strengths of gamma-ray transitions in a = 45

ATOMIC
DATA
AND NUCLEAR
STRENGTHS
DATA TABLES
OF GAMMA-RAY
23, 547-585 (1979)
TRANSITIONS
IN A = 45-90 NUCLEI
P. M. ENDT
Fysisch Laboratorium,
Rijksuniversiteit
Utrecht
Princetonplein
5, 3508 TA Utrecht, The Netherlands
The present tables list the strengths (in Weisskopf units) of over 1200 gamma-ray transitions
in A = 45-90 nuclei, classified according to character (electric or magnetic, multipolarity).
It
appears that E 1, Ml, and it42 transitions are weaker here than in the A = 6-44 region, whereas
E2 transitions are slightly stronger. The following recommended upper limits for the A = 45-W
region can be deduced from the data: 0.01,300, 100, and 100 W.U. for El, E2, E3, and E4 and 3, 1,
10, and 30 W.U. for Ml, M2, M3, and M4, respectively.
0092-640x/79/060547-39$02.00/0
Copyright 0 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.
547
Atomic
Data and Nuclear
Data Tables,
Vol. 23, NO. 6. June
1979
P. M. ENDT
Gamma-Ray Strengths, A = 45-90
CONTENTS
INTRODUCTION
...........................................
Scope.. ................................................
Input Data ..............................................
Strong Transitions and Recommended
Conclusions .............................................
EXPLANATION
OFTABLES
Upper Limits
548
548
549
549
551
........
...............................
TABLE
I. Strengths of EO Transitions
TABLE
II. Strengths of E 1 Transitions
TABLE
III.
552
between O+ States. .......
554
.........................
555
Strengths of E2 Transitions
.......................
558
TABLE
IV. Strengths of E3 Transitions
.......................
568
TABLE
V. Strengths of E4 and ES Transitions
TABLE
VI. Strengths of M 1 Transitions
TABLE
VII.
TABLE
VIII.
TABLE
IX.
REFERENCES
Strengths of M2 Transitions.
.................
569
......................
570
.....................
579
Strengths of M3 and M4 Transitions
.............
580
Recommended Upper Limits in the A = 6-20,21-44,
and 45-90 Regions ..........................
FOR TABLES
...............................
581
58 2
INTRODUCTION
increased the amount of work involved in collecting the
additional input data, not yet quoted in the A-chain
reviews.
As to the y-ray strengths, there are three notable
differences between the A = 6-44 and A = 45-W
regions. First, isospin is of.no importance in the latter.
Most transitions listed here are of the normal T-allowed
nonretarded
type since they occur in nuclei with
neutron excesses. In addition some nonretarded E2
transitions in even-even self-conjugate nuclei have
been observed. The few transitions
with known
strengths from analog states are also of normal nonretarded type.
Second, almost all transitions listed occur between bound states. The number of transitions with
known strengths from neutron resonances is quite
small (about lo), but the main difference is that (p, y)
resonances have dropped out as a source of -y-ray
strengths. At low proton energies where resonances
can be resolved the proton width is too small to be
measured by means of the (p,p,,) reaction; at higher
energies the resonances are no longer resolved.
Third, the importance
of internal conversion
increases considerably
with A. Of the about 1200
Gamma-ray strengths in the A = 6-44 region
have been discussed extensively,
the most recent
review appearing in 1979.’ The input data for this last
paper (excitation energies, J” values, branching and
mixing ratios) could be taken predominantly
from relatively recent A-chain reviews (the oldest dating from
1975) by Ajzenberg-Selove2
and Endt and Van der
Leun.3 An additional 30 papers supplied input information not yet quoted in the A-chain reviews. The main
purpose of the y-ray-strength reviews has been to arrive
at recommended upper limits (RUL) for transitions of
different characters (E or M, multipolarity,
T-forbiddenness). These upper limits are an indispensable
tool in nuclear spectroscopy for the exclusion of “impossible” J" values.
In the present paper the discussion of. -y-ray
strengths has been extended to somewhat heavier
nuclei, that is, the A = 45-90 region, which more or
less covers the lf2p shell. The A-chain reviews
covering this region (Nuclear Data Sheets; hereafter to
be quoted as NDS) are on the average not quite so
recent (ranging from 1971 to 1979), which considerably
548
Atomic
Data and
Nuclear
Data Tables.
Vol. 23. No. 6. June
1979
P. M. ENDT
Gamma-Ray Strengths, A = 45-W
transitions listed 7% have conversion coefficients
exceeding 0.10. In such cases, to calculate the strength
of a given y-transition from lifetime, branching, and conversion coefficient, one has to know the total branchings
instead of just the photon branchings usually measured
and given in the A-chain reviews. It proved a timeconsuming task to convert the photon into total branchings, the more so because in some source papers it is
not clear which of the two is reported.
It has been remarked already that the NDS forms
the backbone for the retrieval of input data. It should
also be said, however, that the format and presentation
of the NDS are not particularly suited for the extraction
of y-ray information.
For a given nucleus, data on
branching and mixing ratios obtained from different
reactions may be found in many tables and figures,
often many pages apart. Gamma-ray intensities in different tables may be normalized in different ways. For
most A-chains the calculation of “best” branchings
and mixings is left to the reader.
Conversion coefficients have been calculated for
A < 30 and A 2 30 by means of the tables in Refs. 4
and 5, respectively.
The y-ray strengths listed in Tables II through
VIII are expressed in Weisskopf units,6 based on a
nuclear-radius constant r0 = 1.20 fm. The Weisskopf
estimates Iw (in eV) are given below as a function of E,
(in MeV) and A:
Input Data
The criteria for the selection of transitions were
the same as those used in Ref. 1. They are repeated below.
1. Transitions are included only if the error in the
strength does not exceed 50%. The strength error is
compounded quadratically from the errors in the input
data. In some cases there is a strength error smaller
than the error compounded from the listed input data.
This may occur, for example, if the strength has been
derived directly from an accurate B(E2t) value which
has also been used, with the aid of the measured
ground-state branching and mixing ratios, to compute
the lifetime.
r&El)
= 6.8 x 1O-2 A2’3E3,,
Tw(E2) = 4.9 x lo-* A4’3E;,
rw(E3) = 2.3 X IO-14A2E;,
rw(E4) = 6.8 x lo-*] As’3E9,,
Tw(E5) = 1.6 x 10-27A10’3E~1,
2. Transitions are listed only when the character
(E or M, multipolarity)
has been determined unambiguously. This does not necessarily mean that, in addition, the J” values of the initial and final states have
to be known unambiguously;
the character may have
been determined, for example, from the measured conversion coefficient.
A summary of the bases for unambiguous J”
assignments is given in the introduction of each issue of
NDS. Some additional rules are given in the introduction of Ref. 3. An unpleasant surprise to the present
compiler was the large number of experimental papers
on&shell
nuclei in which J” determinations
are based
on weak arguments. Most of the high-spin work with
(a,xny) or (ZZZ,xny) reactions is of this type, but
luckily there are also a few sound exceptions. In view
of the large number of source papers in addition to
the NDS, it proved impractical to discuss in detail (for
example, in notes to the tables) why many published
J” values were not accepted.
3. Transitions which in principle can be mixed
are generally listed only if the mixing ratio 6 has been
measured. Transitions with unknown S are included,
however, if it can be shown (by computing Iv corresponding to the RUL for the admixture) that the admixture contributes less than 50% to the total Iv. Such
cases are indicated as S = [O]; they constitute well over
25% of the number listed.
r,(Ml)
= 2.1 x 10-2 E3y,
I-&42)
= 1.5 x lo-* A2’3E5,,
I’&43)
= 6.8 x IO-l5 A4’3E;,
I-&l44)
= 2.1 x 1O-21 A*E;.
The strengths of EO transitions (Table I) are expressed
in Wilkinson units (Wi.u.). The definition of this unit
and the derivation of the EO strength from the probability fore+ + e- pair formation are indicated in Refs. 7
and 8, respectively.
In Fig. 1 the strength distributions for the most
common transitions (Ml, E 1, and E2) are compared
for the A = 6-20, 21-44, and 45-90 regions.
Strong Transitions
and Recommended
Upper Limits
In the present section the strongest transitions
of each character are discussed. They determine the
corresponding RUL value to a large extent.
For a discussion of a possible dependence of the
strengths on A, the average strength is not a very good
measure (as argued in Ref. 1). Instead we take (as in
Ref. 1) the (logarithmic)
average of the strongest
transitions, defined as the strongest 10% of the group of
transitions of given character.
549
Alomic
Data and Nuclear
Data Tables,
Vol. 23, NO. 8, .lune
1979
P. M. ENDT
Gamma-Ray Strengths, A = 45-90
GAMMA-
Ml
El
RAY
STRENGTH
l-l
DISTRIWJTIONS
E211
llO-
A= 6-20
z
s
go-
A = 45-90
1
60-
i5
t
7060-
Fig. 1. Strength histograms of Ml, El, and E2 y-ray transitions for the A = 6-20, 21-44, and 45-90 regions.
The logarithmic abscissa scale indicates the strength in Weisskopf units. ForE2, the curves for the lower and
middle A-regions differ so little that they could be replaced by a single histogram. The figure clearly shows a
large decrease in strength with A for E 1, a small decrease for Ml, and a small increase for E2.
one can note a small but definite increase for A = 4590. The (S),, (strongest 10%) increases from 25 W.U.
for A = 6-44 to 55 W.U. Among the 515 E2 transitions
listed there are 2 (with 160 ? 30 and 140 -+ 20 W.U.)
exceeding the RUL of 100 W.U. for A = 6-44. For
A = 45-90 the RUL is set at 300 W.U.
The increase in E2 strength occurs in the upper
half of the A = 45-90 region. There are only 21
transitions (out of 375) exceeding 32 W.U. in the
A = 45-67 region, whereas there are 41 (out of 140)for
For the A = 6-44 region it has been shown’ that
the dependence of -y-ray strength on Ezi, if any, is very
small. For the A = 45-90 region an investigation
of
possible E,i dependence would be impractical, because
the tabulated transitions originate mainly from the
decay of low-lying bound states.
The RUL’s for A = 45-90 discussed below are
listed in Table IX, compared to those for A = 6-20
and 21-45.
El. In Ref. 1 it was shown (by comparing the A
= 6-20 and 21-44 regions) that El strengths show a
marked decrease with A. It is clear from Fig. 1 that this
trend continues up to A = 90. In fact (S),, , the average
of the strongest lo%, amounts to 130,9, and 0.9 mW.u.
for the A = 6-20, 21-44,
and 45-90 regions,
respectively.
Of the 127 transitions there are only 2, of 1.1 I 0.3
and 3.6 rfr 1.2 mW.u., exceeding 1 mW.u. in strength.
A RUL of 10 mW.u. is proposed, to be compared with
values of 100 and 300 mW.u. for the A = 21-44 and
6-20 regions, respectively.
E2. Whereas there is very little difference in E2
strength between the A = 6-20 and 21-44 regions’
(they are represented by a single histogram in Fig. l),
A = 68-90.
The strongest transition (of 160 _t 30 W.U. in ‘?Se)
is of 0: + 2: type. Several such transitions in neighboring nuclei are also quite strong, for example,
53 k 7 W.u. in ‘OGe, 77 ? 5 W.u. in 74Se, 47 f 18 W.U.
in “Se. The large strengths are understandable, compared to’2+ + O+ transitions, because the former are
favored by the statistical factor (2./f + 1)/(2Ji + 1)
= 5. The very weakest of all E2 transitions in the
A = 6-90 region, however (320 ? 20 ~W.U. in 58Ni),
is also of 0: -+ 2: type! The extreme weakness of this
transition is largely explained by a simple shell model
calculation9 with two valence neutrons in 2~~,~, If,,,,
or 2p,,, orbits.
550
Atomic
Data and Nuclear
Data Tables.
Vol. 23, NO. 6. June
1979
P. M.ENDT
Gamma-Ray Strengths, A = 45-90
Conclusions
About 1200 transitions are listed in the present
tables covering &heA = 45-90 region. This is certainly
not much as compared to the 2400 transitions listed
for the slightly narrower A = 6-44 region in Ref. 1.
This comparison is illustrated in more detail in Fig. 2, in
which the number of transitions listed in Ref. 1 and
the present tables is plotted as a function of A. Because
of the broadening of the valley of stable nuclides the
number of nuclei for each A-value easily accessible
for experiment certainly increases with A. On the other
hand, as mentioned above, the contribution
of (p,y)
resonance decay drops out above A 2 40, but this
explains only part of the difference. One should conclude that less experimental effort has been expended
on the heavier nuclei. This applies in particular to
A = 70-90 nuclei on which, apparently,
nuclear
spectroscopy has hardly begun. The very high point at
A = 3 1 is explained by an unusually large contribution
from 3oSi(p,y)31P resonance decay.
The present survey shows that E 1 strengths drop
sharply with A, with slower decreases for M 1 and M2,
and a small increase for E2. All this is explained by a
decreasing single-particle character and an increasing
collectivity of the states concerned.
-A
Fig. 2. The number, as a function of A, of y-ray transitions with
known strength listed in Ref. 1 and the present tables.
E3, E4. The strengths of E3 and E4 transitions
do not seem very different from those in the A = 6-44
region. There are 5 E3 transitions (out of 45) with
strengths between 20 and 25 W.U. and the strongest E4
transition has 5.5 + 1.1 W.U. (17 cases). In view of the
poor statistics, however, it seems unjustified to set the
RUL’s for E3 and E4 at values lower than the value
for A = 6-44 (100 W.U.).
EO, E5. The statistics are too meager to permit
any conclusions as to A-dependence or RUL.
MZ. The decrease of M 1 strength with A noted
in Ref. 1 seems to continue to higher A-values, although
in a less pronounced way (see Fig. 1). The (S >,, values
(strongest 10%) for A = 6-20, 21-44, and 45-90 are
3.5, 0.7, and 0.5 W.U., respectively.
There are 5 A = 45-90 Ml transitions in the
range l-3 W.U. (with the strongest, in 56Fe, of25 2 0.4
W.U.). Consequently the RUL may be decreased from
10 W.U. for A = 6-44 to 3 W.U. for A = 45-90.
M2. The M2 strengths also decrease with A. Here
we compare the average strengths of the strongest 50%
to improve statistics. The values are (S),, = 1.0, 0.5,
and 0.09 W.U. for A = 6-20, 21-44, and 45-90, respectively. The A = 45-90 RUL can be put at 1 W.U.,
to be compared to 3 W.U. for A = 6-44.
M3. There does not seem to be a good reason to
change the RUL from that for A = 6-44 (10 W.U.).
The strongest transition (out of 7) has 4.2 t 0.1 W.U.
M4. Of the 8 transitions listed there are 4 of
.‘/i- -+ g/2+ and 3 of g/2+ + r/i- type. The strength
averages of these 2p,,, + lg,,, groups differ by a
factor 4.8, almost exactly equal to the statistical factor
(2Jf + 1)l(2Ji + 1) = 5. The RUL may be put at
30 W.U.
References for Introduction
1. P. M. Endt, ATOMIC
TABLES 23,3 (1979)
DATA
AND NUCLEAR
DATA
2. F. Ajzenberg-Selove,
Nucl. Phys. A 248, 1 (1975);
268, 1 (1976); 281, 1 (1977); 300, 1 (1978); 320, 1
(1979)
3. P. M. Endt and C. Van der Leun, Nucl. Phys. A
310, 1 (1978)
4. 1. M. Band, N. B. Trzhaskovskaya,
and A. M.
Listengarten, ATOMIC DATA AND NUCLEAR DATA
TABLES
10,477 (1972)
5. F. Rosel, H. M. Fries, K. Alder, and H. C. Pauli,
ATOMIC
DATA
AND NUCLEAR
DATA
TABLES
21,
92 (1978)
6. D. H. Wilkinson,
in Nuclear
edited by F. Ajzenberg-Selove
New York/London,
1960)
Spectroscopy B,
(Academic Press,
7. P. M. Endt and C. Van der Leun, Nucl. Phys. A
235, 27 (1974)
8. D. H. Wilkinson,
Nucl. Phys. A 133, 1 (1969)
9. P. W. M. Glaudemans, M. J. A. de Voigt, and
E. F. M. Steffens, Nucl. Phys. A 198,609 (1972)
551
Atomic
Data and Nuclear
Data Tables.
Vol. 23. No. 6. June
1979
P. M. ENDT
Gamma-Ray Strengths, A = 45-90
EXPLANATION
OF TABLES
The excitation energies of the initial and final states have been
rounded off to 1 or 10 keV for E, below or above 100 keV, respectively.
For the calculation of the Weisskopf estimates for some low-energy
transitions, however, it was necessary to use the full energy information
available so as not to introduce unnecessary rounding-off errors.
The adopted mean lives generally are weighted averages of all
measured values. To the errors of some published lifetimes derived from
Doppler shift attenuation (DSA) measurements a 15% systematic error
has been added quadratically.
If the adopted lifetime results from DSA
measurements only, an error of at least 10% was adopted (even if the error
in the weighted average was smaller).
EL, ML
Esi, E.rf
.I;; Jp
(L/2-“/2)’
(M-5/22’)
Tm
J-Y
r7r
Total
branching
@o)
Electric (magnetic) transition of multipolarity
L
Excitation energy of initial (final) state
Spin and parity of initial (final) state
The possible J” values are M+, K+, 5/2+
The possible J” values are 1/*, 3/zr, 5/2f
Mean life
Gamma-ray width
Width for e+ + e- pair decay
Branching with conversion included. If the photon branching for the kth branch from a given level is denoted by
bk (normalized to Ck bk = lOO), the total branching
for this branch amounts to ck = 100bk(l + (Yk)/
cl bl(l + CQ),where e!k is the total conversion coefficient of branch k ; the photon width of branch k is
then found as
ryk = o.ol~,ckfi-l(l
+ a$‘.
For a mixed branch with mixing ratio Sk the photon
widths of components 1 and 2 are given by
r ?‘ka
=
o.oh,c,&-‘(1
r Ykt
=
respectively,
ak
6
6=0
6-O
6 = [O]
+
@-‘(I
+
(Y&l,
%rYk19
with
=
(ak,
+
%(Ykz)(l
+
%)+,
where (Yk, and akn are the conversion coefficients of
the two components
Mixing ratio
The transition has to be unmixed because of the angular
momentum addition rule (as for J + 0 or M -+ M
transitions)
The (measured) value of 6 is so small that the strength
of the higher-L admixture can be neglected in the
calculation
of the strength of the lower-L main
component
The transition (with 6 not measured) can be assumed to
be unmixed; even if the strength of the higher-L
admixture were up to its RUL value, the corresponding decrease in strength of the lower-L main component would be below 50%.
552
Atomic
Date and Nuclear
Data Tables.
Vol. 23, No. 8. June
1978
Gamma-Ray Strengths, A = 45-90
P. M. ENDT
%t
rw(EL),
rw(ML)
rwt(JW
S
R = r,,A1/3
PN
B(ELT)
Total conversion coefficient (oK + (II~ + . . .); for a mixed
transition the (measurable) quantity (Y = (a, + (r&P)
x (1 + P-l,
where (Ye and CQ are the conversion
coefficients of the two components, is listed
Weisskopf estimates for EL, ML transitions as given
under Input Data
Wilkinson estimate for EO transitions as given in Ref. 6.
Strength of a transition in Weisskopf units (S = Tv/Iw)
or (for EO transitions) in Wilkinson units (S = I,,/Iwi)
Nuclear radius (r,, = 1.20 fm)
Nuclear magneton
= (2J + ‘) B(EL&),
@Jo + 1)
where J and J,, are the spins of the excited state and the
ground state, respectively. This definition and the
following one for B(MLi) were inadvertently listed
without the curly brackets in Ref. 1
B(MLi)
=
[-i( qr
JI~~~2L-‘r,ir,(~~~~‘Lp);
B(MLT)= (2J+ ‘) B(MLS)
(250 + 1)
RUL
Recommended
units
upper limit of -y-ray strength in Weisskopf
553
Atomic
Data and Nuclear
Data Tables,
Vol. 23, No. 6. June
1979
554
EOTransitions between O+ States
See page 552 for Explanation of Tables
I. Strengths of
TABLE
Nucleus
Exi + Exf
Total
'm
branching
WV)
;$a
Ge
72Ge
72se
go2r
4.28
1.22
0.69
0.86
1.76
+
+
+
+
+
0
0
0
0
0
321 f
4.6 f
603 k
27 +
89i4
16 ps
0.6 ns
9
2
ns
ns
ns
rn
(X)
22.5 f 0.8
1.4
100
27 f 12
100
(Wi 'U.)
