gb,,er .t ‘1.. 2. Physik AZ, 251 (1975) J.H. ndltoa at .I., my.. K.V. LSC~. 2, 340 (1976) I[. Kiure, N. Tekasi, md II. Tanska, Nucl. Phys. A 272. 381 (1976) W.A.J. Nsriscotti et al., Nucl. Pbys. AE, 109 (1976) 78KllO 7811012 791.x 19c.03 N.N. "‘rgn“ at ml.. Phy,. 1344 (1979) 75 Rev. C I", Cim. h23, 390 11974) P. Ilhsctschsryys. Nuow Cim. A 2, 519 (1976) N.8. Ssndanm mtd B.C. Sulrrs-Cill, Nucl. Phys. A 261. 93 (1976) N. Sfhrsder, 8. Seiss, c. Bosner, snd N.V. Klspdor, Nucl. Phys. A x, 193 (1976) see A - 71 Cellisrs and P.V. Xoen, 2. Physik A=, I59 (1977) I(. Pmssd, Cm. .J. Phys. 55, 2036 (1977) V.S. Puri, C.S. Khurens, md H.S. S&ots. J. of Phys. C 1. P.J. Y. Csuchois. S.S. Abdalssir, 1. Ihbrouf. Comptes Rendus 2& 211 (1978) P. Shsttschsryy* et al., NUOVO CL. Ax, 1261 (1977) md C. Schlo.sina+ll.r. 419 (1979) 76 M. Bchsr, A. Pilevich, o. cmcls 8ermiid.a. snd U.A.J. Hsriscorri, Nucl. Phyr. A 2&. 331 (1977) 8. l.ecm~. et ‘1.. Nucl. Phys. A28.5. 123 (1977) D.S. Lurders et al.. Phys. S.V. C Q, 847 (1978) Y.D. Schmidt-Ott, A.J. Asucovirji , snd U.J. Schrevc. 2. Physik A*. 121 (t97a) B.C. A 3, P.R. LA. 8.N. Ctmpr., P.N. Tandon. S.H. 461 (1973) Pam. et 11.. Nucl. Phys. Br.g. snd D.O. S.csstites. (;herry snd M.L. Yiedenbaek. Osvsrr, md B.C. Devsr., Nucl. Ph,‘. A230, 235 (1974) Pi,,.. S.V. C 2, 1493 (1974) Nucl. Phys. A”, 445 (1975) S.W. Mt.1 l t sl., Ph,.. Pav. C l2. 63 (1975) a. Nolra uld P. V~at, 2. Physik A 2. 33 (1975) S“ A - 75 X.0. Zcll .L ‘1.. S. Ph,sik A2X. 371 (1976) 8.“. Ylu,,.r. R.8. Ander‘ot,. R.J. P‘t‘r‘m,. sad B.A. ai‘tinen. PI,,.. o 4. 1489 (1978) LA. Mmr.struque .t ‘1.. Nucl. Phys. As 29 (1978) L.O. S.rbopoulo‘ et .l., Nucl. Phy.. CO be pub1ish.d R.R. C.dm,., T.B. Cl.&,& 8.J. L”&iS, snd B.A. “‘nd‘t, N*,cl. x, 165 (1979) J. Pb,‘. of Ir, A - 78 Licb snd J.J. XolaLs. Phyr. Bav. C 15, 939 (1977) Ne1Lmeist.r et .I., Phy.. Rev. C 1, 2113 (1978) 748.32 77Lcll 7ex.l I 76VaOS C l9. Phys. *-77 ‘es A - 69 K.P. S.P. SW. snd S. Um.ro, T . Sugimitsu, Nucl. Phys. AZ. 199 (1974) S. Yc,,kstsr.tn.m snd V.‘L&ht&sr~y.,,a. Nvovo LO. Eel, et ‘1.. Z. Physik A z, 27 (1975) 419 (1976) &v. C la. 75W20 751101 I 74li.04 74NlO2 75RllO Sm. P. Psrdis. A - 357 (1974) De Villiers. ..d c z, 409 Y. his&s, J.pm, E, 74cbo7 74Dro2 P. Lmomte, S. Luldsberasr. C fi. 2aOl (1978) 8.8. Piercey et sl.. Kys. 334 (1974) 75oao1 77-16 78KrO6 7aRo14 A=. 