(ev)
(4.6
(2.0
(1.1
( 7
(7.4
f
*
*
f:
f
0.3)
013)
0.1)
3 )
0.4)
s
I CO""4
+ ce
(-7)
(-8)
(-9)
(-8)
(-8)
30
m
2.4
(3.5
(3.6
(3.2
(1.6
(2.4
f
f
f
f
f
0.2)
1.8)
0.1)
0.7)
0.1)
(-2)
(-2)
(-2)
(-1)
(-2)
TABLE II. Strengths of El Transitions
See page 552 for Explanation of Tables
Nucleus
Exi +E xf
moor
J; + J;
r
Total
Y
branching
(MeV)
0.38
+ 3/2+
5/2+
5/2-
-, 7/2+ 3/2+
-t 0
l/2+
7/2+
+ 3/2+ 7/2-
+ 0
-+ 0
9/2+
5/2+
+ 7/2+ 7/2-
-t 0.037
3/2+
-f 3/2-
1.59
* 0.02
ns
+ 0.037
+ 0
5/2+
+ .3/2-
7/2+
+ 7/2* 5/2-
15.1
4.0
f 2.5
f 0.9
ps
ps
4- -+ 5+
1.6 r 0.3
ps
3.06
+ 0.77
+ 2.01
+ (5)+
3- + 4+
10 t 3
ps
100
3.17
+ 0
1- + o+
34 f 10
fs
90 f 35
1.4 + 0.4
fs
ps
41 + 5
59 f 5
0.18 + 0.05
+ 3/2-t 5/2-
580 2 120
fs
5/2+
a. 5/2-
1.1 * 0.4
3/2+
+ 7/2+ 3/2-
0.94
0.97
1.43
1.80
0.33
0.74
1.23
+ 0.012
+ 0.38
+ 0.040
1.12 + 0.28
+ 0.89
1.30 + 0.77
1.40 + 0
5/25/2+
2.00
+ 0.81
+ 0.81
3/2+
2.26
+ 1.30
+ 0
0.26
+ 0.16
+ 0
0.52
+ 3.83
+ 0.31
+ 0.42
1.10
0.75
4- + 4+
3/2+ + 5/2-
1.14
+ 0.15
+ 0
5/2+
fs
ps
2.7 r 0.3
ps
7.6 f 0.3
150 f 50
ps
fs
+ 7/2+ 5/2-
91.7
41.3
3.5
f 0.3
f 0.5
f 0.5
17.3
k 0.6
58.3
11.9
f. 0.3
f 1.3
12.0
+ 1.2
100
821
5.1
k 1.0
5.7
* 1.0
84 k 9
ps
13 f 2
3.91 f 0.09
ps
ns
33 f 4
+ 0.3
t 0.9
ps
ps
100
44.6 t 0.6
1.9
f 0.7
ps
55.4
51.8
t 0.6
i.1.3
26.4
f 0.9
16.6
25.3
t 1.5
f 0.6
58.9
?: 1.3
7/2+ + 7/2+ 5/2-
680 + 250
fs
1/2+ + 3/2-
3.2 t 1.1
ps
69 f 2
3/2+
+ 5/2-
190 * 65
fs
2.39
+ 0
5/2+
+ 3/2+ 7/2-
24 + 1
39 f 2
82 f 26
fs
2.81
+ 0.091
+ 0
5/2+
-f 5/2+ 7/2-
7+1
17 + 1
455 + 75
fs
65 f 11
3/2+
-s 3/2-
1/2+
3/2+
-, 3/2+ 3/2-
900 + 200
110 f 20
fs
fs
100
100
475 f 60
fs
45 ? 3
390 f 130
1.15 f 0.35
fs
ps
55 f 3
= 100
100
112 f 23
48 + 16
fs
fs
100
54 + 7
210 * 40
ps
17 f 4
18 i 4
100
1.15 f. 0.50
235 ?: 45
ps
fs
74 + 2
55 c 11
2.71
2.97
4.78
1.52
3.04
3.76
-t 0.74
+ 1.41
+ 2.54
+ 3.30
+ 1.02
+ 1.40
-. 1.77
l/2+ + 3/21/2+ + 3/23- + 2+
t
+4
+4 t
9/2+ + 7/29/2+ + 7/23- * 2+
t 0.3)(-4)
f 0.6)(-5)
(1.8
(4.1
f 0.2)(-4)
+ 0.5)(-6)
f 0.4)(-4)
f. O.l)(-5)
=0
(1.2
(5.2
f 0.3)(-5)
f 1.6)(-6)
(6.5
+ 1.9)(-6)
(1.0
(2.1
f 0.2)(-4)
* 0.4)(-4)
[Ol
to1
to1
[Ol
=0
(
0
101
m
PI
PI
PI
VI
ro1
[Ol
[Ol
15
87 i 1
6.5
7.6
(2.3
(7.1
(2.0
85
73 f 2
67 t 4
?: 0.2)(-4)
* 0.7)(-4)
(1.1
13 ? 1
+ 3/2-
+ 5/23- + 2+
to1
(2.3
(2.6
=0
=O
+ 0.091
+ 0.15
+ 2.00
+ 3.77
+ 1.29
=0
8+2
57 f 13
+ 0.15
4.56
-0
=0
1.99
+ 0.93
2.76 + 0.75
3.00 + 0.75
[Ol
[Ol
69 + 3
1.65
2.68
=0
=0
13
1.9
ps
Remarks
(W.U.)
28 + 8
-f 3/2-
+ 0.091
+ 0.15
+ 0
+ 0.091
320 + 25
10.5 + 0.7
+ 5/23- + 2+
1- -P 2+
t
+l
+ 0
+ 0.091
1.60
ps
ps
-+ 3/2-
+ 0.088
4.51
+ 2+
-+ 3/2+
+ 7/2-
61 f 5
8.1 t 2.3
S
%ot
(%)
3/2-
0.54
0.72
+ 0.012
+ 0
6
555
-0
90
=0
=0
-0
(1.0
(1.3
f 0.4)(-4)
f 0.4)(-4)
(2.1
f 0.8)(-4)
(4.4
(1.0
f 1.4)(-4)
f. 0.4)(-3)
(5.0
t 1.8)(-5)
(1.1
(4.4
e 0.4)(-5)
+ 0.5)(-4)
(2.3
f 0.3)(-4)
(1.3
(1.4
? 0.3)(-4)
2 O.l)(-5)
(6.1
t 0.7)(-5)
(8.4
(1.5
2 0.4)(-5)
t 0.2)(-4)
(2.4
i 0.3)(-4)
(1.2
90
=O
(
(
20
to1
[Ol
[Ol
"0
rf.4
LOI
SO
101
LOI
101
=0
to1
LOI
to1
[Ol
[Ol
)(-5)
r 0.9)(-4)
t 0.3)(-3)
=O
PI
to1
WI
ro1
7 * 2
(2.9
(1.1
2 0.4)(-4)
8 i: 3
6 i 2
)(-5)
)(-5)
( 6 f 2 )(-5)
(1.8 t 0.7)(-4)
(4.6
f 1.6)(-5)
(1.3
* 0.4)(-4)
(2.4
(4.5
c 0.8)(-4)
+ 1.4)(-5)
(1.2
(4.7
f 0.4)(-4)
f l.l)(-5)
(1.5
f 0.3)(-4)
(7.2
(5.9
t 1.4)(-4)
t 0.8)(-5)
(8.2
(3.6
k l.O)(-4)
i 1.2)(-3)
(2.1
(5.3
(2.0
f 0.6)(-4)
t l.l)(-4)
f 0.7)(-4)
(1.9 + 0.8)(-4)
( 8 r 3 )(-4)
(2.4 +_ 0.5)(-5)
(
(
9 zt 4
8 f 2
)(-5)
)(-5)
556
TABLE II. Strengths of El Transitions
See page 552 for Explanation of Tables
Nucleus
Ex, + Exf
J"I -c J"f
T, or r
branching
WV)
62Ni
62cu
3.76 + 2.30
7.65 + 0
+ 1.17
+ 2.05
+ 3.16
+ 3.27
+ 3.37
+ 3.52
+ 3.85
-. 3.86
+ 3.97
+ 4.06
+ 4.23
2.29 + 1.37
63Zn
1.70 + 1.07
+ 1.21
(j4cu
7.917 -, 0.16
-+ 0.28
+ 0.61
7.918 + 0.28
+ 0.61
7.919 + 0
+ 0.34
+ 0.36
+ 0.61
3.00 -c 0.99
64Zn
65Zn
67Zn
67Ga
68Zn
6gGe
71Ga
72Ge
72AS
75AS
75Se
758r
76AS
76Se
1.07
+ 0.86
1.68 +
+
2.86 +
2.75 -,
+
0.86 +
1.60 +
+
3.75 +
1.49 +
2.51
0.046
0.21
0.31
0.40
0.29
0.13
0.046
2.43
0.093
0.39
2.07
1.08
2.34
0.40
0
0.37
2.76
1.11
+ 1.40
+ 0.83
+ 1.46
+ 1.73
+ 2.06
+ 2.40
+ 0
+ 0
+ 0.21
* 0
+ 0.27
+ 0.28
+ 0
-c 0
+0
+ 1.22
* 2.03
+ 2.13
3- + 2+
1- + o+
+2 +
-CO+
+2 +
+ u,*)+
+ (I**)+
+2 +
+2 +
+ (l.*)+
+2 t
+ (l.*)+
t
+O
6- + 5t
9/2+ + 7/2-c 7/22- + 2+
+ 2+
+ 2+
1- + 2+
+ 2+
2- + 1t
+l t
+3 t
+2 t
3- + 2t
9/2+ -+ 7/2l/2+ + 1/2-+ 3/211/2- + g/2+
3- + 2+
+ 2+
7/2- + 9/2+
5/2+ + 5/2+ 3/217/2- + 15/2+
(7/2,9/2)+ + 7/2* (5/*.7/*13- + 2t
+2 t
+4 t
+3 t
+2 t
1+ -c 2(l-3)+ * 2(0-4)- + (l-3)+
5/2+ + 3/2+ 3/2+ 5/23/2- + 5/2+
(l/2-5/2)+ + 3/2(l,*)t + 23- + 2+
+ (2-4)+
+ (~3)~
235 i 45
1.37
f: 0.14
fs
fs
23.3 f 1.9 ps
46 i 6
ps
520 f 40 meV
570 f 70 meV
580 t 50 meV
115 f 30
fs
830 f 40
ps
210 + 45
fs
1.25
i 0.30
ps
600 f 200 fs
3.1 f 0.5 ps
750 + 250 fs
9.4 f 0.8
220 t 20
ps
35 f 7
ps
16.4
f 0.3
115 i 3
24t4
2.5 + 0.1
ps
ns
ns
ns
ns
1.9 k 0.2
ns
8.1
ns
f 0.6
6
T&al
Y
2.78 + 0.09 ps
16.5 f 2.0 ps
S
"tot
(%)
45 i 11
m
63
0
4.1
PI
16.4
0
1.7
VI
2.2
m
2.1
PI
1.5
PI
0.4
[Ol
2.1
to1
3.1
[Ol
2.1
[Ol
0
1.2
98.8
=0
85 2 1
101
15 f 1
=0
16.9 k 0.6
101
6.3 i 0.5
to1
1.5 + 0.4
WI
3.2 t 1.4
VI
4.1 f 1.0
m
5.3 f 1.0
WI
2.4 ? 0.7
PI
5.2 f 0.9
m
1.9 * 0.9
LOI
==O
!=a100
95 f 1
-0
0
43 5 3
57 * 3
WI
31.6 t 1.4
=0
92.9 * 0.5
101
7.1 f 0.5
ro1
1.3 f 0.6
m
26 2 2
"0
19 f 2
-0
59 +- 2
-0
99
v4
0.067 f 0.007
[al
8.5 i 0.3
[Ol
59.2 f 0.7 +0.31*0.05
28.0 f. 0.7
to1
1.3 f 0.2
P-4
0.9 f 0.4
WI
100
WI 0.70
"0
41 + 5
71
=0
0.10
12.1 + 0.6
[Ol
62.8 f 1.0
WI 0.03
18.7 i 0.7
WI 0.05
'0
100
0.04
100
-0
100
to1 0.78
86.5 f 0.3
to1
1.2 f 0.1
ro1
0.45 '+ 0.05.
to1
Remarks
(W.U.)
(3.9
(6.3
(6.8
(4.2
(8.4
(1.2
(1.2
(9.6
(3.3
(1.7
(2.9
(2.0
(1.4
(3.4
(4.5
(1.7
(1.7
(6.8
(1.8
(3.8
(5.5
(5.7
+
k
f
t
f
f
*
i
f
+
f
+
f
i
i
i
+
r
i
f
+
f
1.2)(-4)
0.6)(-4)
0.7)(-5)
0.2)(-4)
0.8)(-5)
O.l)(-4)
O.l)(-4)
l.O)(-5)
0.8)(-5)
0.2)(-4)
0.3)(-4)
0.2)(-4)
0.2)(-4)
0.3)(-5)
0.6)(-5)
0.2)(-5)
0.2)(-4)
0.6)(-5)
0.5)(-5)
1.7)(-5)
1.4)(-5)
l.l)(-5)
(2.9
+ 0.9)(-5)
(6.4
(2.6
(6.5
(8.3
(3.0
(7.4
(3.0
(1.9
(1.0
(2.5
(4.9
( 8
(3.7
(4.4
(1.7
(2.6
(7.4
( 9
(2.7
(1.0
(2.1
(2.1
(1.7
(4.1
(5.1
(2.2
(1.2
(2.9
(1.1
(1.6
(6.1
(5.4
f l.O)(-5)
t 1.2)(-5)
f 1.7)(-4)
k 0.4)(-5)
f 0.7)(-4)
+ 1.6)(-4)
f 0.7)(-4)
_+ O-6)(-4)
* 0.3)(-3)
f 1.2)(-5)
t 1.6)(-5)
k 3 )(-5)
f 0.3)(-5)
f 0.4)(-5)
f 0.2)(-6)
?: 0.6)(-7)
f 1.5)(-6)
f 2 )(-6)
f 0.7)(-6)
f 0.5)(-4)
f O.l)(-4)
f 0.2)(-7)
i 0.3)(-5)
i 0.2)(-7)
f 0.2)(-5)
+ O.l)(-5)
i 0.2)(-5)
f 0.2)(-5)
f O.l)(-6)
f 0.2)(-5)
f 0.9)(-6)
_+ 0.9)(-a)
En = 0.58
keV
En = 2.06
keV
En = 2.66
keV
557
TABLE II. Strengths of El Transitions
See page 552 for Explanation of Tables
Nucleus
Exi +E xf
Jf + J;
TV or r
branching
WV)
76Br
0.25
0.36
+ 0
-P 0
0.63
+ 0.045
+ 0
0.25
0.44
+ 0.22
-P 0.16
+ 0.16
0.13
0.28
+ 0
+ 0
"Kr
0.067
+ 0
78Kr
2.75
3.29
“AS
"Se
"Br
"Br
8oBr
B8Sr
0.76
0.037
2.73
(o-2)+
+ 11+ + 1+ (o-2)-
f 0.13
580 f 140
(W.U.)
(1.1
f O.l)(-5)
-0
(4.6
(5.1
f l.O)(-6)
f 1.4)(-6)
=0
=0
(3.6
(3.5
f 0.8)(-6)
f O;')(-5)
=o
(1.8
(1.0
+ O.l)(-5)
f 0.4)(-5)
(1.7
f O.l)(-5)
ns
ps
100
46 t 4
=O
ps
35 f. 4
18 f 2
ro1
108 f 22
5/25/2-
+ 7/2+
+ 7/2+
13.4 f 0.6
33 t 3
ns
ps
50 2 4
30.0 f 1.1
1.4 .I 0.5
5/2+
-+ 3/2-, 3/2-
13.4 2 0.4
130 f 30
ns
ps
- 100
8t2
170 f 17
ro1
2.3 f 0.3
2.9 f 0.3
ns
ps
100
+ 1.12
+ 1.98
3/2- + 5/2+
5- + 4+
7- + 6+
100
54 2 3
+ 0.21
7/2-
1.7 f 0.3
m
PI
[Ol
+ 0
+ 1.84
2- + 1 +
3- + 2+
5/2+
5/2+ + 3/2-
10.6
1.18
3- + 2+
1.63
2.22 ++ 1.10
1.51
"Zr
2.75
+ 2.19
(3/2,5/2)+
+ 9/Z+
S
?ot
(%)
-, 3/2+ 3/2-
8gY
8gZr
5/2+
3.14
6
Total
Y
VI
90
0.04
=0
0.29
(1.5
+ 0.5)(-S)
(8.1
(5.7
t 0.8)(-6)
f 0.8)(-5)
(4.4
f 0.5)(-5)
(6.4
(3.8
k 1.3)(-5)
f O.l)(-4)
ps
ps
3.6 2 0.4
i 1.3
f 0.11
ns
ps
100
99.31 + 0.05
580
500 f 90
200
fs
13 f30 2
PI
ro1
m
(5.8 f 0.6)(-4)
( 8 t 3 )(-4)
(7.3
+ 1.6)(-4)
8.3
ps
93 t 2
PI
(3.1
f l.O)(-4)
t 2.6
=0
1.56
Remarks
558
TABLE III. Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
Exi +E xf
’ + J’
Ji
fm or r
f
Total
Y
branching
WV)
0.38
+ 0
0.54
0.72
0.97
1.07
1.24
1.43
+ 0.012
-+ 0
+ 0.012
+ 0
+ 0
+ 0.54
+ 0.97
+ 0
+ 0.97
+ 1.43
+ 0
+ 0.33
+ 0.33
+ 0.74
+ 0
+ 0.040
+ 0
+ 0
+ 0.29
+ 0
+ 0.89
-. 0.89
+ 2.01
+ 0
+ 0
+ 0.16
+ 0
+ 0.16
+ 0.09
+ 0.15
+ 0.15
+ 0
+ 0
-, 0.98
-c 0
+ 2.30
+ 0
+ 0
+ 0
+ 0.43
+ 0.52
+ 0
+ 0.75
+ 0
+ 0
+ 0
-. 0
+ 0.091
-+ 0.15
+ 0.75
+ 1.02
-f 0
+ 0
+ 0.27
1.66
2.03
2.56
0.037
0.74
1.23
1.35
1.47
1.35
1.12
0.89
2.01
2.61
3.30
1.15
0.16
1.25
1.55
1.27
1.30
3.83
0.98
2.30
2.42
3.33
0.31
0.43
0.63
1.06
0.75
1.86
1.38
0.15
1.02
1.16
1.51
1.60
2.26
0.27
1.08
3/25/2+
5/27/2t
3/211/29/2+
+ 7/2-+ 3/2+
-c 7/2+ 3/2+
+ 7/2+ 7/2-c 5/2t
+ 7/2+
g/2- + 7/211/2+ + 7/2t
13/2+ + g/2+
3/2- + 7/25/2+ + 3/2+
7/2+ + 3/2+
+ 5/2+
g/2- -s 7/2+ 5/211/2- -, 7/22+ + 0t
4- + 22+ + o+
4+ + 2+
o+ + 2t
6+ + 4+
11/2- + 7/27/2- + 5/2'3/2- + 7/23/2- + 5/2+ 7/2g/2- + 5/2-+ 7/2H/2- + 7/22+ * o+
2+ + o+
4+ + 2t
2+ + o+
6+ + 4+
2+ + 4t
5+ + 4+
6+ + 4t
+ 5+
3- + 12+ + o+
4+ + 2+
3/2- + 7/23/2- -i 7/211/2- + 7/2g/2- -. 7/2+ 5/25/2- + 3/27/2+ + 3/2+
15/2- + 11/27/2- + 5/2g/2- + 5/2+ 7/2-
61 f 5
8.1 t 2.3
ps
ps
2.7 f 0.3
ps
2.6 k 0.3
7.6 f 0.3
ps
146 2 13
fs
1.6 t 0.7
ps
ps
2.0
4.5
15.1
4.0
2 0.7
f 0.4
f 2.5
f 0.9
ps
us
ps
ps
148 i 15
fs
690 f 90
fs
5.2 +_ 0.4
ps
1.6 f 0.3
ps
ps
8.2
2.6
110
1.6
4.5
f
+
f
f
f
0.4
0.3
30
0.2
1.6
ps
fs
ps
ps
301 r g
210 f 20
ps
fs
2.3 f 0.7
ps
430 + 65
fs
2.0
42
6.4
630
38
i 0.9
ps
+_ 5
f 0.3
+ 80
r 5
fs
ps
fs
12.8
? 1.2
fs
ps
10.23
f 0.04
ns
8.80 k 0.14 ps
111 i 9
ps
6.6 f 1.7 ps
f 1.0 ps
1.9 f 0.5 ps
10.6
1.6 f 0.4
ps
45 f 19 fs
680 f 250 fs
930 * 410
19 f 4
220 5 40
fs
ps
fs
"tot
(96)
8.3 k 0.3
58.7 f 0.5
from
B(E2)
31.3
?: 0.5
from
B(E2)
100
69.9 f 1.7
18.2 f 1.4
79 f 3
83 f 2
57 f 6
100
92 * 1
52 f 2
37 + 2
90 * 2
10 f 2
100
100
13
100
100
100
100
100
100
88 f 6
43 i 5
57 + 5
18 f 2
82 f 2
100
100
100
100
5.0 f 0.8
100
100
100
55 f 8
45 t 8
8k2
100
100
from
28.8 f 0;3 ns
4.8 f 0.9 ps
6
(W.U.)
-0
tO.70 f 0.15
'0
-0
-0
to.28 T 0.07
-0.45 i 0.04
"0
-0
[Ol
-0.40 t 0.03
-0
-0.28 f 0.03
to.46 f 0.08
16
[Ol
=O
0
Ku
0
[Ol
0
to1
to1
to.030 f 0.007
to.29 * 0.03
-0.46 f 0.09
to1
=0
-0.43 f 0.06
=0
0
0
to1
0
to1
[Ol
to.13 f 0.03
WI
to.14 f 0.02
=0
0
[Ol
B(E2)
65.0 f 0.3
100
74.7 f 0.7
25.3 f. 0.7
56.3 f 0.8
8.0 + 0.8
100
100
5.9 f 1.0
94.1 * 1.0
s
to1
=0
-0.70 f 0.07
=0
to.57 f 0.05
[Ol
"0
to.115 f 0.011
WI
to.21 f 0.03
0.08
(1.5 f 0.2)(+1)
( 5 f 2 )(tl)
(8.9 f 0.7)( 0)
(1.2 f O.l)(tl)
(8.4 f 0.8)( 0)
(1.1 f o.l)(tl)
(1.4 * O.l)(tl)
( 7*3
)(O)
(5.9 f l.O)( 0)
(3.2 + 1.4)(+1)
(1.2 f 0.4)(+1)
(1.7 f 0.2)(+1)
(6.1 ? 1.3)(+1)
(1.9 f 0.4)(+1)
(2.1 + 0.6)(+1)
(2.O.k 0.6)(d)
(1.5 ?: 0.3)(+1)
(1.8 + 0.2)(+1)
(3.4 * 0.3)( 0)
(1.7 + 0.3)(+1)
(1.8 + O.l)(tl)
(1.8 f 0.2)(+1)
(4.1 + 1.1)(+1)
(1.4 ? 0.2)(+1)
( g+3
)(O)
(2.3 f l.l)( 0)
(1.6 f 0.4)(+1)
(2.9 f 1.3)(-l)
(3.8 f 1.2)( 0)
(1.4 f 0.3)(+1)
(1.3 f 0.4)(+1)
(2.0 f 0.9)(+1)
(2.2 f 0.3)( 0)
(1.3 f o.l)(tl)
(3.1 f 0.4)(+1)
(1.2 f 0.2)( 0)
(5.2 f 0.5)( 0)
(2.6 f O.l)( 0)
(1.0 f 0.4)(+1)
(3.9 f 0.6)( 0)
(1.9 f 0.7)(+1)
(2.0 r 0.7.)(+1)
(3.3 f 0.3)(+1)
(2.4 + 0.6)(+1)
(3.2 ? 0.4)( 0)
(1.9 f O.l)(+l)
(1.4 * 0.3)(+1)
(5.4 f. 1.4)( 0)
1 8 f 2 )( 0)
( 5 k 2 )(tl)
(2.0 f 0.7)(+1)
(2.7 t 1.2)(+1)
(3.5 f l.O)(tl)
(1.4 + 0.3)(+1)
(3.8 f 1.2)(+1)
Remarks
TABLE
III.
559
Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
E
xi
+E
xf
J; + J"f
TV or
r
Total
Y
branching
WV)
1.56
+ 0.27
1.74
+ 0.27
2.50 -+ 1.08
2.61 + 0.27
3.19.-t 1.56
1.55 + 0
2.67 + 1.55
[1.49 + 0.39
1.52 + 0.39
0.78 + 0
1.88
+ 0.78
2.92
* 0
3.16
+ 1.88
3.32 + 0.78
0.32 + 0
0.93 + 0
+ 0.32
1.61 + 0
1.81 -+ 0
+ 0.32
2.41 -f 0
2.70 + 1.61
0.75 + 0
1.16 + 0
1.48 + 0
1.56 -f 0.75
1.90 + 0
2.38 + 1.35
0.24 -f 0
1.14 + 0
+ 0.24
1.49 + 0.24
1.43 + 0
2.37 + 1.43
2.77 + 1.43
2.96 + 0
+ 1.43
3.11 -t 2.37
+ 2.77
3.16 + 0
3.42 + 1.43
3.77 + 0
4.75 + 3.11
0.56 + 0
1.01 + 0
-c 0.56
1.29 -b 0
1.54 a. 0
2.17 + 1.29
2.32 + 0
0.38 + 0
1.29 + 0
+ 0.38
1.44 + 0
1.62 + 0
11/2- + 7/23/2- + 7/213/2- + 9/23/2- + 7/215/2- + U/22+ + o+
4+ + 2+
1+ h. 2+
2+ + 2+
2+ + o+
4+ + 2+
2+ + o+
6+ + 4+
4+ + 2+
5/2- + 7/23/2- -, 7/2-t 5/211/2- + 7/29/2- -, 7/2-, 5/23/2- + 7/215/2- -+ H/23/2- + 7/29/2- + 7/211/2- + 7/27/2- + 3/23/2- -P 7/29/2- + s/27/2- + 5/29/2- + 5/2+ 7/211/2- + 7/22+ + o+
4+ + 2+
4+ -f 2+
2+ + o+
+2 t
6+ -f 4+
+4 +
2+ + o+
4+ + 2+
2+ + o+
8+ + 6+
l/2- -, 3/25/2- -, 3/2+ 1/27/2- + 3/27/2- + 3/2U/2- -P 7/23/2- + 3/25/2- + 7/23/2- + 7/2+ 5/211/2- + 7/29/2- + 7/2-
530 f 80
fs
1.6
ps
+ 0.4
230 * 50
65 f 20
400 f 90
1.41 + 0.10
7.6 f 1.6
65 f 8
210 f 20
13.1
f 0.6
3.2 t 0.4
fs
fs
fs
ps
ps
fs
fs
ps
ps
13.5
f
2.0
fs
1.7
t
0.4
ps
140
f. 35
fs
265 i 7
ps
11.2
?: 1.2
ps
760 k 70
fs
810?110
fs
27 k 9
7.9 f 0.6
10.6 + 0.4
fs
ps
ns
100
f
15
fs
740
6.0
450
600
20
360
f
+
f
f
+
150
2.0
60
180
3
fs
+ 100
720 fr 170
1.02
1.4
ps
fs
fs
ps
fs
fs
t 0.04
ps
f 0.3
ps
3.7 2 0.9
600 A 110
60 f 2
ps
fs
ps
120
f 40
fs
460
f 90
fs
13+6
fs
920 f 300
fs
1.1 f 0.2
ps
6
(X)
49 t 2
29 * 2
10 f 3
59 f 2
52 f 5
100
100
8a+5
82 f 2
100
100
8*2
100
0.9 f 0.2
100
84.0 k 0.5
16.0 t 0.5
100
75 f 2
25 + 2
19 f 3
100
100
100
51.9 f 1.1
79.4 f 0.3
78 + 2
26 + 3
100
13 f 2
87 f 2
65 * 3
100
100
90 f 1
4.2 + 1.7
95.8 f 1.7
98.8 f 0.2
1.2 f 0.2
11 + 2
5.5 2 1.5
20 + 4
100
from
0.43
from
f 2.5
fs
11 + 2
13.3
+ 1.8
ps
loo
from
169 + 9
760 f 100
ps
fs
760 f 135
fs
610
fs
f
75
=0
'0
[Ol
"0
WI
0
m
to.58 f 0.03
to.06 f 0.01
0
WI
0
WI
[Ol
-0.42 f 0.02
"0
-6.8 f 0.7
to1
-3.8 f 0.7
a0
-0
=0
m
to.17 f 0.02
"0
-0
LO1
"0
-0.103 + 0.011
tOI
-0.32 f. 0.02
[Ol
0
LOI
LOI
0
t6.25 r 0.15
WI
[Ol
0
WI
0
101
-0.36 f 0.02
WI
B(E2)
31.2
WI
to1
B(E2)
100
56 c 3
44 f 3
100
89.0 f 1.1
s
Remarks
(W.U.)
B(E2)
99.57
"tot
-0.55 f 0.02
WI
-0.167 + 0.019
PI
-2.9 f 0.3
(1.9 f 0.3)(+1)
(2.0 f 0.5)( 0)
( 5t.2
~0)
(1.0 f 0.3)(+1)
(8.4 f 1.9)( 0)
(5.8 + 0.4)( 0)
(5.4 5 l.l)( 0)
(1.5 f o.*)(+*)]
(5.6 f 1.9)( 0)
(1.9 f O.l)(+l)
(1.4 f 0.2)(+1)
(2.0 f 0.6)( 0)
(1.3 ? 0.3)(+1)
(4.4 f 1.5)(-2)
(1.2 + O.l)(+l)
(7.5 +- 0.8)( 0)
(1.2 * O.l)(+l)
(8.5 i 0.8)( 0)
(3.1 f 0.4)( 0)
(3.0 f 0.4)( 0)
( 6**
l(O)
(5.8 f 0.4)( 0)
(2.8 f O.l)(-2)
(1.0 + 0.3)(+1)
(7.0 + 1.4)( 0)
(2.7 f 0.9)(+1)
(5.0 f 0.7)( 0)
(2.6 f 0.8)(+1)
(5.0 f 1.2)(d)
(1.3 f 0.4)(+1)
(2.7 f 0.8)(+1)
(2.1 f 0.5)(A)
(1.1 f O.l)(+l)
(6.7 + 1.4)(+1)
(3.9 f l.O)( 0)
(2.1 f 0.9)(-2)
(1.3 f 0.2)(+1)
(5.1 f 0.2)( 0)
(3.1 f 0.5)( 0)
(2.0 f 0.7)(-l)
(2.7 f 0.9)(-2)
(1.4 f 0.7)(-l)
1 7 f 2 )I 0)
(1.6 f O.l)(+l)
(6.5 f l.O)( 0)
(1.4 f 0.3)(+1)
(1.1 f cl.l)(+l)
(2.7 f 0.5)(-2)
(1.9 f 0.3)(+1)
(1.0 t O.l)(+l)
(1.2 f O.l)(+l)
(1.4 + 0.2)(+1)
(1.7 f 0.4)( 0)
(1.4 ? 0.2)(+1)
(7.9 * l.l)( 0)
a)
!
TABLE III. Strengths of E2 Transitions
560
See page 552 for Explanation of Tables
Nucleus
Exi +E xf
J’i + J”f
T, or r
Total
Y
branching
W)
1.62
2.27
-. 0.38
+ 0
g/25/2-
. 5/2+ 7/2-
610 f 75
360 SE 55
fs
fs
11.0 f 1.1
77 t 2
2.41
-. 0.38
+ 0
3/2-
+ 5/2-, 7/2-
180 f 35
fs
23 + 2
38 t 6
2.69
+ 1.44
15/2-
+ 11/2-
3.9 t 0.6
ps
100
3/23/2-
+ 7/2+ 7/2-
90 f 35
fs
5/2-
-+ 3/2-
92 k 2
4.0 f 1.0
ns
ps
100
76 .t 2
3/2-
+ 1/2+ 7/2-
340 f 70
fs
24 i 2
100
11/2-
+ 7/2-
76 f 17
fs
14 f 2
2.88+0
0.74
1.42
-+ 0
-s 0.74
2.04
+ 0.77
+ 0
2.34
+ 0
+ 1.33
2.95
-. 2.54
2.96
+ 0
3.17
3.83
+ 0
+ 1.41
91 + 20
fs
91 * 3
4.07
+ 1.41
3+ + 2+
84 * 25
fs
92 f 3
4.26
-, 1.41
4+ + 2+
120 f 30
fs
21 + 6
4.95
+ 1.41
+ 2.54
4+ + 2+
+4 t
t
+6
42 + 14
fs
35 + 6
55 i 5
+ 0
-. 0.16
1.78 + 0.37
1.41 + 0
+ 2.95
0.13 + 0
1.53 + 0
0.93
+ 0.13
+ 0
57Fe
-0.038
100
1.42
1.76
* 0.04
f 0.03
ps
ns
100
100
75 f 12
230 + 50
fs
fs
55 f 3
81 A 3
ps
f 0.4
1.32
1.41
+ 0
* 0
7/27/2-
+ 3/2+ 3/2-
17 f 6
ps
58 + 4
ps
42 + 3
2.14
+ 0.41
2.58
2.16
+ 0.41
-. 0
5/25/2-
+ l/2+ l/2-
3/2-
-a 7/2-
55 f 14
66 2 9
137 * 14
fs
fs
fs
2.56
+ 0
600 f 80
fs
100
100
0.11
+ 0
0.34
0.85
+ 0
+ 0
5+ + 3+
2+ + o+
7.3 f 0.2
2.9 t 0.2
ns
ns
0.42
42 f 5
2.09
2.66
+ 0.85
+ 0
8.9 f 0.4
950 f 270
ps
fs
40 f 10
fs
2.94
2.96
+ 0.85
+ 0.85
+ 0
3.12
-c 0.85
+ 0.85
4+ + 2+
2+ + o+
+2 t
t
o+ + 2
2+ + o+
+ 9
t
4+ + 2
4.18
2.70
0.014
0
2.09
0
0.97
0.16
+ 2.28
+ 0
+ 0
+ 1/2-
98.7
2+
6+
2+
2'
o+
1+
+
+
+
+
*
‘+
o+
4+
o+
4t
2t
3+
9+ + 7+
2+ + o+
3/2- + 1/2-
220 f 100
39 f 12
110 f 50
26
190
64
160
2.28
540
590
f
f
i
i
i
f
t
10
30
20
40
0.09
200
60
76 f 37
142 f 12
fs
fs
fs
fs
fs
fs
fs
ns
fs
fs
fs
ns
+ 0.02
f 0.02
0
(2.1
f 0.3)(
0)
(7.2
(7.9
+ 1.5)(-l)
f 1.7)(
0)
f 0.5
(3.4
(
(1.0
(1.2
f 0.03
?: 0.01
f 0.04
(
0.02
f 0.02
0.33
f 0.015
0
0
f 0.009
KY
23 f 2
8
[Ol
0)
)(-1)
+ 0.4)(
i? 0.4)(
5 f 2
0)
0)
)(-1)
(2.2 + 0.6)(+1)
(4.3 * 1.7)(
0)
( 7+2
)(0)
(8.4
(2.2
t 0.9)(-2)
f 0.8)(
0)
(1.5
(9.9
f 0.5)(
?r l.O)(
(9.6
f 1.3)(-l)
(1.6
(2.1
f O.l)(
f 0.3)(
(1.6
(2.2
(2.7
f O.l)(+l)
f 0.6)(+1)
f 0.7)(-l)
(2.6
f 0.8)(
0)
0)
0)
0)
0)
( 7 f 3 I(
(1.6 f 0.5)(-l)
0)
(2.2
0)
(
0
f 0.7)(
7 f 3
)(-2)
( 8 * 3 )(-2)
(5.8 i 1.1)(-O)
0
( g * 3 )(-2)
(!.4 f 0.6)(
0)
(1.1 f O.l)(
0)
[Ol
0
VI
[Ol
0
(2.4*0.2)x10-3
f 1.6)(
6 ? 2
( 7*2
~(0)
(1.7 t 0.7)(+1)
( 9 * 3 )(-1)
0
0.8 k 0.1
1.5 ). 0.1
f 0.05
100
13.8 f 0.6
73 f 1
100
100
0)
0)
0
0
0;30
t 1.2)(
_+ 0.4)(
0
[Ol
-0.249
t 0.9)(+1)
(5.6
(1.8
0)
0)
100
100
2.1 t 0.1
97.9 f 0.1
(3.5
f 0.2)(
f O.l)(
to1
[Ol
to1
LO1
LO1
[Ol
LO1
101
[Ol
to.185
2 O.l)(-3)
* 0.3)(+1)
WI
VI
-0.34
)(-1)
(3.3
(1.0
f 0.3)(+1)
[Ol
-0.07
-0.22
6 f 2
0)
0)
(8.3
(3.1
VI
PI
to.36
)(-1)
f 0.4)(
f. 0.9)(
(1.1
to1
-1.9
8 f 3
1 g+4
)(O)
(1.4 f o.l)(+l)
(2.3 A 0.5)(+1)
f 0.003
= 100
2.3 f 0.1
f 0.1
(
0
3?1
7+2
97.7
(1.7
(5.6
=0
10 f 3
1.3 f 0.4
(
VI
101
ps
+ 7/2+ 3/2-
f 0.3
EJO
2 0.28
1.3 f 0.4
95 * 1
3.37 +
3.76 -F
3.86+0
0.97 +
1.45 +
1.72 +
-0.36
1.05
5/2-
(4.1 t 0.7)(
0)
( 7 f 3 )(-2)
-0
to.11
100
96 f 1
4+1
f 0.04
[Ol
ro1
ro1
100
100
ps
fs
3/2- -, 7/2I+ + 3+
to.9
86 * 2
373 f 12
71 f 14
+ 0.41
IO1
-0.18
ps
ps
+ 5/2-S 5/2-
Remarks
(W.U.)
11.8 f 0.7
9.7 f 1.2
7/23/2-
S
?ot
(X)
15
+ g/22+ + o+
5+ + 4 t
t
7+ + 5
2+ + o+
6+ + 4 t
t
2+ + 0
2+ + 0 t
4+ + 2t
0.83
0.37
6
(1.7
(3.1
8.2
f 0.6)(
t 0.3)(
( 6+3
)(O)
(3.6 i 0.6)(-l)
0)
0)
561
TABLE III. Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
Exi +E xf
Jf -, J'f
~~ or r
Total
Y
branching
WV)
0.14 + 0
-+ 0.014
0.37 + 0
0.71 + 0
+ 0.014
+ 0.14
+ 0.37
7.65 + 0.14
1.22 + 0
1.38 + 0
1.69 + 0
+ 1.22
2.31 a. 1.22
+ 1.38
0.77 -t 0
2.58 + 0
0.81 + 0
1.67 + 0
+ 0.81
2.08 + 0.81
2.60 -. 0.81
+ 1.67
2.78 + 0.81
+ 1.67
1.45 + 0
2.78 + 0
+ 1.45
2.94 + 1.45
+ 2.78
3.04 + 0
+ 1.45
3.26 + 0
+ 1.45
3.53 + 1.45
3.90 + 0
1.10 + 0
1.19 + 0
1.29 + 0
[
-+ 1.10
1.46 -. 0
1.75 -t 0
1.19 + 0
1.34 + 0
+ 0.34
1.77 + 0.34
1.95 -h 0
2.71 + 1.34
+ 1.77
1.40 + 0
2.27 -, 0.49
0.82 + 0
2.11 -. 0.82
1.33 + 0
2.16 + 0
+ 1.33
5/2- -s 1/2+ 3/2312- + l/Z5/2- * 1/2+ 3/2+ 5/2+ 3/2l/2- + 5/2g/2- + 7/23/2- + 7/211/2- + 7/z+ 9/27/2- + 9/2-,. 3/25/2- + 3/27/2- + 3/22+ + o+
2+ + 0+
+ 2+
4+ + 2+
4+ + 2t
+2 +
1+ -s 2+
+2 t
2+ + o+
2+ + o+
+2 t
o+ + 2t
+2 t
2+ + o+
+ 2+
2+ + o+
+2 t
o+ + 2t
2+ +O +
3/2- + 7/29/2- + 7/23/2- -t 7/2-+ 3/211/2- + 7/27/2- -c 7/25/2- + 3/27/2- -. 3/2+ 5/2g/2- + 5/27/2- -, 3/211/2- -c 7/2+ 9/27/2- -, 3/23/2- + 5/22+ + o+
4+ + 2+
2+ -+ o+
2+ + o+
q2 t
12.4 f 0.4
ns
600
76
27
350
ps
f 100 mev
+ 10
+6
f 35
fs
ps
fs
290 f 60
Ps
4.6 f 0.6
68 f 9
ps
11.7
f 2.3
2.3 + 0.6
fs
ps
ps
440 f 110 fs
540 i 100 fs
265 + 40
fs
920 f 26 fs
580 + 160 fs
2.90
t 0.10
ns
72 + 7
fs
42 f 4
fs
260 ? 70
33 f 4
4.9 f 0.8
fs
fs
ps
?: 0.5
f 0.8
+. 0.6
* 0.3
f 0.5
100
100
46 f 2
54 t 2
70 t 2
20 * 3
100
100
100
44 f 1
56 c 1
100
30.1 f 0.9
17.7 f 0.6
48 f 3
22.2 f 1.3
100
4.1 t 0.3
95.9 k 0.3
11.4 A 0.7
10.6 f 1.1
42 f 2
57 f 2
63 f 2
37 f 2
100
24 f 2
100
790 * 40
1.6
f 0.2
fs
ps
frcin
400 f 45
1.45
f 0.26
fs
ps
820 f 100 fs
200 f 60 fs
500 f 60 fs
580 + 250 fs
320 f 140 fs
11.6 f 2.2 ps
1.2 f 0.3
ps
1.05 f 0.01 ps
770 f 150 fs
m
-0.120 f 0.001
0.15
0.02
m
to.465 + 0.008
-0.097 + 0.008
-0.083 + 0.005
UN
-0.26 t 0.01
WI
[Ol
-0.08 f 0.01
-0.13 ? 0.02
101
-0.23 f 0.02
VI
0
0
to.69 + 0.05
PI
ro1
[Ol
to.17 ?: 0.04
to.18 ? 0.03
0
0
t1.18 + 0.15
0
0
0
-0.21 f 0.03
0
-0.46 +_ 0.13
0
0
[Ol
B(E2)
93.3 2 0.4
6.7 + 0.4
95 + 1
WI
-0.17 ? 0.03
WI
B(E2)
89 f 5
29 f 1
71 * 1
93
72 f 3
90
10
91 f 2
46 i 5
100
100
100
13.3 f 0.8
86.7 f 0.8
S
Remarks
(W.U.)
B(E2)
3.5
84.4
9.9
2.2
2.5
fran
Yet
(X)
12.3 f 0:2
87.7 f 0.2
from
4.2 + 0.7
6
to.56 i 0.17
"0
-4.8 f 0.9
-0
WI
-0
to.95 f 0.39
-0
-1.9 f 0.7
0
[Ol
0
0
-0.82 i 0.15
0.08
(1.1 f O.l)(+l)
(2.2 f O.l)( 0)
(5.8 f r&7)(+1)
(2.9 f 0.6)( 0)
(1.4 t 0.2](+1)
(2.2 f 0.5)( 0)
(4.9 f 1.2)(-l)
(5.8 t 1.5)(-2)
E,=1.15
keV
(1.9 t 0.3)(+1)
(4.5 f 1*0)(-l)
(5.8 t 0.6)( 0)
(2.6 t O.')(+l]
(1.6 t 0.4)( 0)
( 6 * 2 I(+11
(2.5 + 0.5)( 0)
(7.9 t l.O)( 0)
(1.5 f 0.3)(+1)
( 9 f 2 1(-l]
( gi2
I(01
(4.1 + l.O)(+l)
(1.8 f 0.3)( 0)
(2.8 f 0.5)(+1)
(1.0 f 0.4)(-l)
( 9 f 4 )(-1)
(1.0 f O.l)(+l)
(2.5 f O.')(-2)
(1.4 f 0.4)(+1)
(3.2 f 0.2)(-4)
(1.6 +_0.2)(+1)
(1.3 ? O.l)( 0)
(2.0 +_0.6)( 0)
(2.4 f 0.2)( 0)
( 5*2
)m
(5.9 f 1.6)( 0)
(5.3 f 0.8)(-l)
(7.6 f 1.2)( 0)
(1.6 f 0.3)(+1)
(2.0 f 0.1)(+1)
b)
(5.0 f 1.8)(+2)]
(5.3 f 0.7)( 0)
(2.1 f O.')( 0)
(1.6 f O.')(+l)
(2.7 t 0.5)( 0)
(2.8 t 0.5)(+1)
(1.1 f O.l)(+l)
( 7*2
)(o)
(2.2 t 0.3)(+1)
( **3
1(O)
(1.7 f O.')(+l)
(3.7 f 1.8)( 0)
(1.3 f 0.2)(+1)
(1.3 f 0.3)(+1)
(1.3 f O.l)(+l)
(2.1 f 0.4)(-l)
( 7 f 2 )(+l)
562
TABLE III. Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
E
xi
+E
xf
J; + J;
‘cm or r
Total
Y
branching
WV
6oNi
2.61
+ 1.33
+ 2.16
61Ni
3.19
+ 1.33
3.39
-, 2.16
+ 0
4+ + 2+
t
+2
4.7
3+ -c 2+
+2 t
2+ + 0 t
200 f 50
0.067
0.28
+ 0
+ 0
5/2112-
-+ 3/2+ 3/2-
0.66
+ 0
l/2-
+ 3/2-
0.91
+ 0.067
+ 0
5/2-
+ 5/2* 3/2-
1.6
+ 5/2+ 3/2-
+ 0.067
50
fs
(X)
(W.U.)