811 (1979) 74v.14 C.C. N.C. Csdieggio. G. Gemfa Berm6d.s. snd H. Sebsr. a. Physik I83 (1975) “.L. Sslb‘rt ‘t al., Nucl. Ph,.. Ax, 496 (1976) 8. 0rih.r. er .I.. Nucl. Phys. ,267, 276 (1976) B.N. Konninpen et al.. Nucl. Phys. A=, 439 (1976) * et sl., 74 299 748~03 748~67 74Ivo3 74U.32 - 78%~ 58 (1976) 584 N.S. Ssndmson, J.C. Lisle. snd J.C. Willmtt. J. II56 (1974) see A - 76 S. Nersuki et al.. Phys. LeLL. B 72. 319 (1978) “a A - 70 Atomic Data and Nuclear Data Tables, of whys. AL. Vol. 23. No. 6, June 1070 P. M. ENDT Gamma-Ray Strengths, A = 45-W REFERENCES FOR TABLES (in addition to those in the most recent Nuclear Data Sheets) N.P. Hellmeister to be published N. Sakemoto et al., et al.. Phya. Phys. LcL~. Lat. B 85, B 83. 34 (1979). and Nucl. 39 (1979) *179 78K110 78Li28 Bee A - 77 .J. Liptbk and J. Krigtiak, Nw.1. Phys. “211, 421 (1978) Phys. 7Je.UOS 72To16 730a2s 73coZS 74VaO2 I.P. Subb, S.I.H. Nnqvi, and J.L. Wolfeon. Wucl. 77*ra4 7SThOb 79SscJJ S.E. knell et el., NW,. Phys. A”, 72 (1977) D.J. Thomas. 2. Physik *E, 51 (1978) S.K. Basu. A.P. Patm, S. Want. and V. Par, J. of Phys. 77K&5 78Avo2 C. Korschinek N. Avrigeanu J.E. Yitching see A - 78 R.P. Tocci et al.. Phys. Rev. C 6. 1686 (1972) E. Sarmrd et al., 2. Physik 260, 197 (1973) J.R. Comfort, J.R. hrsy. and V.J. Sraithwaice, E. Vacai et el., Nuel. Phya. *2’9, 595 (1974) Pbys. Phya. A 161, 252 (1971) Rev. C a, 1354 (1973) C 2. 585 (1979) h - 80 75*r19 75Pro4 77Le I 1 7al4e11 795.14 D. Ardouin at a1., Phys. B.C. Pricdcrichs et al.. Rev. C 12. 1745 (1975) Phys. Rev. L&r. 2. 745 (1975) see A - 76 see A - 78 set A - 7S 7SKiOb 7SKaJJ 79se14 A- et al., Z. Physik * 281, 409 (1977) et al.. J. of Phys. C k, 261 (1978) et al., Nucl. Phys. A=, 159 (1978) *ee * - 70 a1 A - 88 65LiO8 K.K. 7SHoJ2 791008 K. Lia. see A - 77 Toyoshiru. 77LeJJ see A - 76 7eMa11 795114 see A - 78 see A - 78 79sa14 Phys. see A - 78 Rev. E, B340 (1965) 75Valb Nucl. Phys. “323, 61 (1979) 7bBuO5 1. “.rnall and I. Rexmka, R.L. BuminS, Y.L. Talbert. Rev. Cfi, 1577 (1976) 7711110 P.R. Netrger. Phys. Nucl. J.R. Rev. C 2. Phyn. *x, McCmmell, 2253 75 (1975) and R.A. Meyer, Phys. (1977) * - 90 75SilJ 77Ju49 78Bel2 7SRaO5 585 P..P. SinShal et al.. J. of Phya. C 1, 588 (1975) 0. Hiwaer et a,.. Hucl. Phys. *E> 248 (1977) S. Beshai, K. Pramson, L.B. PrEberg. and B. Sundatrim, Nucl. Phys. *B. 151 (1978) C.8. ileo end C. G&ther, Phya. Rev. C I?, 1266 (1978) Atomic Data and Nuclear Data Tables. Vol. 23. No. 6. June 1979
© Copyright 2025 Paperzz