[Ol
= 100
(7.6+0.5)x10-3
32.0 + 1.6
42 f 2
f 0.023
(5.3 t 0.8)(
0)
(1.8 ?r 0.3)(-l)
( 5 f 2 )(-2)
f 0.03
(1.6
f 0.4)(+1)
0
f 1.9)(-2)
?r 0.3)(-l)
[Ol
-0.106
-0.42
6+2
from
B(E2)
(4.4
(3.2
fs
Remarks
frun
B(E2)
(1.7
* 0.2)(
ps
from
B(E2)
(1.2
* 0.1)(+1)
0.5
ps
from
(2.5
(6.1
zt 0.7)(
0)
f 0.9)(-l)
i 0.20
6.8 f 1.0
ps
(1.2
(1.8
f 0.4)(+1)
+ 0.3)(
0)
f 0.16
25 + 6
WI
8*1
f
B(E2)
19 + 2
25 f 1
-1.83
75 f 1
-2.46
0)
+ 0
+ 0.067
7/2-
1.10
+ 0
* 0
3/25/2-
+ 3/2+ 3/2-
frun
B(E2)
(6.9 f l.O)(
0)
( 9 f 2 )(-1)
from
B(E2)
(7.4
t 0.8)(
0)
1.19 + 0
3/2-
+ 3/2-
from
B(E2)
1.45 + 0
7/2-
1.20
f
0.34
ps
f 0.4)(
k 1.6)(
0)
0)
+ 0.067
1.81 -, 0.067
+ 3/2+ 5/2-
(2.6
(5.5
f 0.4
9/2-
1.60
f
0.34
ps
89 f 2
11 f 2
(2.0
(2.0
5 0.6)(
f 0.4)(
0)
0)
+ 1.02
1.99 -, 0.067
-, 5/2-c 7/2-
f 0.18
9/2-
+ 5/2+ 5/2-
900 + 250
fs
57 f 3
18 k 2
( 6*2
l(O)
(1.4 5 0.4)(
0)
5/2-
+ 3/2-
fs
9/2-
-+ 5/2-. 5/2-
60 i 12
280 + 45
fs
68 f 2
62 f 3
870 f 230
fs
12 f 2
100
1.4
f 0.5
ps
+ 0.17
ps
2.00
+ 0.91
+D
2.41 + 0.067
+ 1.13
-+ 5/2-
3.30
3.44
+ 2.12
11/2+
+ g/2+
+ 2.12
0.97
+ 0
+ 0.48
13/2+
5/2-
+ 9/2+
+ 3/2-
1.31
1.39
1.90
2.20
2.30
2.34
2.40
2.61
-0
-0.97
=0
‘0
t0.27
a0
20
* 0.1
0.9
f 0.1
(7.3
f 1.7)(
0)
( 8*2
)(O)
(1.0 f 0.4)(+1)
f 0.02
(6.3
f 1.3)(
(1.8
(1.8
+ 0.4)(+1)
f 0.3)(d)
PI
(6.5
(9.0
t l.l)(
f 1.5)(
0)
0)
=0
HI.33
( 8 f 2 )( 0)
(1.3 f 0.6)(
0)
(1.8 f 0.3)(
0)
+ 0.08
-0.63
100
99.1
* 0.06
[Ol
+ 3/2-
760 f 120
fs
5/2-
+ 3/2+ 1/2-
1.2
ps
93.8
85.3
? 0.2
?I 0.7
+ 0
+ 0.97
5/2-
+ 3/2+ 5/2-
260 f 40
fs
11.9
36.3
f 0.6
f 1.9
-0.69
t 0.08
(1.0
* 0.2)(
0)
41.6
* 1.3
to.18
f 0.03
+ 0.48
5/2912-
+ l/2+ 5/2-
250 f 40
2.6 f 0.7
23.1
12.5
34.2
f 1.4
f 0.7
+ 1.1
(4.1
(3.5
f 1.5)(
-i 0.6)(
0)
0)
25.8
+ 0.97
+ 1.31
+ 1.39
+ 0.97
+ 1.39
+ 0.97
+ 0
2.30
+ 0
-t 1.17
+
+
+
3.18 +
1.17
0
2.34
1.17
+ 2.30
+ 0
+ 1.17
+ 0
f 0.2
fs
ps
+ 7/2+ 5/2+ 7/2-
t3.54
‘JO
+ 0.14
0)
7/2-
1.17
3.26
3.28
3.52
-2.7
+ 0
+ 0.48
+ 1.94
+ 0.97
3.06
WI
+ 0
2.73
2.34
1.00
f-0
75 t 3
25 k 3
+ 1/2-
+ 1.73
62Ni
f
ps
s
?ot
1.02
1.13
%u
180
* 0.7
6
WI
WI
to.17
f 0.8
=
-0.56
=
0
(6.5 f 1.8)(-l)
(2.0 * 0.9)(-l)
( 9 f 2 )(-1)
f. 0.04
0
(1.7
(1.4
+ 0.5)(+1)
f 0.2)(+1)
(1.4
f 0.3)(
f 0.03
9/2-
+ 5/2+ 5/2-
620 + 90
fs
19.9 + 0.6
75 * 2
7/29/2-
+ 5/2-. 7/2-
175 f 25
fs
1.2 A 0.2
58.2 t 1.0
HI.16
? 0.02
410
fs
30.1 * 0.5
60 t 12
-0.25
t1.6
f 0.04
f 0.3
7/2- + 5/22+ + o+
2+ + 0 t
t
+2
4+ + 2+
t
2+ + 0
+ 4+
4+ + 2+
+2 t
2+ + o+
t
4+ + 2
2+ + o+
f 60
330 f 50
2.09 f 0.03
950
f
170
fs
ps
fs
1.2
* 0.3
ps
3.3
* 1.5
ps
1.05
f 0.25
ps
1.03
i 0.28
ps
280 k 40
290 f 55
fs
fs
WI
100
57 f 4
43 f 4
= 100
11 ?: 2
16 f 3
93 t 2
7~2
2.9 f 0.7
100
5.3 f 1.8
0
0
-3.19
f 0.11
WI
0
to1
WI
WI
0
to1
0
0)
( 8 f 2 )(-1)
(1.8 f 0.6)(+1)
(4.3
(1.2
f 1.2)(
+ o.l)(tl)
(5.1
(1.2
(2.1
f 0.9)(-l)
f 0.2)(+1)
f 0.5)(+1)
0)
( 7 * 3 )(-3)
(1.3 f 0.6)(+1)
(1.5 * 0.4)(
0)
( 7+-2
J(o)
( 6 f 2 )(-3)
(4.7 f 0.7)(
0)
(1.8 A 0.7)(-2)
563
TABLE III. Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
E
xi
+E
xf
J; -+ 3;
T, or r
Total
Y
branching
WW
3.52 -f 1.17
+ 2.05
3.97 + 0
0.39 + 0.041
+ 0.24
0.087 + 0
0.67 + 0
0.96 + 0
1.33 + 0
+ 0.96
1.41 + 0
+ 0.67
1.86 + 0
2.09 + 0
+ 0.96
2.21 + 0.96
+ 1.33
2.41 + 0
2.54 -c 0.67
2.68 -, 1.33
1.44 + 0.19
1.66 + 0
+ 0.19
1.86 + 0.65
2.16 + 0.25
2.25 + 0.65
-t 1.07
2.59 + 1.70
2.83 + 1.70
2.94 + 1.44
4.50 + 4.16
1.35 -f 0
0.99 + 0
1.80 -t 0
+ 0.99
1.91 a. 0.99
2.31 -P 0.99
3.01 + 0
3.08 + 0.99
+ 2.31
3.99 + 2.31
4.24 + 2.74
0.064 + 0
0.77 + 0
1.12 + 0
+ 0.77
1.48 + 0
1.62 -. 0.77
+ 1.12
0.054 + 0
0.77 + 0.054
* 0.12
0.87 -+ 0
0.91 + 0
+ 0.054
2+ + 2+
+ o+
2+ -t o+
4t +2 +
+2 +
5/2- + l/21/2- + 3/25/2- + 3/27/2- + 3/2-, 5/25/2- + 3/2+ 1/27/2- + 3/27/2- + 3/2+ 5/29/2- -+ 5/2+ 7/27/2- + 3/25/2- + l/211/2- + 7/29/2-
+ 5/2-
7/2- + 3/2+ 5/29/2- -t 5/23/2-
+ I/2-
9/2- + 5/2+ 7/213/2+ + 9/2+
11/2+ + g/2+
13/2- -f g/217/2+ + 13/2'
2+ + 0t
2+ + o+
2+ + o+
+ 2+
o+ + 2+
4+ + 2+
2+ + o+
4+ + 2+
+4 t
6+ + 4+
6+ + 4+
l/2- + 5/21/2- + 3/25/2-
7/25/2l/25/2l/23/2-
+ 3/2-
-f 1/2+ 3/2+ l/2-, 5/2-P 5/2+ 1/2-. 3/2+ 5/2-t 5/2-t 1/2-
290 + 55
fs
160
f 50
fs
16.0
r 0.3
ns
2.38
300
850
780
f 0.06 us
-2 20 fs
f 40 fs
+ 60 fs
1.6
? 0.3
ps
850 f 130
535 + 120
fs
445 f 105
fs
180
f 40
fs
310
f
fs
60
840 f 220
1.0 f. 0.3
335 f 90
fs
fs
ps
fs
710 ?: 230
260 t 70
fs
150
f
40
fs
5.1
f 0.4
ps
fs
420 f 130
fs
310
f 90
fs
6.1
+ 0.6
ns
100
ps
25 t 2
75 i 2
100
= 100
26 t 3
53 * 3
47 f 3
100
100
100
ps
115
f 30
fs
610
t
fs
160
fs
175
+
50
fs
190
2
60
fs
105
t
7
US
from
380 k 25
fs
475 t 5
1.3 f 0.3
fs
ps
2.28 * 0.06 IIS
1.9 * 0.8 ps
800 t 300
fs
2.1
ps
t
0.5
48
-0.44 f 0.09
0
0
WI
[Ol
to1
0.13
0.99
to.12 f 0.01
to.49 f 0.04
"0
tO.11 f 0.02
-0.62 f 0.05
L+iO
=0
-0
-1.1 I? 0.2
=0
to.26 + 0.04
WI
0.2
"0
-0.9 f 0.2
PO
-0.7 f 0.1
=0
=0
0
0
t3.3 f 0.7
0
to1
0
101
to.54
f
0.12
WI
LOI
[Ol
3.1
+ 1
22 + 1
to.44 + 0.02
101
LOI
PI
-0.20 f. 0.02
to1
WI
to.43 f 0.04
101
-0.25 t 0.04
to.96 f 0.20
1.3)(-l)
0.6)( 0)
0.5)(-l)
&2)(-l)
0.4)( 0)
O.l)( 0)
0.3)(+1)
f 0.2)(+1)
0.1)(+1)
0.3)(+1)
0.3)( 0)
l(O)
0.3)( 0)
0.6)(-l)
0.4)(d)
0.4)(+1)
( 923
l(O)
(1.4 f 0.5)(-l)
(5.8
* 1.1)(-l)
(1.0 f 0.3)(+1)
(1.8 A 0.6)(+1)
(3.2 f 0.9)( 0)
( 5 t 2 )(-1)
(2.0 t 0.6)(d)
(6.2 t 1.7)( 0)
(1.0 f 0.3)(+1)
(5.0 f 1.8)(+1)
(1.9 * 0.2)( 0)
(2.3 A 0.8)(+1)
(2.3 f 0.7)(+1)
(1.9 f 0.2)( 0)
(8.6 f 0.5)( 0)
(2.1 r 0.1)(+1)
(2.1 ?r 0.3)(-l)
(3.4 f 0.5)(+1)
(2.3 f 0.8)(+1)
(3.1 + 0.9)(+1)
=0
=0
=0
-0.18 f 0.03
=0
f
i
f
t
+
f
f
+
f
(1.8 f
(1.2 f
( 922
(1.6 f
(2.5 +
(1.4 *
WI
t2.3
(3.4
(2.2
(1.3
(6.2
(1.8
(2.3
(1.9
(1.5
(1.4
B(E2)
!=Y100
(6.0~0.6)x10-3
84.0 r 0.6
8? 1
35 f 2
100
11 * 1
33 f 1
1.4 * 0.3
Remarks
(W.U.)
B(E2)
ps
3.4 ?: 1.2
420 t 120
s
?.ot
(%)
80 + 2
8.0 + 1.8
37 + 6
95.8
4.2
100
100
100
84.2 f 0.4
15.8 f 0.4
72.2 f 0.8
6.2 f 0.4
57 f 2
9.7 + 0.8
47 + 2
43 + 2
57 f 2
3.8 f 1.2
7.5 f 0.9
70 i 2
100
25 f 1
75 f 1
70 f 3
90 f 1
29 f 2
71 +- 2
100
100
100
100
from
2.65 f 0.10
3.0 + 0.4
6
6.9
(1.7
f
(4.8
t
1.4)(-l)
(1.1
(3.3
(2.3
(3.6
(1.5
(1.3
(1.3
(2.0
(1.3
(7.1
(1.7
(6.2
(1.2
(1.2
(1.8
(1.1
(5.5
+
+
f
+
t
f
*
k
f
2
f
+
+
*
f
*
0.3)( 0)
1.4)(+1)
0.7)(+1)
l.l)(+l)
0.1)(-l)
O.l)(+l)
o.l)(+l)
0.2)( 9)
0.1)(+1)
l-9)( 0)
0.5)(+1)
0.2)( 0)
0.5)(+1)
0.5)( 0)
0.3)( 0)
0.5)( 0)
f
l.B)]
0)
.
564
TABLE
III.
Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
Exi +E xf
J'i + J'f
TV or r
0
Total
Y
branching
NW
65Zn
1.05 + 0.054
+ 0.12
1.25 + 0.12
+ 0.21
1.47 + 0.12
1.58 + 0.054
1.59 +
+
+
1.96 +
+
2.14 +
66Zn
0
0.12
0.77
1.07
1.37
1.07
1.04 + 0
1.87 + 0
2.70 + 0
67Zn
0.093
+ 0
0.18 + 0
0.39 + 0
0.81 + 0
+ 0.18
0.89
+ 0
1.36
+ 0.39
+ 0.89
1.52 + 0
1.60 + 0.60
1.80 + 0
+ 0.18
+ 0.39
67Ga
68Z"
68Ge
6gGa
1.88 + 0.39
0.36 + 0
0.83 -. 0
+ 0.17
0.91 -P 0
+ 0.17
1.20 -b 0
+ 0.36
1.41 + 0
+ 0.36
+ 0.91
1.52 + 0.36
1.55 -b 0
+ 0.36
1.64 + 0.17
2.26 + 0.91
+ 1.20
2.86 + 1.52
3.03 + 2.07
1.08+0
1.88+ 0
+ 1.08
+ 1.66
1.02 -s 0
2.27 + 1.02
0.32 -. 0
0.57 + 0
5/2- + l/2+ 3/27/2- + 3/2+ 3/23/2- + 3/23/2- + 1/27/2- + 5/2+ 3/2+ 5/27/2+ + 9/2+
+ 5/2+
11/2+ + 9/2+
2+ + o+
2+ + o+
2+ + o+
l/2- + 5/23/2- + 5/23/2- + 5/27/2- + 5/2+ 3/25/2- + 5/25/2- + 3/2+ 5/29/2- + 5/27/2+ + 9/2+
7/2- + 5/2+ 3/2+ 312'
5/2- + 3/25/2- + 3/23/2- + 3/2+ 1/25/2- -, 3/2+ 1/27/2- + 3/2-c 5/27/2- + 3/2+ 5/2+ 5/29/2- + 5/25/2- + 3/2+ 5/23/2- + l/29/2- + 5/2+ 7/211/2- + 9/213/2+ + 9/2+
2+ + o+
2+ + 0t
+2 t
+ o+
2+ -b o+
4+ + 2+
l/2- + 3/25/2- -, 3/2-
520 i 100 fs
2.3 f 0.8 ps
210 i 60
250 i30
220 f 70
600 f 290
fs
fs
fs
fs
960 f 100 fs
2.28 i 0.09 ps
13.1
f 0.2
us
1.49 f 0.02 ns
9i2
ps
63 f. 2
20 f 2
44 * 2
67
29 * 2
68 f 2
22 i 2
10 t 1
79 f 1
21 f 1
100
100
from
from
6.5 f 0.6
ps
ps
2.2 f 0.4
ps
from B(E2)
61 f 2
330 f 65
200 2 35
fs
170 f 30
fs
fs
190 f 35
70 f 7
250 f 40
fs
360 f 95
fs
1.5 f 0.5
ps
ps
fs
900 * 300 fs
1.6 f 0.7
ps
230 t 35
fs
165 f 25
fs
980 f 250 fs
1.25
f 0.30
5.8 f 1.0 ps
1.3 f 0.3
19 i 3
ps
ps
[Ol
[Ol
-2.1 t 0.3
t2.5 * 0.3
-0.31 f 0.02
to1
to.23
to.27
-0.11
-0.67
+
f
f
f
0
0.03
0.01
0.01
0.05
0
101
-0.39 f 0.02
39 f 2
(2.6+1.0)x10-2
100
100
from
frm
to1
B(E2)
37 f 3
8+-l
92 f 3
80 f 3
31 f 3
24 f 3
18 f 3
21 f 2
100
86.9 f 1.2
9.4 f 1.2
95.5 i 0.5
2.1 * 0.3
75 f 2
25 A 2
55 f 2
35 f 2
10.5 f 0.9
100
43 f 3
57 f 3
53 f 2
49.6 * 1.4
50.4 t 1.4
68.4 + 1.4
100
fs
101
to.43 i 0.04
B(E2)
B(E2)
9+1
B(E2)
B(E2)
s
(W.U.)
B(E2)
77 f 2
100
86.7 ?r 0.2
from
260 f 55
Otot
(X)
1.8 t 0.3
from
420 i 100 fs
6
to.31 f
to.37 f
=0
to.28 f
to.38 f
0.06
0.05
0.03
0.08
[Ol
WI
to.8 +
to.07 *
to.16 f
to.36 f
-0.33 t
-0
-0
t2.3 f
-0
t1.7 *
to.11 +
'0
-0.42 *
to.65 f
to.16 f
=0
t2.4 i
t2.5 f
-0
0.2
0.01
0.03
0.09
0.02
0.1
0.2
0.02
0.04
0.03
0.02
0.2
0.2
0
t1.46 f 0.14
0
0
VI
0.87
0.02
(1.8 f 0.5)( 0)
(1.1 + 0.3)(+1)
(2.4 + 0.9)( 0)
( 8 + 3 I( 0)
(3.0 f 0.9)(+1)
(6.1 f 0.7)( 0)
(1.4 f 0.5)( 0)
1 7 * 2 I( 0)
(2.2 f 0.9)( 0)
( 8*3
l(O)
(2.7 i 1.3)( 0)
(1.2 f 0.2)(+1)
(1.8 f O.l)(+l)
(5.7 f 0.8)(-2)
(5.5 f 1.3)(-l)
(2.9 2 0.1)(-l)
(1.7 ? O.l)(+l)
(4.6 + 0.4)(-l)
(1.4 f O.l)(+l)
(5.0 + 1.2)( 0)
(5.8 f 0.4)( 0)
( 7*3
)(O)
( 8 f 3 )(+l)
(1.7 ?: 0.3)(+1)
(1.4 f 0.4)(+1)
( 6 + 2 )(-1)
(6.2 i 1.3)( 0)
( 9*2
l(O)
(2.8 + l.O)( 0)
(5.8 A 1.8)(-l)
(1.1 * 0.4)(+1)
(1.7 t 0.8)(+1)
(2.1 + 0.6)(+1)
(1.3 i 0.4)(+1)
(1.0 * 0.3)(+1)
(1.8 e 0.6)(+1)
(5.4 i 1.8)( 0)
(1.1 f 0.4)(+1)
(2.2 ? 0.8)( 0)
(1.4 f 0.6)(+1)
(1.5 f 0.3)( 0)
(1.5 f 0.2)(+1)
(5.0 f 1.4)(,1)
(5.6 f 1.4)( 0)
(1.6 f 0.4)(+1)
(5.3 f 1.3)( 0)
(9.3 f 0.9)( 0)
(1.5 f 0.1)(+1)
(5.6 i 0.8)(-l)
(1.7 f 0.4)(+1)
( 9 f 4 )(+l)
(6.7 zt 1.2)( 0)
(1.2 f 0.3)(+1)
(7.8 i 1.2)( 0)
(3.4 A 0.5)(-l)
Remarks
565
TABLE III. Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
Exi +E xf
J; + J;
~~ or r -I
Total
branching
WV)
6gGa
0.57
0.87
1.03
1.11
1.34
1.49
6gGe
0.087
0.23
[0.81
0.86
0.93
1.35
1.41
1.42
1.48
"Zn
"Ga
"Ge
'OAS
'lGa
'lGe
72Ge
0.88
1.76
0.88
1.04
1.22
1.71
3.30
4.43
0.032
0.51
0.96
0.17
0.83
1.46
72AS
72Se
73Ge
74Ge
74Se
0.21
0.31
0.86
0.94
1.32
1.64
2.47
0.013
0.60
1.20
0.63
0.85
+ 0.32
+0
+0
+0
+ 0.32
+ 0
+ 0.57
+ 0
+ 0.57
+ 0
+ 0
-, 0.40
+0
+ 0.23
+ 0.087
+ 0.40
+ 0.40
+ 0
+ 0.23
+ 0.37
+ 0
.+ 0
+ 0.69
+0
+ 1.04
+ 0
+ 1.04
+ 1.22
-. 2.15
-+ 3.30
+ 0
+ 0
-, 0
+ 0.39
+ 0
+ 0
+ 0.69
+ 0
-, 0.69
+ 0.83
+ 0.046
+ 0
+ 0
+ 0.86
+ 0
+ 0.86
+ 0.94
+ 0.86
+ 1.64
+ 0
-. 0
+ 0
+ 0.60
+ 0
-+ 0.63
5/23/2l/25/2-
-, l/2+ 3/2+ 3/2-+ 3/2-f 1/27/2- -+ 3/2+ 5/27/2- + 3/2-, 5/2l/2- + 5/23/2- -, 5/25/2+ + g/2+
7/2- + 5/2+ 3/25/2- + 1/211/2+ + 9/2+
13/2+ -t g/2+
5/2- -, 5/27/2- + 3/2+ 3/22+ + o+
2+ + o+
4- -t 22+ + o+
o+ + 2t
2+ + o+
+2 t
+ o+
6+ + 4+
8+ + 6+
2+ + 4+
3/2- + 3/25/2- + 3/2+ 1/25/2- -, 1/22+ + o+
+ o+
2+ + o+
+O t
+ 2+
(l-3)+ + 1+
(o-4)- + 22+ + o+
o+ + 2+
2+ * o+
+ 2+
-+O t
(l-4)+ + 2+
(l-6)+ + (l-4)+
5/2+ + g/2+
2+ + o+
2+ + 0 t
+2 t
2+ + 0 t
o+ + 2t
19 f 3
290 + 30
1.18
f 0.16
2.9 2 1.2
ps
fs
ps
ps
7.4 ?: 0.4 us
252 t 17 ps
1.5 f 0.2
3.1 f 0.5
ps
ps
2.2 f 1.0 ps
810 f 110 fs
1.5 f 0.2
1.4 i 0.6
ps
ps
430 f 120 fs
4.6 k 0.4
ps
from
from
B(E2)
B(E2)
from
B(E2)
ns
1.83
ps
ns
f 0.04
4.6 f 0.6
522
ps
700 f 150 fs
1.10 f 0.25 ps
138 + 4
2.1 f 0.3
US
ps
114 f 3
ns
24 f 2
ps
4.0 * 1.0
ps
115 * 3
24
4.8
27
13
3.6
2.4
4.25
16.6
7.8
?: 4
* 0.5
+ 2
* 3
f
f
k
i
f
0.8
0.3
0.07
1.6
1.1
ns
ns
ps
ns
ps
ps
ps
us
ps
ps
10.7 f 0.4 ps
1.08 f 0.07 ns
%ot
(X)
1.2 f 0.1
93.7 + 0.6
6.3 f 0.6
51 f 6
35 f 8
100
69 f 1
18 f 1
94.4 f 0.8
4.3 f 0.4
18.7 + 0.9
100
100
64 f 3
7?2
29 ?: 2
100
I01
101
'0
to.68 + 0.10
=0
-2.54 f 0.10
=0
-0.27 f 0.04
==O
-2.4 f 0.3
=0
-0
-0.6 ? 0.1
"0
to.65 2 0.10
1.3
WI
-0
0
B(E2)
100
100
98.6
44.7 f 0.4
52.9 f 0.5
0.77 f 0.15
100
100
100
from
B(E2)
from
B(E2)
2.0 f 0.2
100
- 100
0.015 f 0.001
12.3 f 0.3
0.15 * 0.03
87.6 f 0.3
59 t 5
29
100
73 f 12
51 ?: 2
39 f 2
10 f 2
100
100
100
100
32 f 1
68 f 1
100
RilOO
s
Remarks
(WA.)
0.16 i 0.05
from
32.8 f 0.7
6
0.07
-0
0
0
0.11
0
t1.0 * 0.2
0
[ol
(01
101
[Ol
=o
51
0.09
0
0
0
0.23
0
t10.3 f 1.3
=0
"0
0
0
0
-4.6 f 1.5
0
==O
=0
"0
0
0
-3.3 f 0.2
0
0
0.16
2.2
1100
0.04
(3.7 * 1.3)( 0)
(5.1 f 0.8)( 0)
(4.4 + 0.9)( 0)
(1.0 f 0.2)(+1)
(6.2 f 0.8)( 0)
(8.7 f. 1.2)( 0)
(1.9 f 0.5)( 0)
(1.1 f 0.4)( 0)
( 8*3
)(O)
(5.6 f 0.3)(-l)
(1.3 ?: 0.4)(+1)
(4.9 f 0.7)(+2)1
(2.6 i 0.4)(+1)
(6.6 f 1.2)( 0)
(1.0 f 0.4)(+1)
(2.0 f 0.6)(+1)
(3.0 f 0.4)(+1)
(1.1 f 0.5)( 0)
(2.4 i l.O)( 0)
(1.9 * 0.5)(+1)
(1.9 * 0.2)(+1)
(5.8 f 1.5)(-l)
(5.8 f O.l)( 0)
(2.1 f O.l)(tl)
(5.3 f. O.')(tl)
(2.9 * 1.2)(-l)
(1.8 f 0.8)(+1)
(2.5 f l.l)( 0)
(3.3 * 0.7)(+1)
(2.5 f 0.6)(+1)
(2.0 f 0.1)(-l)
(4.6 f 0.8)( 0)
(1.2 f 0.2)(+1)
(7.0 f 1.2)( 0)
(2.6 * O.l)( 0)
(4.8 t 0.4)( 0)
(3.8 f 0.5)( 0)
(2.1 * 0.5)(-l)
( 6 f 2 )(-2)
( 9 2 2 )(tl)
(1.5 f 0.2)( 0)
(1.9 t 0.3)(-l)
(2.0 f 0.2)(+1)
(1.6 ? 0.3)(+2)
(4.4 f 1.0)(-l)
(2.0 * 0.4)(+1)
(4.4 * 1.3)(+1)
(4.4 * l.O)(tl)
(4.7 f 0.5)(+1)
(2.5 * O.l)(tl)
(3.2 t 0.3)(+1)
(7.1 * 1.0)(-l)
(4.3 + 0.6)(+1)
(4.0 * 0.2)&l)
(7.7 f 0.5)(+1)
c)
d)
566
TABLE III. Strengths of E2 Transitions
See page 552 for Explanation of Tables
Nucleus
E
xi
+E
xf
J; + J'f
~~ or
r
Total
Y
branching
WV)
1.27 + 0
2+ + o+
+2 +
+ 0.63
1.36 + 0.63
4+ + 2+
2.23 + 1.36
6+ + 4+
0.20 + 0
l/2- + 3/20.27 + 0
3/2- + 3/21
+ 0.20
+ 1/20.28 + 0
5/2- + 3/21
+ 0.20
+ 1/20.40 + 0.30
5/2+ + 9/2+
0.57 + 0
5/2- + 3/20.82 + 0
7/2- + 3/2[O.ll -k 0
7/2+ + 5/2+
0.13 + 0
9/2t + 5/2+
0.56 -. 0
2+ + o+
1.11 + 0
2+ + o+
+ 2+
+ 0.56
0.56 + 0
2+ + o+
1.12 -, 0.56
o+ + 2t
1.22 -b 0
2+ + o+
+ 0.56
+ 2+
1.33 + 0.56
4+ + 2+
0.26 + 0
5/2- + 3/20.63 + 0.48
5/2+ + g/2+
0.24 -. 0
3/2- + l/20.25 + 0
5/2- + l/20.44 + 0
5/2- + 1/20.61 + 0
2+ + o+
1.31 + 0
2+ + o+
+ 2t
-s 0.61
0.46 + 0
2+ + o+
1.12 -, 0.46
4+ + 2+
1.15 -b 0
2+ + o+
1.56 -P 0.46
3+ + 2+
+ 1.12
+4 t
1.87 + 1.15
4+ + 2+
1.98 a 1.12
6+ + 4+
2.30 + 1.56
5+ + 3+
2.99 + 1.98
8+ + 6t
3.29 .+ 2.75
7- + 50.22 + 0
5/2- + 3/20.31 + 0
1/2- + 3/20.40 + 0
3/2- + 3/20.52 + 0
5/2- + 3/20.61 + 0
3/2- + 3/2+ 0.22
+ 5/20.76 + 0
7/2- + 3/f
0.15 + 0
(l/2-7/2)-+(1/2,3/2)0.67 -. 0
2+ + o+
1.45 + 0
2+ + o+
+ 0.67
-P2 t
0.62 + 0
2+ + o+
0.28 + 0
5/2- -c 3/20.57 + 0
3/2- + 3/20.84 + 0
7/2- + 3/2-
6
4.8 k 0.6
2.7 f 0.1
2.4 ?: 0.3
ps
ps
ps
1.25
A 0.04
ns
17.0
+
1.0
ps
400 A 14
ps
2.5 * 0.1
ns
f
f
+
+
0.4
0.17
0.9
0.2
13.1
+ 1.4
ps
17.8
* 0.4
ps
ps
ns
ns
ps
16 + 6
ps
4.9 f 0.3
ps
2.20
500
108
39
f
f
*
f
13.4
f 0.6
0.07
30
22
10
ps
ps
ps
ps
ns
33 i 3
ps
3.9 f 0.4
ps
33
3.6
5.8
6.4
f
f
+
k
2
0.3
0.5
0.5
ps
ps
ps
ps
1.9 f 0.3 ps
900 f 150 fs
1.8
f 0.4
450 f 60
2.9 * 0.3
2.9 i 0.3
1.7 + 0.3
113 f 2
ps
(%)
31 ?: 3
69 it 3
100
100
100
97.57 i 0.06
2.43 ?r 0.06
100
0.090 * 0.015
6.4 f 0.4
from
3.6
1.00
7.6
26.2
from
B(E2)
41.0
f
1.3
59.0 f 1.3
100
100
34 f. 4
85 k !
15 f 3
58 ?: 8
100
70 +_ 3
100
ps
46 f 3
from
B(E2)
from
B(E2)
from
B(E2)
from
B(E2)
ps
from
B(E2)
ps
12.6 f 1.6
34 f 2
100
from
1.5 f 0.3
ps
12.7 k 0.7
12 f 5
ps
920 f 220
fs
ps
from
0
t2.6 i
SO
-0
20.44 f
to.045 f
-0.19 f
to.36 t
0.2
0.02
6.006
0.02
0.03
PI
to1
0.51
1.7
0.88
[Ol
to.35 t 0.06
=0
0
0
-3.4 f 0.4
0
0
0
-5.2 f 0.2
0.18
Ku
a0
0
-2.7 ?r 0.8
0
to1
0
t5 * 2
tll * 2
to1
101
101
101
LOI
+0.19 f 0.02
to1
=0
0
t5 f 4
0
-0.09 2 0.02
B(E2)
13 f 4
0.14
0.29
PI
to.32 + 0.01
LOI
-0.18 f 0.02
B(E2)
56 k 6
44 f 6
100
100
Remarks
(W.U.)
B(E2)
86.3 * 1.3
100
37 f 8
100
38 r 4
62 f 4
100
100
39 + 2
61 f 2
100
100
2.1 f 0.2
99.90 f 0.05
70.0 f 1.1
53 f 2
fs
ns
s
%ot
PI
0.22
(8.4
(4.9
(9.5
(3.6
(1.8
(3.7
(1.1
(7.1
(1.0
(6.4
(2.6
(2.7
(2.4
(i.7
(2.9
(7.2
(3.4
(4.3
(4.7
(1.2
(4.0
(7.0
(5.8
(7.1
(4.1
(2.2
(4.0
(3.3
(1.1
(3.3
(6.2
(9.0
(1.2
(3.2
(5.7
(6.3
(9.5
(7.0
(8.5
(1.4
(1.3
(2.0
(1.6
(3.2
(7.6
(4.8
(3.1
(4.2
(2.5
(2.3
(3.8
(3.4
(1.6
(1.2
(1.3
t 1.4)(-l)
f 0.6)(+1)
* 0.4)(+1)
f 0.5)(+1)
+ 0.2)(+1)
f 1.0)(-l)
f 0.2)(+3)]
t l.O)( 0)
i 0.2)(+2)1
?: 0.5)(+1)
t 0.3)(+1)
? 0.3)(+1)
f 0.8)(+2)1
+ 0.9)(+1)
f O.l)(tl)
+ 0.9)(-l)
f 0.4)(+1)
f O.l)(+l)
+- 1.8)(+1)
* O.l)( 0)
t 0.3)(+1)
+ 0.2)(+1)
f 0.5)( 0)
f 1.6)(+1)
?r 1.4)(+1)
f O.l)( 0)
f 0.4)(+1)
k 0.1)(+1)
f O.l)( 0)
f 0.4)(+1)
f 0.4)(+1)
f 0.8)(+1)
f 0.2)( 0)
f 0,.3)( 0)
f 1.2)(+1)
f 1.3)(+1)
f 1.6)(+1)
f 1.6)(+1)
f l.l)(tl)
f 0.2)(+2)
f o.l)(+l)
* 0.4)(+1)
k 0.3)( 0)
t 0.3)(+1)
k 1.2)( 0)
t 1.2)( 0)
t 0.6)(+1)
5 0.1)(-l)
+ O.l)(tl)
f 0.5)( 0)
f l.O)(tl)
f 0.2)(+1)
f O.l)(tl)
f O.l)( 0)
A 0.5)(+1)
e)
f)
g)
TABLE
567
Strengths of E2 Transitions
III.
See page 552 for Explanation of Tables
Nucleus
E
+E
xi
J; + J”
xf
~~ or
f
r
Total
-I
branching
(Me'4
7/2-
+ 5/2-
0.84
+ 0.28
0.66
+ 0
2+ + o+
920
+_ 220
(%)
87
fs
(W.U.)
f 4
from
Remarks
S
%ot
-0.193
f 0.012
B(E2)
(2.4
t
(1.7
f o.l)(+l)
0.6)(+1)
0.78
+ 0
2+ + o+
6.9
k 1.2
ps
100
(1.9
f 0.3)(+1)
0.88
+ 0
2+ -t o+
4.6
f
0.7
ps
100
(1.5
t
0.79
+ 0
2+ + o+
4.2
f
1.3
ps
100
(2.8
f 0.9)(+1)
0.15
+ 0
3/2-
+ 5/2-
(2.2
f
0.28
+ 0
1/2-
+ 5/2-
420
f
90
ps
(2.2
f 0.2)(
0.73
+ 0
3/2-
+ 3/2-
6.4
t
0.7
ps
0.87
-+ 0
3/2-
+ I/2-
3.8
f
0.3
ps
1.08
+ 0
2+ -f o+
0.24
+ 0
2-
0.75
+ 0
2+ -f o+
B(E2)
4.5
fr 0.9
64 f
3
ns
100
2.0
ps
100
+ 20
fs
t
to.8
f
from
+ 3/2-
0.2
(
mw
B(E2)
3
42 t
10.6
tOI
99
from
+ 4-
5/2-
from
-0
o.*)(+l)
0.2)(
7**
0)
0)
)m
(1.9
(1.0
f 0.2)(+1)
f o.*)(+l)
(1.0
2 O.l)(
0
(1.4
(1.6
f 0.3)(+1)
f 0.2)(
0)
0
B(E2)
0)
0.40
+ 0
1.84
+ 0
(7.7
+ 0.8)(
0)
1.51
+ 0
3/2-
+ I/2-
from
B(E2)
(2.8
+ 0.4)(
0)
1.74
+ 0
5/2-
-, I/2-
from
B(E2)
(2.8
t
0)
2.22
+ 0.91
5/2+
+ 9/2+
(1.2
? 0.5)(+1)
1.63
-, 0
5/2+
(4.4
f 0.7)(
0)
1.83
+. 0
5/2+
(1.8
f 0.4)(
0)
2.10
+ 1.10
5/2-
f 0.5
(6.7
+ 1.3)(+1)
0.20
+ 0
3-
f 0.06
(2.0
+ 0.8)(+1)
2.19
+ 0
2+ -+ o+
from
B(E2)
(5.5
f 0.5)(
3.31
+ 0
2+ + o+
from
B(E2)
(5.6
2 1.5)(-l)
(2.3
(1.7
f O.l)(
f 0.3)(
(8.8
f 0.3)(-3)
2+ + o+
+ 9/2+
580
f 90
fs
87 f
+ 9/2+
810
f
170
fs
91 + 5
+ 3/2-
110 ? 20
fs
75 A 3
+ 2-
361
f 10
ps
+ 3.45
8+ + 6+
+ 0
2+ + o+
0.12
+ 0
6+ + 8+
The
large
mixing
mixing
ratio
')
One has
to
72HsOl.
The
d)
See
discussion
e)
The
mixing
doubted;
ratio
results
6 = -0.17
conclude
that
J” = 5/2+
in
ratio
f,
The
The mixing
branching
ratio
is
from
0.81
assignment
98.68
(p,nr)
work
the
MeV level
would
74TolO.
of
six
(decaying
also
lead
to
to
an
-0.28
=0
Analogous
measured
3/2-,
-0
work
values
5/2-
impossibly
0.31
B(E2)
100
us
in
average
t3.5
+ 0.09
from
is
2
100
ns
91 + 3
WI
WI
WI
70
and
strong
0.54
in
74Ri13
with
large
spread;
states)
is
9/2+
is
M2 component
perfectly
compatible
one
should
a doublet
as
in
the
0.2)(
r.
0)
0)
with
conclude
already
transition
0)
6 = 0.
to
6 * 0
suggested
(see
Table
in
VII).
text.
for
6 m 0 seems
g,
the
fs
195 f 5
from
+ 0.03
200
100
f
3.59
The
210
500
3.84
a)
b)
derived
6
ratio
this
weak
more
realistic.
for
has
an
been
(a,ny)
this
branch
weak
obtained
branch
is
derived
from
the
angular
distribution
from
suspect
(very
75Ge(s-T)
(see
small)
measurement
y-y
angular
correlation
work
(see
A = 75 compilation)
must
A = 75 compilation).
measured
(76Sa07);
conversion'coefficient
one
should
(745~03).
conclude
to
6 = 0.
A value
6 = to.21
It 0.13
be
568
TABLE IV. Strengths of E3 Transitions
See page 552 for Explanation of Tables
Nucleus
J'i + J'f
Exi + Exf
Total
Trn
VW
0.14
4.51
2.23
4.56
3.86
4.47
4.05
3.76
1.07
2.83
2.75
2.51
0.026
2.35
0.14
0.30
'%e
"Ge
"AS
"Se
"8,
78Kr
"Se
7gBr
'gKr
8OKr
+ 0
1- + 4+
+ 0
3- + o+
+ 0
l/2+ -, 7/2+ 0
3- + o+
-. 0
3- + o+
+0
3- + o+
+ 0
3- + o+
+0
3- + o+
+0
g/2+ + 5/2+0
3- + o+
+0
3- + o+
+ 0
3- + o+
+ 0
(l/2-5/2)-+(7/2,9/2)+
-. 0
3- + 0t
-c 0
7/2+ + l/2+ 0
g/2+ + 3/2+ 0.28
+ 5/2[
3- + o+
2.43 + 0
0.16 -W 0
l/2- + 7/2+
0.48 + 0
g/2+ + 3/2+ 0.26
+ 5/20.16 + 0
7/2+ + l/20.11 -N 0
g/2+ + 3/22.38 + 0
3- + o+
3- + o+
2.87 -, 0
0.096 .. 0
l/2- + 7/2+
0.21 -, 0
g/2+ + 3/2(7/2,9/2)++(1/2,3/2)0.13 + 0
2.41 + 0
3- + o+
2.96 + 0
3- + o+
2.53 + 0
3- + o+
3.33 + 0
3- -c o+
0.042 + 0.009
l/2- -. 7/2+
0.26 + 0
l/2- * 7/2+
3- + 0t
2.70 + 0
3.10 + 0
3- + o+
2.73 + 0
3- + o+
0.39 + 0
1+ -b 48+ ; 50.67 + 0.23
5/2+
+ l/22.22 + 0
2.53 + 0
7/2+ + l/22.32 + 2.19
5- + 2+
2.75 + 0
3- + o+
3.59 + 2.32
B+ + 53- -+ 0t
5.64 -c 0
5.78 + 0
3- + o+
a) The mixing
obtained
ratio
from
6
branching
of this
a y-T
angular
low-energy
2727
s
13 f 2
ps
43.1 f 1.6 ns
830 f 40
35 f 7
56 f 3
from
B(E3)
from
B(E3)
from
from
B(E3)
B(E3)
from
B(E3)
5+1
from
B(E3)
from
2.1
B(E3)
f 0.2
ps
from
69.7 f 0.3 s
25.30 f 0.11 ms
s
6.17
min
f 0.14
from
from
5.64 f 0.07 min
7.04 f 0.07 s
72 f 4
s
1.168 t 0.003 s
8.3 f 2.6 ps
195 f 5
ns
low-intensity
is almost
5300
=JO
1.4
0.05
5600
WI
-0.18 f 0.02
0
==O
-0.100 f 0.007
'(10
WI
-0
'0
B(E3)
B(E3)
from
from
B(E3)
B(E3)
0.08
0.86
6.0
1950
0.15
-0
=0
B(E3)
B(E3)
0.69 f 0.05
100
100
=a0
from B(E3)
fran B(E3)
13 ? 2
-0
0
Ml
2.6
0
WI
B(E3)
B(E3)
(0.07%
certainly
0.86
9.2
0.32
2.5
-0
of the most
in error.
unknown
(2.7 f
(6.7 f
(1.0 +
(6.1 f
(9.9 f
(1.6 i
(1.1 f
(1.3 f
(4.2 f
(2.3 k
(2.0 f
(5.3 f
(3.8 f
( g*2
(2.8 f
(6.3 i
(3.8 i
(1.7
[Ol
7*2
1.32 f 0.09
line
=0
B(E3)
B(E3)
from
from
from
(77PuO4)
0
100
100
1.18 f 0.11 ps
432 ? 4 I PS
20.0 f 0.3 ms
(24 keV)
to.13 A 0.02
B(E3)
from
from
from
measurement
to1
100
100
100
2.64 i 0.03 h
7.14 f 0.17 5
0.61
0
= 100
822
92 f 2
2.1 * 0.2
21 f 2
3.3 f 0.3
96.7 f 0.3
100
100
16.5 f 2.0 ps
78k2
s
167 f 6
,,s
25.2 f 1.4
to1
73 f 7
min
Remarks
(W.U.)
100
27 f 2
100
ps
s
%ot
(%)
transition
(3.4
(2.2
(1.4
(4.6
(1.6
(1.7
(6.2
(1.8
(3.0
(2.8
(1.6
(4.0
(2.2
(1.5
(6.2
(6.7
(1.6
(1.2
(1.9
(5.8
(5.5
(1.8
(2.0
(1.5
(2.5
(4.6
(2.0
(4.2
in
0.7)(-l)
l.O)( 0)
O.l)( 0)
0.3)( 0)
0.9)( 0)
0.3)(+1)
0.2)(+1)
O.l)(+l)
1.5)( 0)
0.5)(+1)
0.4)(+1)
l.O)( 0)
0.4)(-2)
l(O)
O.l)(-2)
1.6)(-2)
0.8)(+3)]
* 0.2)(+1)
+ 0.3)(-3)
+ 0.2)(-l)
f 0.2)(+1)
k 0.3)(-2)
+ O.l)(-2)
f 0.3)(+1)
f 0.9)( 0)
f O.l)(-2)
f O.l)(-2)
f 0.2)(-2)
f 0.2)(+1)
f 0.6)( 0)
f 0.3)(+1)
f 0.2)( 0)
f O.l)(-3)
f 0.2)(-3)
f 0.2)(+1)
?I 0.2)(+1)
+ O.l)(+l)
i O.l)( 0)
f O.l)(-2)
f 0.2)(+1)
* 0.2)(+1)
f 0.2)(-2)
i 0.3)(+1)
i 0.3)(-2)
f 0.3)( 0)
i 0.6)(-l)
the
a)
75Se EC decay)
TABLE
Type
Nucleus
E
xi
+E
xf
J; + J;
of Tables
6
Total
'rn
branching
WV)
t
S
Yet
(%)
(W.U.)
(3.4
* 0.6)(
(1.4
t 0.1)(-l)
B(E4)
(1.6
f 0.2)(
0)
B(E4)
(3.5
f l.l)(
0)
from
B(E4)
(5.2
f 0.6)(
0)
4+ + o+
from
B(E4)
(1.0
f 0.2)(
0)
+ 0
4+ + o+
from
B(E4)
(1.8
f 0.4)(
0)
2.34
+ 0
4+ + o+
from
B(E4)
(3.0
f 0.3)(
0)
1.12
+ 0
4+ + 0'
from
B(E4)
(5.5
f l.l)(
0)
1.42
-, 0
4+ + o+
from
B(E4)
(2.3
i 0.5)(
0)
1.83
+ 0
4+ + o+
from
B(E4)
(1.5
f 0.3)(
2.10
+ 0
4+ + o+
from
B(E4)
(2.3
f 0.6)(
0.46
+ 0
6-
(3.9
f 0.4)(,
2.25
+ 0
4+ + o+
from
B(E4)
(3.4
f 0.7)(
3.08
-, 0
4+ + o+
from
B(E4)
(3.3
* 0.9)(
4.32
-, 0
4+ + o+
from
B(E4)
(1.7
?r 0.5)(
0)
0)
-1)
0)
0)
0)
4.44
+ 0
4+ + o+
from
B(E4)
(3.9
?: 0.7)(
0)
g"Y
0.63
+ 0
7+ + 2-
0.33
2 0.03
(2.1
f
0.2)(
0)
"Zt-
2.32
+ 0
5-
(8.4
i
0.5)(
0)
3.98
+ 0
5- + o+
(1.0
+ 0.4)(+1)
E4
E5
569
V. Strengths of E4 and E5 Transitions
See page 552 for Explanation
2.37
+ 0
4+ + 0
0.38
-, 0
2+ -t 6 +
from
B(E4)
1.75
f
2.09
+ 0
2.46
+ 0
4+ + o+
from
from
* 0
4+ + o+
t
4+ + 0
2.51
3.13
+ 0
3.67
+ 2-
+ o+
30.5
29.6
4.60
1.168
* 0.3
f 0.3
min
min
+ 0.02
h
f 0.003
s
0.04
28 + 3
87
from
e 2
B(E5)
WI
WI
Nl
0
0.05
0.04
0.03
0)
570
TABLE VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
Exi
+ E,f
Jf + Jnf
Total
'rn
branching
(MeV)
45SC
0.54
0.72
0.97
1.07
1.40
1.80
+ 0.012
+0
+ 0.54
+ 0.38
+ 0.72
+ 0.97
+ 1.07
+ 0
+ 1.24
+ 1.43
+ 0
+ 1.07
+ 0
+ 0.33
+ 0.74
+ 0
-+ 0.58
+ 0
-s 0.81
* 0.77
+ 1.30
0.16
+ 0
1.25
+ 0.16
1.44
-. 1.25
1.43
1.56
1.66
2.03
2.09
45Ti
46SC
47sc
47Ti
47V
48Ti
48V
49%
4gV
0.040
0.74
1.23
1.35
1.12
1.30
1.55
+ 0
2.16
-+ 0
2.17
+ 0.16
0.088+0
0.146
+ 0.088
1.27
+ 0.146
2.42
0.43
0.63
1.06
2.37
0.091
0.15
1.14
1.16
1.51
1.60
1.99
2.18
2.35
2.39
4gCr
0.27
1.08
1.56
1.74
2.50
2.61
+ 0.98
+-0
+ 0.43
+ 0.75
+ 2.23
+ 0
+ 0.091
+ 0.75
+ 0
+ 1.02
+ 0.15
+ 1.14
+ 1.14
+ 0.091
+ 1.16
+ 0
+ 1.02
-+ 0.75
+ 1.99
+ 0
+ 0.27
+ 1.08
+ 0
+ 1.56
+ 0
5/2+
5/27/2+
3/2-
+ 3/2+
-+ 7/2-, 5/2t
+ 3/2+ 5/29/2+ + 7/2+
(l/2,3/2)+ 3/2g/2- + 7/2+
+ 11/211/2+ + g/2+
5/2- -t 7/2+ 3/25/2- + 7/25/2t + 3/2t
7/2+ + 5/2+
9/2- -+ 7/24- + 35/2- + 7/2-, 3/25/2+ + 3/2+
(3/2,5/2)- -, 5/27/2- + 5/2g/2- + 7/211/2- + 9/23/2- + 5/23/2- + 5/25/2- + 7/25/2- -t 3/27/2- + 5/2g/2- -t 7/22+ + 2+
5+ + 4+
6+ -s 5+
3- + 23/2+ + l/2+
5/2- + 7/2312- + 5/25/2+-t 3/2+
g/2- + 7/2+ 11/25/2- -, 3/27/2+ + 5/2+
3/2+ + 5/2+
7/2- + 5/2+ 9/2g/2- + 7/2+ 11/25/2+ + 3/2+
+ 3/2+
7/2- + 5/2g/2- + 7/211/2- + 9/23/2- + 5/213/2- -t 11/23/2- + 5/2-
8.1
f
2.3
320 f 25
2.7 * 0.3
500 f 140
ps
fs
ps
fs
7.6 f 0.3
ps
390
f
fs
146
* 13
fs
1.6
f 0.7
ps
140
10 * 3
fs
17.1
+ 0.6
ns
15.1
f 2.5
ps
4.0
f 0.9
ps
148
f
15
fs
1.6
f 0.3
ps
90 * 35
fs
1.4
f 0.4
ps
300
* 90
fs
301
* 9
ps
210
f 20
fs
1.4
f 0.4
ps
2.3
33
24
950
f
f
f
f
ps
790
f 95
ps
f
k
f
f
*
f
f
f
*
fs
430
38
8.80
119
6.6
2.02
328
28.8
1.9
1.6
0.7
7
6
50
65
5
0.14
9
1.7
0.14
19
0.3
0.7
f 0.4
45 f 19
680 f 250
190 f 65
48*17
48
f 17
fs
fs
ps
fs
ps
ps
ps
ns
ps
ns
ps
ps
fs
fs
fs
fs
fs
82 f 26
fs
19 + 4
220 f 40
530 k 80
ps
1.6
f 0.4
ps
230 * 50
65 + 20
fs
fs
fs
fs
6
S
%ot
(X)
58.7 f 0.5
96.5 f 0.5
10.4 f 0.5
76 r 2
24 r 2
18.2 + 1.4
100
79 f 3
21 t 3
37 f 5
83 + 2
10 f 2
100
92 f 1
37 f 2
90 f 2
66
91.5 + 0.2
8.3 f 0.2
23 + 3
50 f 8
100
88*6
94 + 3
43 f 5
100
100
100
99.0 2 0.5
82 2 2
95.0 f 0.8
100
45 + 8
92 f 2
7?2
100
35.0 f 0.3
5.2 f 0.6
74.7 f 0.7
2.9 f 0.6
56.3 f 0.8
6.9 f 0.6
37 f 2
57 f 4
20 t 5
53 f 2
26 ?: 1
59 2 2
10 +_ 1
100
94.1 +_ 1.0
51 f 2
71 + 2
90 f 3
41 f 2
(W.U.)
to.70
+ 0.15
-0
to.41 f 0.15
"0
SO
to.28 f 0.07
101
-0.45 f 0.04
"0
=0
"0
a0
=0
-0.40 f 0.03
-0.28 f 0.03
to.46
5.5
* 0.08
=0
=0
to.21 2 0.04
to.72 * 0.28
101
=0
to.29
* 0.03
=0
-0.46 k 0.09
-0
20
20
WI
0.04
0.10
-0.43 f 0.06
-0
-0
=0
=0
WI
WI
101
to.26
* 0.12
-0.70 f 0.07
-0
to.57 5 0.05
-0
"0
=0
[Ol
to.54 f 0.23
"0
to.36 ? 0.15
"0
"0
to.21 f 0.03
=0
=0
"0
"0
0.03
0.08
(1.0
f 0.3)(-2)
(2.5
(1.3
(1.4
(3.7
(7.2
( 7
(3.0
(6.0
(3.4
(2.9
(3.0
(5.2
(2.3
(2.2
(6.4
(8.2
(1.5
(2.3
(1.4
(4.2
(2.6
f 0.2)(-l)
f 0.2)(-2)
f 0.4)(-l)
f 1.0)(-l)
k 0.6)(-3)
i 2 )(-1)
f 0.3)(-2)
f 0.9)(-l)
e 1.5)(-2)
?r 0.9)(-l)
* 1.1)(-l)
k 0.3)(-3)
f 0.4)(-2)
k 0.5)(-2)
k 0.7)(-2)
f 1.6)(-2)
f 0.6)(-l)
f 0.9)(-l)
f 0.6)(-2)
+ 1.4)(-l)
f O.l)(-2)
(9.3
f
(1.3
f 0.4)(-2)
(1.3
(1.0
(1.6
(4.6
(1.8
(3.6
(2.6
(4.5
(1.6
(1.5
(3.9
(1.2
(1.5
* 0.4)(-3)
f 0.2)(-l)
f 0.4)(-l)
* 0.3)(-2)
f 0.2)(-l)
f 0.6)(-2)
f 0.3)(-l)
f O.l)(-2)
?: 0.3)(-2)
f 0.4)(-l)
f l.l)(-4)
f 0.1)(-l)
f O.l)(-3)
(1.4
f 0.5)(-2)
(6.2
(2.4
(1.2
(3.3
(1.0
(4.1
(1.2
(2.1
( 7
(4.5
( 6
(8.4
(2.4
(2.7
(2.6
(1.5
(1.1
f
f
+
f
f
f
f
f
f
2
+
t
f
f
f
*
f
l.O)(-2)
1.6)(-3)
0.8)(-2)
0.5)(-l)
1.2)(-2)
0.3)(-l)
1.5)(-2)
0.4)(-l)
0.8)(-2)
2 )(-2)
1.4)(-2)
2 )(-1)
1.8)(-2)
0.4)(-l)
0.4)(-2)
0.7)(-3)
0.3)(-l)
0.3)(-2)
Remarks
TABLE
571
VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
J; + J"f
Exi + E,f
Total
'rn
branching
(MeV)
4gC,
5oV
5oC,
51V
51Cr
51Mn
52V
52C,
53Cr
53Mn
3.19 + 2.50
0.84 + 0
+ 0.32
0.91 + 0.23
1.30 -+ 0.36
+ 0.39
1.33 + 0.39
1.49 + 0.39
1.52 + 0.39
2.92 + 0.78
3.16 + 0.78
3.32 + 1.88
0.32 + 0
0.93 + 0.32
1.81 -, 0
0.777 + 0.749
1.16 + 0
1.48 + 1.16
1.56 + 0
+ 1.35
2.00 + 0
2.31 + 1.16
2.38 + 1.48
2.39 + 1.48
2.77 + 1.48
2.95 + 1.56
3.11 + 1.16
+ 2.00
3.21 -t 1.16
0.24 + 0
1.14 + 0.24
1.49 -f 1.14
2.14 + 0
2.84 + 1.96
0.017
2.77
2.96
3.16
3.42
3.77
4.02
4.04
0.56
1.01
1.29
1.54
0.38
1.29
1.62
2.27
2.41
+ 0
+ 2.37
-N 1.43
-f 1.43
+ 2.77
+ 1.43
+ 3.42
+ 3.62
+ 3.47
+ 0
* 0
+ 1.01
+ 1.01
+ 1.29
+ 0
-. 0.38
-. 0
-f 0
-. 0.38
+ 0.38
+ 1.29
15/2-
+ 13/2-
5+ + 6+
+4 t
4+ + 5+
2+ + 3+
+ 2+
1+ -s 2t
1+ e 2+
2+ * 2+
9
2+
4+
5/23/29/21/29/2n/2-
+
2+
+ 2+
+ 4+
+ 7/2‘t 5/2+ 7/2-+ 3/2+ 7/2+ 9/2-
7/2- -, 7/2+ 5/25/2- -s 7/27/2-
-, 9/2-
9/2-
+ 11/2-
13/2- -t 11/29/2-
+ 11/2-
5/2- + 7/27/2- + g/2+ 5/27/2- + 9/27/2- + 5/29/2- -+ 7/211/2- + 9/23/2- -t 5/2(l/2,3/2)+ (l/2,3/2)(2,3)+ -, 3+
4+ + 4+
2+ + 2+
2+ + 2+
4+ + 4+
2+ + 2+
5+ -t 4+
+ 5+
4+ + 3+
l/2- + 3/25/2- + 3/27/2- + 5/27/2- + 5/2+ 7/25/2- + 7/23/2- + 5/29/2- + 7/25/2- -+ 7/2-+ 5/23/2- + 5/2-+ 3/2-
400 + 90
80 i 30
fs
100 f 10
65 f 6
fs
fs
24 f. 8
65 f 8
210 5 20
fs
fs
13.5
ps
fs
ns
fs
100
100
fs
fs
15.7 f 2.3
140 f 35
fs
fs
265 f 7
11.2 f 1.2
810 + 110
8.00 f 0.10
ps
740 + 150 fs
6.0 f 2.0 ps
27
29
600
80
75
175
80
+6
f 8
+ 180
f 20
?: 20
? 30
f 20
fs
fs
80
20
360
720
52
I!
f
f
k
f
fs
25
3
100
170
14
fs
fs
fs
fs
fs
ps
fs
fs
390 f 150
fs
fs
1.6 +_ 0.3
ns
3.7 2 0.9 ps
600 f 110 fs
120 f 40
fs
460 ? 90
fs
fs
13 + 6
880 f 300 fs
735 + 280 fs
830+170
fs
1.1 * 0.2
1.64
31.2
ps
r 0.10 ps
k 2.5
ps
169 * 9
610 + 75
+ 1.1
15.5 f 0.3
5.1 * 0.1
100
85 f 3
18 * 3
100
22 f 2
36 ? 2
29 f 6
51 + 8
100
100
87 f 2
35 f 3
98 t 2
72
100
10 * 1
95.8 f 1.7
89 f 2
94.5 f 1.5
80 t 4
38 + 2
17.5 f 0.8
100
100
99.57
4.2 f 0.2
58 t 3
31 t 3
ps
760 f 100 fs
360 2 55
fs
fs
180 k 35
fs
100
44
89.0
77
23
17
45
+
f
f
2
f
f
wJ.1
to1
[al
"0
=0
-0
=0
101
to.58 f 0.03
"0
-0
20
FJO
-0.42 + 0.02
-6.8 * 0.7
-3.8 f 0.7
WI
48.1
3
1.1
2
2
4
6
s
"tot
(I)
48 + 5
51
49
100
33 f 4
67 f 4
100
88 f 5
82 f 2
92 + 2
100
90.1 f 0.2
100
16.0 f 0.5
75 f 2
fs
* 2.0
100 f 15
6
0.88
to.17 f 0.02
=0
to.38 f 0.11
KJI
-0
101
-0
=0
=0
-0
-0
101
to.4
f 0.2
-0
-0.32 f 0.02
JO
FJO
[Ol
-0
VI
t6.25 f 0.15
00
to.22 -i 0.08
-0.58 f 0.11
to1
PI
LOI
=O
-0.36 + 0.02
=O
=+O
=O
-0.55 f 0.02
-0.167 t 0.019
-2.9 f 0.3
-0.18 f 0.04
to.9 f 0.3
=0
=+O
3.2
(1.1
(8.4
(1.4
(1.0
(1.9
(4.3
(1.6
(2.4
(8.7
(2.2
(1.5
(6.7
(3.6
(4.2
(3.2
(9.5
(1.9
(6.2
(1.9
(2.9
(1.5
(6.1
(1.3
(5.2
(4.3
(2.4
(1.5
(1.5
(2.9
(1.2
( 9
(3.6
(6.0
( 8
( 9
(1.3
(3.6
(4.5
(2.2
( 8
( 8
(1.2
(2.3
(2.1
(2.4
(3.7
(3.9
(2.0
(2.6
(2.3
(1.1
(5.3
(1.6
(3.5
(5.5
f 0.3)(-l)
* 1.3)(-l)
+ 0.5)( 0)
f O.l)( 0)
* 0.3)(-l)
f 0.4)(-l)
?: 0.5)( 0)
f 0.3)(-l)
f 0.9)(-2)
f 0.3)(-l)
f 0.2)(-l)
t 1.7)(-2)
?: O.l)(-3)
i l.O)(-5)
f 1.3)(-4)
f 1.2)(-2)
f 0.3)(-l)
f 1.3)(-l)
* 0.7)(-4)
f l.O)(-2)
k 0.3)(-l)
f 1.7)(-l)
f 0.4)(-2)
f 1.3)(-l)
5 1.2)(-2)
+ 0.4)(-2)
f 0.5)(-2)
f 0.4)(-l)
f 0.9)(-l)
f. 0.2)(-l)
* 3 )(-2)
+ 0.9)(-l)
f 1.6)(-2)
f 3 )(-2)
f 2 )(-1)
?I 0.3)(-2)
f 0.7)(-4)
f 1.5)(-2)
t 0.5)(-l)
f 4 )(-2)
t 3 )(-2)
f 0.4)(-l)
+ 0.9)(-l)
* 0.4)(-l)
2 0.5)(-2)
t 0.3)(-2)
* O-7)(-3)
+ 0.4)(-2)
t O.l)(-3)
f 0.3)(-2)
+ 0.3)(-3)
f 0.8)(-3)
+ 0.6)(-3)
f l.l)(-3)
e 1.3)(-2)
Remarks
572
Nucleus
TABLE VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
E,,
J”1 -. J”f
+ E,f
Total
Tm
6
branching
NW
2.56
2.88
+ 1.44
+ 0.38
3.18
13/2-
+ 11/2-
15.8 i 1.9 ps
90 f 35 fs
100
85
+ 5/2-
+ 0.38
3/2-
+ 5/2-
3.44 -c 2.56
+ 2.69
15/2-
+ 13/2+ 15/2-
130
l/2-
+ 3/2-
2.9 f 0.3 ns
100
9/25/2-
+ 7/2+ 3/2-
25 i 10 fs
4.0 f 1.0 ps
100
76 f 2
0.774
+ 0.741
1.33 + 0
1.42 + 0.74
2.34 + 1.33
n/2-
+ 9/2-
f 45
61
+a
= 0.
24 f 3
76 i 3
to1
fs
+ 0
* 0.16
4+ + 3+
5+ -c 4t
289 f 20
ps
9.7
ps
0.84
+ 0
4+ + 3t
530 f 110 fs
+ 5+
3t + 2t
+ 0.16
+ 4+
6+ + 5+
7+ + 6 t
t
2+ * 2
2+ -c 2t
4+ + 4 t
1.07 + 0.37
1.93 + 1.07
2.96
+ 1.41
3.17
+ 1.41
4.26
4.95
+ 2.54
+ 2.54
0.13
+ 0
7/2-
+ 5/2-
1.53
2.57
+ 0
-c 0
3/2312’
+ 5/2+ 512’
0.93
1.32
+ 0
+ 0.93
5/2712’
+ 312’
+ 5/2-
1.41 + 0.93
7/2-
+ 5/2-
+ 1.32
4+ * 4+
fs
319 f 13 ps
1.1 i 0.5 ps
54 t 3
37 i 3
100
75 * 12
fs
230 f 50
fs
19 f 3
-0.6
120
30
fs
42 t 14
fs
79 f 6
55 f 5
to.53
to.36
373 f 12
ps
100
fs
96 f 1
100
71 f
14
7*2
1.3
f 0.4
fs
ps
98.7
f 0.4
5*1
ps
58 f 4
ps
51 f 3
ns
100
1+ + 2+
4+ + 3 t
7.3 * 0.2
43 f 3
ns
99.58
100
+ 0.21
5+ -c 4+
2.9 * 0.2
ns
2.66 + 0.85
2.96 + 0.85
2+ + 2+
2+ + 2*
40 * 10
39 i 12
3.12
+ 2.09
3.37
3.76
+ 0.85
+ 3.39
0.58
0.97
* 0
+ 0.16
4+ + 4+
2+ + 2*
t
6+ * 6
5+ + 4 t
t
2+ + 3
t
5+ + 4
+ 0.027
+ 0
0.34
1.01 + 0
+ 0.58
+ 0.83
+ 5+
+ 4+
1.72
+ 0
+ 0.83
+ 0.97
3+ -c 4+
+4 t
1+ + 2+
1.93
+ 1.45
+ 0.97
1.11
2.06 + 1.11
2.64 + 1.45
2.73 + 1.45
+ 2.06
+ 2.23
3.08 + 1.45
+ 2.06
(2,3)+
+ o+
* 2+
2+ + 3*
1+ + o+
1+ + o+
+2 t
* (1.2?
1+ + o+
t
+2
55 * 14
12.5
ps
f 0.02
i 0.8)(-l)
‘0
=0
(2.8
(3.5
(5.4
i 0.2)(-2)
f 0.4)(-l)
* l.l)(-2)
(2.1
(3.1
f 0.4)(-l)
t 0.6)(-l)
=O
(3.4
* 0.7)(-l)
-0
(2.9
+ 0.1)(-4)
0.15
(3.8
(5.1
i 1.8)(-2)
i 0.9)(-2)
i 0.3
(3.5
i 1.3)(-3)
i 0.24
i 0.03
(3.2
(2.5
i l.O)(-2)
+ 0.8)(-2)
to.40
f
-0
(3.7
f O.l)(-2)
f 0.04
(1.1
(2.6
f 0.2)(-l)
i 0.7)(-l)
i 0.02
=0
(2.5
(1.6
i 0.8)(-2)
i 0.6)(-3)
=0
(2.5
i 0.3)(-3)
2.0
(4.7
(3.6
(4.5
* 0.9)(-2)
i 1.0)(-l)
i 0.3)(-2)
0.06
(6.9
f 0.2)(-3)
(7.6
(3.1
i 0.5)(-2)
i O-3)(-3)
(1.2
f 0.3)(-l)
-0.22
=0
-0.34
101
PI
PI
PI
PI
fs
f 0.07
f 0.015
fs
97.9
* 0.1
-0.249
i 0.009
110 t 50
26 f 10
fs
99.2
98.5
f 0.1
f 0.1
190 * 30
fs
410
f 85
fs
160
f 40
fs
520 i 110 fs
99.70
88.9
7.1
4.0
280 i 60
fs
540 f 200 fs
84.2
11.0
49,7
36.5
* 0.5
f 1.2
14
1.0
1.0
0.9
0.8
fs
52 f 5
34i8
20 f 9
99 f 22
fs
53 f 6
loo
14 f 4
32 f 10
fs
fs
25
14
75
18
i
f
f
f
6
3
3
3
( 8 * 2 )(-2)
(2.6 + 1.2)(-l)
( 7 * 3 I(-21
(2.5 f 0,4)(
0)
=O
-0
1+10
-0
47 i 10
fs
=O
=O
f 0.05
f 1.2
f
f
f
f
(1.7 f 0.2)(-l)
( 5 f 2. )(-1)
i 0.4)(-2)
-0.21
tO.185
77 f 2
100
i l.l)(-2)
(3.4
58 f 5
97.7 f 0.1
fs
(2.5
(1.7
-0
17 f 6
i 0.2)(-3)
i 0.7)(-2)
-0
WI
-0
-0
57 f 3
43 f 3
fs
0.11
0.21
-0.36
100
45 f 3
t
0.77
-0
100
100
f 0.7
+ 1.32
* 0
-0
86*2
(1.4
(1.6
( 8 f 3 I(-21
(4.3 f 1.5)(-l)
WI
6.8 f 1.3
36 f 5
2.14
0.027
-c 7/25/2- + 7/2t
2+ * 3
64 i 13
f 0.3
fs
0.16
0.37
+ 0.37
1.01 + 0.05
-0.4
fs
76 i 17
* 1.2
(W.U.)
-0
3/2-
35 f 15
S
%ot
(X)
PI
=O
-0
-0
0
101
PI
0
0
I01
101
0
PI
(3.9
(3.6
f 0.8)(-l)
i 0.9)(-l)
(5.3
(5.4
f l.l)(-2)
f: l.l)(-2)
(4.1
(7.0
i 1.5)(-l)
f 1.5)(-2)
(5.6
* 1.2)(-l)
( 7 * 2 )(-2)
(1.1 * 0.4)(-O)
(3.9
(5.7
f 0.9)(-l)
t 1.5)(-l)
f 9 * 4 If-11
(2.1 f 0.8)(-2)
(2.6
(3.6
(1.7
(1.7
i
i
f
i
0.9)(-l)
1.1)(-l)
0.5)(-l)
0.6)(-l)
Remsrks
573
TABLE VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
T
J” + J”
E,, + Exf
i
f
branching
NW
3.60 + 1.72
3.64
4.18
0.014
o++
1+
+
+ 2.64
+l
+ 2.73
+ 2.28
+ 3.64
t
+l
8+ + 7+
9+ + 8 t
+ 0
3/2-
+ 1/2-
0.14
+ 0.014
5/2-
+ 3/2-
0.37
+ 0.014
+ 0.14
3/2-
+ 3/2-s 5/2-
-+ 0.014
5/2-
0.71
+ 0.14
+ 0.37
1.22 + 0
1.50 + 1.38
1.69 + 1.22
1.90
2.13
+ 1.22
+ 0
2.31
+ 1.38
+ 0
0.77
+ 1.22
+ 0
1.11
+ 0
1.67
2.60
+ 0.81
+ 2.08
+ 2.13
2.78
+ 0
+ 0.81
+ 3/2-
g/2(l/2,3/2)u/2-
+ 7/2+ 3/2+ 9/2-
7/25/2-
+ g/2+ 7/2+ 3/2-
7/2-
+ 7/2-
5/2-
+ g/2+ 3/2-
l/2- + 3/22+ + 2+
4+ + 4+
t
+3
1+ + o+
+ 2+
t
+2
+ o+
2.88
3.08
+ 0.81
+ 0.81
2+ -c 2+
2+ + 2+
3.23
0.11
+ 2.60
+ 0
(3s4;:
++2 “I
+ 0.053
+ 0
0.46
+ 0.025
+ 0.11
fs
80 * 35
fs
590 * 60
142 f 12
fs
ns
12.4 f 0.4
10 f 2
ns
ps
4.2
* 0.7
ps
+ 5/2+ 3/2-
+ 1.67
-+ 2.26
0.37
26 f 7
+4
6
Total
m
76 f 10
300 * 30
fs
ps
350 i 35
149 f 15
fs
fs
580 f 70
fs
(X)
(W.U.)
0
(
17 f 3
32 f 4
0
(2.3
(5.9
(1.6
f 0.7)(-l)
* 1.8)(-l)
f 0.7)(-l)
(9.1
f l.O)(-2)
(7.9
(1.2
* O.‘)(-3)
f O.l)(-3)
(5.4
(2.1
f l.l)(-2)
f 0.5)(-2)
0
100
27 f 1
=0
-0
100
87.7
76.3
f 0.2
t 1.7
8.3
* 1.1
84.4
9.9
f 0.8
f 0.6
2.2 f 0.3
100
==O
-0.120
=0
to.465
59 + 4
83 f 2
(4.2
(2.1
f 0.9)(-3)
f 0.3)(-l)
"0
(5.1
(4.6
f 0.5)(-2)
i 0.5)(-l)
=a0
(3.9
k 0.5)(-l)
=0
(4.6
(1.6
f: 0.6)(-3)
f 0.3)(-2)
f 0.01
f 0.14
10 k 2
to.4
f 0.6
-0.13
-0.23
f 0.02
f 0.02
f 0.6
ps
fs
100
2.3 f 0.6
540 i 100
ps
fs
56 t 1
265 f 40
fs
22 f 3
135 f 20
fs
22.2 f 1.3
7.8 f 0.4
100
36 f 7
fs
310 f 70
260 f 40
fs
ps
2.0 f 0.9
1.3 f 0.4
ps
ps
38.9
13.3
t
f 0.05
(1.4
t 0.2)(-2)
(2.1
f 0.3)(-l)
( 8 * 2 )(-3)
(1.6 f 0.3)(-l)
[Ol
[Ol
+ 1.2
* 0.5
48*3
( 8 + 4 )(-4)
(5.8 t 1.2)(-2)
[Ol
to.69
0
(7.4
(1.2
i 1.4)(-2)
f 0.2)(-3)
t0.17
+ 0.04
(6.6
f l.l)(-3)
t0.18
f 0.03
0
f 0.15
(1.8
(6.6
k 0.3)(-2)
? l.l)(-2)
(2.4
?: 0.4)(-2)
(7.4
(7.0
f 1.5)(-2)
f 1.7)(-2)
(4.8
(2.2
f O.‘)(-2)
f 0.4)(-l)
to.33
100
17.4 f 1.6
‘QO
57 * 4
=0
43 fr 4
99.3
"0
'0
(3.2
f 1.4)(-l)
83
"0
(2.5
f 0.8)(-l)
.SOl
580 f 160
fs
3.04
+ 1.45
+ 2.78
2+ + 2+
+2 t
72 f 7
fs
57 * 2
t1.18
-0.21
3.26
3.90
-s 1.45
+ 1.45
2+ + 2+
2+ + 2+
42 t 4
33 f 4
fs
fs
1.0 + 0.2
37 i 2
-0.46
1.19
+ 0
76 f 2
100
-0.21
1.29
1.75
+ 1.10
+ 1.19
0.34
0.88
1.19
+ 0
+ 0
+ 0
1.30
+ 0.47
+ 0.88
0.34
1.19
1.34
1.77
* O.‘)(-3)
=0
to.35
-+ 0.37
+ 1.45
+
+
+
+
f 0.3)(-2)
(3.9
fs
110 f 17
)(-2)
(1.5
ro1
14.8
1.5
95.9 + 0.3
1.34
1.74
1.77
2.71
f 0.008
9 ?: 3
=0
-0.26
3+ + 2+
4+ + 5+
t
+3
t
+3
+
2+ + 2
2.78
* 0.001
8.2
0.02
=0
100
54 * 2
70 f 2
100
4.6
Remarks
51 f 3
14 * 2
290 f 60
5
"tot
0.03
0.19
to1
LOI
f 0.15
f 0.03
WI
0.05
( g * 3 )(-2)
(4.4 i 1.4)(-l)
1 g * 3 )(-3)
(6.0 i 0.6)(-2)
-k 0.13
(2.4
(3.8
f 0.5)(-l)
f 0.6)(-2)
f 0.02
(5.4
(2.3
f O.‘)(-2)
f 0.2)(-l)
-0
g/23/2-
+ 7/2+ 3/2-
76 + 8
790 f 40
fs
fs
6.7 i 0.4
-0
(3.5
f 0.3)(-l)
7/2-
+ g/2-
5/23/2-
+ 3/2+ 3/2-
590 + 160
99 f 10
fs
ps
32
100
=0
*0
(1.0
(8.0
f 0.3)(-l)
i 0.8)(-3)
5/21/2-
+
+
+
+
660 f 70
400 f 45
fs
fs
220 + 25
fs
0
(6.8
(3.1
(3.0
f O.‘)(-2)
i 0.4)(-2)
f 0.6)(-2)
WI
(2.7
f 0.3)(-l)
( 6
(1.8
(3.4
(4.0
f
i
i
t
7/23/29/211/2-
3/21/23/25/2-
+ 5/2+ 7/2+ g/2-
1.45
i 0.26
ps
170 f 30
820 f 100
500 i 60
fs
fs
fs
98.6 f 0.1
89 f 5
12 f 2
14 i 1
71 f 1
16 + 3
7
10
=0
to.56
i 0.17
-4.8
f 0.9
PI
=0
to.95
f 0.39
3 )(-4)
0.5)(-l)
0.4)(-2)
1.6)(-3)
a)
574
TABLE VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
Exi
T
J” -, Jr
+ E,f
if
branching
VW
5gcu
6oNi
0.49
1.40
+ 0
-P 0.91
2.16
+ 1.33
3.186
* 1.33
+ 3/2-
a40
+ 300
fs
580
f
250
fs
770
+ 150
fs
100
9*2
86.7 f 0.8
200
f
fs
32.0
7/2-
+ 2+
+ 2.51
1+ * 0’
+2
+ 2.28
+ o+
fs
2
26.0
f
1.3
16.2
f
0.7
29.6
+ 1.4
16.2
+ 0.7
2.89
f 0.14
ns
5/2-
+ 3/2-
7.43
2 0.20
ns
+ 0
+ 0.28
1/2-
+ 3/2-
34
f 4
ps
1/2-
+ 1/2-
25 f 6
ps
100
16 + 1
+ 0
5/2-
+ 3/2-
ps
77 + 2
6ocu
0.061
+ 0
6oNi
0.067
+o
0.66
0.91
+ 0.067
17 f 4
1.6
* 0.5
fs
+ 5/2-
55 f
Remarks
(W.U.)
[ol
(3.2
(4.1
f 1.1)(-l)
* 2.0)(-2)
f 0.15
(2.9
+ 0.7)(-2)
+ 0.03
( a f
(5.1
f
[Ol
-0.82
=0
1.6
1+ + o+
1+ -b 2+
+ 0
-0.42
(1.3
f 0.3)(-l)
(2.6
f 0.9)(-3)
(1.4
f 0.5)(-l)
0
(1.1
f 0.4)(-l)
0
(1.6
f. 0.4)(-2)
(3.8
(1.3
f 0.2)(-2)
f O.l)(-2)
(4.1
(3.9
f 0.5)(-2)
f 0.9)(-3)
=0
0
-0
5
ro1
100
100
2 )(-3)
1.3)(-2)
0.20
0.14
-0
-0
0
to.18
-1.83
f 0.05
+ 0.20
(1.9
+ 0.6)(-2)
19 f 2
(1.4
* 0.5)(-3)
1.02
+ 0.067
7/2-
+ 5/2-
6.8
* 1.0
ps
75 * 1
-2.46
f
0.16
(5.7
f
l.O)(-4)
1.13
+ 0
512-
+ 3/2-
440
k 65
fs
63 + 1
to.47
f 0.09
(2.5
f
0.4)(-2)
(2.2
?r 0.3)(-2)
(1.1
(1.2
f 0.2)(-l)
f 0.2)(-l)
f 0.4
(2.9
f 1.2)(-4)
f 0.14
(6.7
* l.l)(-3)
(1.2
f 0.2)(-2)
(3.1
+ 0.9)(-2)
+ 5/2-
+ 0.067
1.19 -b 0
312-
+ 3/2-
1.45
+ 0.067
7/2-
-s 5/2-
1.61
+ 0
5/2-
+ 3/2-
+ 0.067
+ 5/2-
+ 1.13
+ 5/2-
1.81 e 1.02
1.99 + 1.02
+ 1.45
9/2-
+ 7/2-
g/2-
+ 7/2-
2.00
+ 0
5/2-
-, 3/2-
2.02
+ 0.067
7/2-
+ 5/2-
2.41
-+ 1.45
9/2-
3.30
+ 2.12
11/2+
0.48
0.97
+ 0
l/2-
+ 0
-s 0.97
5/2-
+ 3/2-
7/2-
-, 5/2-
+ 0
-b 0.48
5/2-
+ 3/2-
1.31
1.39
1.66
+ 1.39
1.90 -b 0
2.20
2.34
3/2-
5/2-
fs
1.20
370
88*1
9t1
kO.14
f 0.34
ps
25 + 3
-2.7
i 60
fs
37
f 1
to.33
[Ol
4+1
1.60
900
+ 0.34
ps
11 f 2
-0.97
f 0.18
(2.2
f 0.7)(-3)
A 250
fs
12 f 2
13 ?: 1
to.70
f 0.23
(3.1
* 1.2)(-3)
(2.9
f o.a)(-2)
to.27
(4.1
f o.a)(-2)
=0
(6.5
f
=0
(2.1
A 0.4)(-2)
(1.6
* 0.4)(-2)
(3.0
f 0.4)(-l)
(3.0
+ 0.5)(-2)
(6.5
f
l.O)(-2)
f 0.14
f 0.4
(5.6
f
0.9)(-4)
f
fs
+ 7/2-
580 f 110
280 f 45
fs
17 f 2
+ g/2+
870
+ 230
fs
+ 3/2-
950
* 130
fs
100
100
1.00
* 0.17
ps
99.1
f 0.1
760
f
120
fs
6.2
t 0.2
1.2
f
0.2
ps
85.3
14.4
f 0.7
f 0.9
4.6
f 0.3
36.3
k 1.9
-0.69
[Ol
f 0.08
(2.7
(4.3
?: 0.7)(-3)
to.18
f 0.03
(6.0
f 0.9)(-2)
(1.3
+ 0.2)(-l)
(3.1
A 0.5)(-2)
[Ol
+0.17 f 0.03
(1.4
f 0.2)(-l)
(4.1
f
-0.56
(1.0
+ 0.3)(-2)
(2.0
f
0.6)(-2)
(9.5
f
1.4)(-3)
(1.5
f 0.2)(-l)
+ 0.02
(3.5
f 0.5)(-2)
f
0.3
(4.2
f
-0.36
f 0.10
(5.8
k 0.9)(-2)
-0.25
+ 0.04
(7.2
f
(3.6
e 0.5)(-2)
+ 1/2-
270
12
k 30
fs
fs
+ 3/2-
260
+ 40
fs
22.1
f 1.0
46.8
f
11.4
+ 0.8
?: 1.1
250
f 40
fs
+ 7/2g/2-
-+ 7/2-
2.6
f 0.7
ps
34.2
+ 1.73
+ 7/2-
19.9
f 0.6
+ 1.94
+ 7/2-
7.6
f 0.4
+ 1.31
1.93
+ 0.97
+ 1.73
'J/2-
+ 7/2-
620
3/2-
+ 3/2-
285 f 45
fs
11.1
f 0.6
7/2-
+ 5/2-
175
fs
58.2
41.8
58.6
30.1
1.4
f
f
*
f
i
+ 1.31
22.0
f
i
25
+ 7/29/2-
+ 7/2-
410
i 60
fs
-, 7/2-
+ 2.30
+ 0.097
fs
+ g/27/2-
+ 5/2+ 7/2-
330
f 50
fs
60
33.2
?r 0.08
to.33
1.3
1.0
1.0
0.9
0.5
0.1
* 0.02
-0
t3.54
to.6
“0
=0
0.6
f 90
0.06
PI
-, 7/2+ 5/2-
f
-0.63
+ 1.31
+ 1.31
-0
68 + 2
90
60 f
f 1.3
5/2-
=0
54 f 2
41.6
+ 0.97
* 0.01
WI
-, 5/2-
+ 1.94
2.73
20
+ 5/2-
+ 1.31
2.61
f
=0
1
+ 0.97
2.36 +
2.40
150
-c 7/2-
+ 1.73
2.30
37 f
+ 1/2-
+ 0.66
%u
60 * 20
+
+ 2.16
f
42 f
+ 4+
-P 0
4.02
0.28
50
S
%ot
(X)
-, 5/2+
2+ + 2
+
3t -+ 2
l/2'
+ 2.16
3.194
6
Total
m
f 0.04
=0
to.25
f 0.08
Nl
-0.16
-0.6
WI
(
1.2)(-3)
7 f 3
)(-3)
0.3)(-l)
1.2)(-3)
1.3)(-2)
l.l)(-2)
f 2
-1.6
f 0.3
(2.9
f 0.9)(-3)
f 1.6
-0.4
f 0.6
(9.5
f
1.4)(-3)
TABLE
575
VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
E
+E
xi
xf
T
J; + Jpf
branching
U+W
2.73
3.02
2.30
3.06
3.52
0.041
0.67
0.96
1.33
1.41
1.55
1.86
2.01
2.06
2.09
63Z”
64c”
64Z”
2.21
2.41
2.54
2.68
0.19
0.25
1.39
1.66
1.69
1.86
2.16
2.25
2.64
2.83
0.16
1.80
3.08
3.19
3.37
3.43
4.46
64Ga
65C"
0.13
0.77
1.12
1.48
1.62
1.73
2.33
65Z”
2.66
0.12
-, 2.40
+ 0.48
+ 1.17
+ 1.17
+ 1.17
+ 3.06
+0
+ 0
+ 0
+ 0.96
-f 0
+ 0.96
+ 0
+ 0.96
* 0.96
* 0.96
+ 1.55
+ 0.96
+ 1.33
+ 1.33
+ 1.33
+ 2.09
+ 2.21
+ 0
+ 0
-e 0
+ 0.19
-t 0
-t 1.07
-. 0.25
+ 1.07
+ 1.21
+ 1.70
+ 0
+ 0.99
-f 2.31
-t 1.91
-+ 0
+ 1.91
+ 2.61
* 0
+ 1.91
-+ 0
-f 1.91
+ 0
+ 0
+ 0
+ 1.12
-P 1.12
+ 0
+ 1.12
+ 0
+ 1.12
+ 1.73
+ 0
7/2- + 7/23/2- + l/22+ + 2+
2+ + 2+
2+ + 2+
+ 2+
2+ + 1t
l/2- a. 3/25/2- + 3/27/2- + 5/25/2- + 3/2+ 5/23/2- + 3/2+ 5/27/2- + 5/23/2- + 5/2(1/2,3/2)- + 3/27/2- + 5/2+ 7/29/2- + 7/27/2- + 7/25/2- + 7/211/2- -+ 9/25/2- + 3/2l/2- + 3/23/2- + 3/27/2- + 5/25/2- + 3/29/2- + 7/23/2- + l/29/2- + 7/27/2- + 7/211/2+ + g/2+
2+ + 1t
2+ + 2+
4+ + 4 t
1+ h. o+
1+ + o+
+ o+
+ o+
1+ h. o+
+ o+
1+ -t o+
+ o+
1+ + o+
l/2- -t 3/25/2- + 3/27/2- + 5/25/2- + 5/23/2- -f 3/2-f 5/23/2- + 3/2+ 5/25/2- + 3/23/2- + 5/2-
330 f 50
100 * 20
fs
950
fs
f
170
fs
3.3 f 1.5
290 + 55
ps
6.6
300
850
780
+
*
f
f
0.2
20
40
60
ns
1.6
f
0.3
ps
160
f
15
fs
850 f 130
55 * 9
440 f 110
535 f 120
fs
fs
fs
fs
fs
fs
fs
fs
445 f 105
fs
180
f 40
fs
310
f 60
fs
840 f 220
760 f 170
48tll
fs
ps
ps
125
f 35
fs
335
f 90
fs
120
f 30
fs
710
f 230
fs
260 f 70
fs
150
f 40
fs
270
420
30
3.0
f
*
f
f
fs
610
* 160
75
130
5
0.4
580 * 240
40 * 7
fs
ps
ps
fs
fs
fs
f
63 f 14
fs
4.6 f 0.8
fs
10.0 A 1.0
ns
150
* 9
fs
380 + 25
475 t 5
fs
1.3
f
0.3
ps
123
+ 13
fs
21
? 2
fs
83 f 23
635 f 9
6
Total
m
fs
fs
ps
2.7
71
43
39
80
6.2
s
Otot
(9)
f 0.3
f 4
f 4
f 4
f 2
f 0.9
100
100
100
15.8 * 0.4
72.2 * 0.8
21.6 * 0.7
80.1 t 0.4
17.7 + 0.4
43 f 2
30 f 2
30 f 4
47 f 2
43 f 2
57 + 2
32 f 3
6.3 f 1.5
30 f 2
100
100
48 f 1
75 f 1
8851
26 f 3
90 f 1
71 + 2
70 f. 2
100
100
75 f 2
47 * 3
20.8 f 0.5
52.0 f 1.0
7.4 f 0.4
4.9 f 0.3
69.4 + 1.6
3.0 f 0.6
60 f 5
14 f 3
= 56
100
= 100
16.0 f 0.6
35 f 2
72 2 2
26 f 2
45
23
69 f 3
84 f 2
(W.U.)
VI
+0.6
-3.19
-0.65
-0.44
f
f
*
f
(7.1
0.3
0.11
0.18
0.09
[Ol
'0
"0
to.49 f 0.04
-0
-0.62 * 0.05
0.65
PI
'JO
=0
"0
to.23
* 0.12
LO1
-1.1 f 0.2
=0
to.26 ?: 0.04
JO
[Ol
"0
20
101
-0.36 f 0.12
-0.18 f 0.03
=o
-0
t2.3
r 0.2
-0.9 f
"0
-0.7 +
'CO
t3.3 *
-0.54 +
0
0
0
0
0
0
0
0
0
-0
to.44 f
=0
-0.20 f
'0
0.2
0.1
0.02
0.7
0.12
0.04
0.02
0.02
to1
=0
[Ol
IO1
=0
0.05
f
1.3)(-2)
(1.0 f 0.3)(-2)
(8.8 f 1.6)(-4)
(3.7 f. 1.8)(-4)
(5.6 + l.l)(-3)
(6.9 f 1.6)(-2)
(4.2 f 0.2)(-2)
(3.5 f 0.2)(-l)
(3.3 f 0.2)(-2)
(1.2 * 0.1)(-l)
(3.6 f 0.7)(-3)
(4.7 k 0.9)(-2)
(4.2 f 0.4)(-l)
(1.7 + 0.2)(-l)
(2.2 k 0.3)(-2)
(1.4 + 0.2)(-l)
(1.6 f 0.4)(-l)
( 9 f 3 )(-3)
(5.8 f 1.3)(-2)
(5.5 + 1.3)(-2)
(4.3 f l.l)(-2)
( 7 f 2 )(-2)
(1.1 f 0.3)(-l)
(5.7 f 1.3)(-3)
(4.3 f l.O)(-2)
(4.0 f l.O)(-2)
(2.1 f 0.6)(-2)
(4.9 + 1.2)(-2)
(2.3 + 0.8)(-2)
(2.5 + 0.8)(-3)
(5.0 f 1.7 (-2)
(2.8 i 0.8 (-2)
(3.5 ?: 1.1 (-2)
(2.6 + 0.4 (-2)
(1.2 2 0.5)(-3)
(4.1 ?: 1.2)(-2)
( 5 + 2 )(-3)
(1.1 ?r 0.2)(-2)
(1.9 ?: 0.3)(-2)
(8.8 t 1.5)(-2)
(8.6 f 1.9)(-3)
(4.2 f 1.3)(-3)
(4.6 t 0.9)(-2)
(5.7 f 1.6)(-2)
(8.0 f 0.8)(-4)
(4.6 A 0.3)(-l)
(4.9 i 0.3)(-2)
(2.2 f 0.1)(-l)
(6.5 + 1.5)(-2)
(3.5 f 0.4)(-2)
(2.9 r 0.4)(-l)
(5.3 f 0.5)(-2)
(1.9 ?: 0.2)(-l)
(3.3 + 0.9)(-l)
(2.6 f O.l)(-2)
Remarks
576
TABLE
VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
E +E
xi
xf
J'i + J'f
Total
7s
branching
VW
65Z”
@jZ"
%a
67Z"
(j78a
0.12
+ 0.054
0.21 + 0
+ 0.054
0.77 + 0
+ 0.115
0.87 + 0.054
+ 0.12
0.91 + 0
+ 0.054
+ 0.12
1.05 + 0.12
1.25 + 0.77
1.47 + 0.054
+ 0.12
1.58 + 0.054
1.59 + 0
+ 0.77
1.96 + 1.07
+ 1.37
2.14 + 1.07
4.30 + 0
4.81 + 0
0.044-,0
0.19 + 0
+ 0.093
0.39 + 0
+ 0.093
+ 0.19
0.81 + 0
0.89 + 0
1.36 + 0.19
+ 0.39
* 0.89
1.54 -, 0
1.60 + 0.60
+ 0.98
1.8O-co
+ 0.89
1.88 -P 0.89
0.36 + 0
0.83 -c 0
+ 0.17
+ 0.36
0.91 -b 0
1.09 + 0.17
+ 0.83
1.20 + 0.36
1.41 + 0.36
+ 0.91
1.55 + 0
+ 0.36
1.64 + 0.17
+ 0.91
2.26 -c 1.20
2.86 -. 1.52
3/2- -c l/23/2- -+ 5/2+ 1/25/2- -c 5/2+ 3/21/2- -+ 1/2+ 3/23/2- + 5/2+ 1/2+ 3/25/2- + 3/27/2- + 5/23/2- + l/2-, 3/23/2- + l/27/2- + 5/2+ 5/27/z+ + g/2+
.+ 5/2+
11/2+ + g/2+
1+ + o+
1+ -b o+
1+ -b o+
3/2- + 5/2+ 1/23/2- + 5/2-
635 * 9
830 f 40
ps
1.9 f 0.8
ps
ps
800 f 300 fs
2.1
* 0.5
ps
520 i 100 fs
2.3 f 0.8 ps
210 f 60
fs
250 f 30
220 f 70
fs
600 k 290
fs
960
6.5
5.5
23
1.49
f
f
f
f
f
100
2.2
1.9
3
0.02
fs
fs
fs
fs
ns
ns
17 i8
ps
9*2
ps
+ 1/2-
-+ 3/27/2- + 5/25/2- + 5/25/2- + 3/2+ 3/2+ 5/23/2- + 5/27/2+ * g/2+
+ 5/2+
7/2- + 5/2-c 5/25/2- + 3/25/2- + 3/23/2- + 3/2-
4.0 f 1.7 ps
260 f 55 fs
270 i 45
200 i 35
170 f 30
190 + 35
70 f 7
250 i 40
fs
fs
fs
fs
ps
fs
+ 1/2-
+ 5/25/21/2-
+ 3/2+ 1/2-
+ 3/27/2- + 5/27/2- + 5/2-c 5/25/2- + 3/2-, 5/23/2- + 1/2-c 5/29/2- + 7/211/2- + g/2-
360 f 95 fs
400 f 150 fs
1.5 i 0.5
ps
900 f 300 fs
230 i 35
fs
165 f 25
fs
980 f 250 fs
1.25
i 0.30
ps
16
23
76
53
33
1.5
95.7
48
22
23
63
36
6
%ot
(X)
f 2
+ 2
* 2
f 1
A1
f 0.2
f 0.5
f 1
f 1
t 1
f 2
A2
19
67
29 f 2
68*2
10 f 1
79 r 1
21 f 1
100
60 f 1
80.6 f 0.3
100
86.7 f 0.2
13.3 f 0.2
19.4 i 0.8
70.4 i 0.8
10.2 f 0.5
91 f 1
49 f 2
27 * 3
37 f 3
8~1
64 f 5
80 f 3
20 i 3
31 + 3
27 i 3
21 f 2
100
86.9 f 1.2
9.4 * 1.2
3.7 f 0.4
95.5 f 0.5
68.8 f 1.6
7.6 f 0.6
25 f 2
35 f 2
10.5 f 0.9
43 i 3
57 f 3
53 f 2
26 f 2
50.4 f 1.4
68.4 f i.4
s
(W.U.)
0.24
"0
-0.27 f 0.09
-0
-0.27 f 0.06
to.43 f: 0.04
0
[Ol
-0.25 f 0.04
to.96
f 0.20
-0.40 i
to.43 f
=0
-0.24 +
-2.1 f
0.12
0.04
0.05
0.3
t2.5
f 0.3
-0.31
to.23
f 0.02
f 0.03
to.27 f 0.01
-0
-0.67 f 0.05
0
0
0
-0.39 f 0.02
=0
=0
-0
'CIO
-6.0 * 0.7
+0.14 f 0.03
to.28 f 0.07
+0.31 + 0.06
to.37 f 0.05
-0.5 f 0.3
to.28
+ 0.03
-0
to.38
f 0.08
=0
t0.8 t 0.2
=0
to.16 t 0.03
to.36 f 0.09
PJI
-0.33 ? 0.2
0
WI
t2.3 f 0.1
t1.7 f 0.2
=0
-0.42 f 0.04
to.65
+0.16
f 0.03
f 0.02
to1
t2.4 f 0.2
+2.5 f 0.2
0.73
0.02
0.08
(3.0 f 0.4)(-2)
(9.1 f 0.9)(-4)
(8.2 f 0.4)(-3)
(1.8 + 0.8)(-2)
(1.7 f 0.7)(-2)
(1.1 f 0.4)(-3)
( 9 * 3 )(-2)
( 9 f 2 )(-3)
(2.7 f 0.8)(-3)
(6.0 f 1.5)(-3)
(4.0 f 0.8)(-2)
(4.4 + 1.5)(-2)
( 9 + 3 )(-3)
( 8 * 3 )(-3)
(1.4 f 0.3)(-3)
(2.2 f 0.7)(-2)
(2.4 f 0.8)(-2)
( 5 * 2 )(-2)
( 5 f 2 )(-2)
(1.8 f 0.2)(-2)
(3.6 f 1.2)(-2)
(4.1 f 1.4)(-2)
(1.6 ?: 0.2)(-2)
(2.5 A O.l)(-3)
(3.4 f O.l)(-3)
( 6 * 3 I(-31
1 5 * 2 I(-2)
(2.1 f l.O)(-2)
(1.6 f 0.5)(-4)
( 5 f 2 )(-3)
(1.8 f 0.4)(-2)
(4.4 t l.O)(-2)
( 8 f 2 )(-2)
(1.6 f 0.5)(-Z)
(1.2 t 0.2)(-l)
(1.3 f 0.3)(-l)
(8.6 f 1.7)(-3)
(6.6 f 1.4)(-2)
(6.4 f 1.8)(-3)
(1.0 f O.l)(-2)
(1.8 f 0.3)(-l)
(3.6 f 0.7)(-2)
(4.4 f 0.9)(-2)
(1.0 f 0.3)(-l)
( 7 * 3 )(-2)
(3.8 f 1.4)(-l)
(1.4 f 0.5)(-3)
(2.7 f 1.0)(-J)
(2.9 f l.O)(-2)
(1.3 f 0.2)(-2)
(3.2 f 0.5)(-2)
(3.1 i 0.5)(-2)
(1.3 f 0.2)(-l)
(2.0 f 0.6)(-3)
(1.0 f 0.3)(-3)
Remarks
577
TABLE VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
E
xi
+E
J; + J”f
xf
6
Total
'rn
branching
WV)
+ 1.08
2+ + 2+
3.35
+ 0
1+ -b o+
0.57
+ 0
5/2-
-+ 3/2-
0.87
+ 0
3/2-
+ 3/2-
350
f
30
fs
94.8
+ 0.5
-0.14
1.11
+ 0
5/2-
+ 3/2-
290
t
30
fs
96.4
0.80
A 0.1
t 0.08
to.41
+ 0.57
+ 5/2-
+ 0.87
+ 3/2-
0.4
ps
39 f
a.4 t 2.9
f
fs
61 + 9
ps
=100
1923
2
Remarks
(W.U.)
1.88
2.2
s
"tot
(96)
+I.46
f. 0.14
(3.4
f
O.B)(-3)
0
(6.0
i
1.4)(-2)
(8.9
f
1.4)(-3)
f 0.04
(1.3
2 0.1)(-l)
f 0.05
=0
1.6 f 0.2
(6.5
i
0.7)(-2)
==O
(5.5
f
O.B)(-3)
=0
(1.3
? 0.2)(-l)
+ 0.57
7/2-
-t. 5/2-
1.18
+ 0.16
ps
6.3
f 0.6
to.68
i 0.10
(2.5
1.49 + 0.57
7/2-
+ 5/2-
2.9
f
1.2
ps
35
f 8
-2.54
+ 0.10
(
0.23
3/2-
-P 5/2-
252
i
17
ps
69
f 1
-0.27
+ 0.04
(6.6
2 0.4)(-3)
31
f
0.5
ps
94.4
+ 1
f 0.8
1.34
+ 0
+ 0.087
0.86
+ 1/2-
+ 0
1.00 + 0.087
7/2-
-, 5/2-
3.1
3/2-
+ l/2-
1.8tO.B
-0
-2.4
t
7 f
0.5)(-3)
3
)(-4)
(1.2
f
O.l)(-2)
f 0.3
(2.2
i
0.6)(-3)
ps
68 f 1
-0.31
+ 0.06
(1.4
+ 0.6)(-2)
1.31
+ 0.087
3/2-
+ l/2-
720
t
250
fs
49 f 1
-0.3
f 0.1
(1.1
A 0.4)(-2)
1.35
+ 0.40
11/2+
+ g/2+
810
2 110
fs
100
-0.6
f 0.1
(3.3
t
0.5)(-2)
1.42
-, 0
5/2-
-. 5/2-
1.4
f
ps
64 + 2
+0.65
(3.5
f
1.5)(-3)
15 * 1
-0.49
f 0.10
i 0.10
(1.6
t
0.7)(-3)
(4.8
2 1.7)(-2)
+ 0.23
3/2-
1.48
1.71
+ 0.93
+ 1.04
7/2+ 5/22+ + 2t
0.51
+ 0
3/2-
+ 0.39
0.96
+ 0
5/2-
0.069
0.067
+ 0
120
5?2
32 i
12
-c 3/2-
11 f 2
fs
ps
52.9
f 0.5
ps
90.2
* 0.9
9.8
2.1
f
0.3
2+ + 2+
(7/2,11/2)+
5/2-
t1.0
-0.37
4.0
t 1.0
ps
+ g/2+
2.3
f
0.2
ns
100
+ 3/2-
7.2
f
0.2
ns
100
87.6
f 0.3
+ 0.60
2+ + 2+
7.8
f
1.1
ps
68
1.27
+ 0.63
2++
2+
4.8
5 0.6
ps
69 f
0.20
+ 0
l/2-
+ 3/2-
1.25
? 0.04
ns
0.27
+ 0
3/2-
+ 3/2-
17.0
f
1.0
ps
+ 1/2-
2.43
+ 1
3
* 0.4)(-3)
(2.6
* O.l)(-3)
(9.3
f 0.5)(-3)
(1.0
(3.1
* 0.1)(-l)
* O-2)(-3)
0.06
'QO
t
0.06
=0
+ 0
5/2-
+ 3/2-
4.1
f
0.5
ps
98.6
f
0.3
0.82
* 0.57
7/2-
+ 5/2-
3.6
f 0.4
ps
5.5
f
0.8
0.113
+ 0
7/2+
-+ 5/2+
1.00
+ 0.17
ns
0.134
+ 0.113
g/2+
+ 7/2+
7.6
f
0.9
ns
63 f
2+ + 2+
t
2+ + 2
13.1
f
1.4
ps
62
f 4
-3.4
* 0.3
ps
61
f 2
-5.2
+ 1-
1.63
+ 0.09
ns
f 300
ps
0.45
(o-2)-
y+
+ 0.316
1+ +
-*l
-+ 0.25
1+ + (o-2)+
+ 0.317
*
700
580
+ 140
ps
-0.39
f
(3.2
i O.B)(-4)
(2.2
t 0.6)(-3)
(3.1
i 0.2)(-3)
(5.7
f
(5.1
i 0.5)(-2)
(6.6
f
(1.1
? 0.3)(-l)
to.32
-0.18
t 0.01
f 0.02
f 10
ps
0.44
+ 0.24
5/2-
-c 3/2-
33
f 3
ps
43
f 2
‘0
0.28
+ 0.13
+ 5/2+
130
i
ps
92
f 2
=0
0.25
+ 0.067
ps
w 100
1.31
+ 0.61
2+ + 2+
3.9
f
0.4
ps
1.56
-. 1.12
3'
+ 4+
6.4
f 0.5
ps
0.31
+ 0
l/,2-
-F 3/2-
12.0
f 2.5
ps
0.40
+ 0
3/2-
+ 3/2-
f 4
ps
-c 3/2-
f
(01
1.3
15 f 3
-2.7
100
f 0.7
* 0.10
7.9 f 1.7
1.9 ? 0.4
ps
100
t
tll
0.28
-+ (3/2.5/2)5/2-
1.7)(-4)
=0
39
+ 0.26
f 0.5)(-4)
-0
-c 1/2-
+ 0
(4.8
0.2
0.5
3/2-
0.52
t
f
* 1.0
-N 0
91.9
(7.0
* 0.5)(-2)
k l.B)(-3)
0.24
19
f 0.6)(-2)
f 0.4
101
100
Fa 100
+ 5/2-
(3.5
2 0.1)(-l)
ps
+ 0.22
f 0.3)(-2)
7.1
(1.2
(3.7
f 30
59.0
(1.9
(1.0
500
30
* 0.5)(-2)
0.14
1.1
+ 3/2-
4Bi13
+ 0.5)(-3)
0.13
1.6
5/2-
+ 3/2-
(3.5
(3.0
=0
-, 0
5/2-
0.05
=0
0.26
(3/2,5/2)+
f
[Ol
f 3
4.7
0.03
f 0.06
8
f 0.3
f
101
to.35
1.3
10.2
(o-2)+
0.35
to.36
100
34
f O.l)(-2)
? 0.2)(-3)
(2.2
0.57
+ 0.25
0.3)(-2)
0.27
?: 0.02
ps
+ 0
O.B)(-4)
f
5 0.2
14
0.36
t
(3.4
* 0.2
*
0.045
(2.4
0.23
-3.3
400
4.9
1.7)(-2)
+2.6
f
100
f
(1.1
(1.1
kO.44
= 100
(4.9
( 5 t 2 )(-3)
(3.3
+ 0.6)(-2)
f 1.3
-0
+ 3/2-
-+ 0.56
)(-3)
f 0.1
t10.3
5/2-
1.22
)(-3)
6+2
101
+ 0
+ 0.56
5 ? 2
(
0.06
k1.2
0.28
1.11
(
t 0.06
WI
100
97.57
f 0.2
=0
20 k 2
1.20
+ 0.20
=0
k 0.9
78 f 2
ps
+ 3/2-
+ 0.83
-c 0
i
+ 1/2-
+ 0.51
1.46
+ 3/2-
430
0.6
-0.19
0.8
b 2
(1.7
(
1.5)(-2)
1.5)(-2)
f O.B)(-3)
7 f 3
)(-5)
=0
(9.1
f l.B)(-2)
-0
-0
-0
(2.4
i 0.5)(-2)
( 8 * 3 )(-4)
(5.2
f 1.5)(-2)
f 0.04
(1.1
f 0.2)(-l)
578
TABLE VI. Strengths of Ml Transitions
See page 552 for Explanation of Tables
Nucleus
E
xi + Exf
J; + J"f
Total
7s
branching
(MeV)
"Br
0.61 + 0
3/2-
+ 0.22
+ 0.31
+ 0.40
0.76 + 0.22
+ 0.52
7/2-
0.83
3/2-
170 f 23
+ 3/2-s 5/2-
fs
6+1
76 f 3
870 i 190
fs
+ 0
(l/2,3/2)-
+ 3/2-
+ 0
(3/2.5/2)-
+ 3/2+ 5/2-
7/2(5/2-g/2)+
0.009 + 0
0.005'-,
0
920 f 220
+ 5/2+ 7/2+
12.1 f 1.4
212 i 6
7/2+ -+ g/2+
3/2- + 5/2-
0.15 + 0
0.28-r
0.15
3/2l/2-
-, 5/2-, 3/2-
0.73
* 0
+ 0.28
3/2-
+ 3/2+ 1/2-
B5Sr
0.23
+ 0
2 Y
3.49
1.51
+ 0
+ 0
3/2-
+ l/2-
1.87
2.10
+ 1.10
+ 1.10
3/25/2-
+ 3/2+ 3/2-
(5/2-g/2)+
+ 1.45
+ 0
103.1
1.07
= (3,4)+,
which
(n.y)
reaction.
+ (7/2,9/2)+
1+ + o+
+ 5/23- + 2-
is consistent
ro1
101
? 1.2
+ 0.07
with
the
-0
(2.3
f 0.9)(-2)
-0
(1.0
(5.7
f 0.2)(-l)
+ 1.2)(-2)
100
fs
13 f 1
a7 t 4
ns
ns
100
100
ps
36 f 3
100
4.4 r 0.7
20 i 7
fs
fs
100
100
250 i 40
fs
74 * 5
110 f 20
fs
75 f 3
25 + 3
fact
* 0.5)(-l)
f 0.5)(-l)
87 f 1
300 f 70
361 2 10
f: l.l)(-2)
fs
ps
ps
64 t 3
ps
100
101
ro1
-0.193
f 0.012
‘0
-0
-0
=0
(01
+O.B ? 0.2
+0.6 f 0.3
the
level
is excited
?r 0.4)(-l)
(1.0
(1.1
(2.5
(a.0
f
+
k
f
0.08
(3.0
+_ 0.6)(-2)
(4.9 It l.l)(-3)
(1.4 -I 0.4)(-2)
( 8 f 2 )(-3)
(1.7
f 0.3)(-l)
2 0.05
(4.4
+ 1.5)(-l)
to1
+3.5
(2.0 * 0.3)(-l)
( 7 f 2 )(-3)
f 0.5
v4
-0.28 + 0.06
in the
O,l)(-2)
O.l)(-2)
O.l)(-2)
0.5)(-3)
0
would lead to an impossibly
strong
3.23
the en = 1 component quite weak. Accepting
that
(1.6
0.97
16
85
0.05
=0
-0.15
f l.O)(-2)
f 0.5)(-l)
(5.1
ps
100
100
95.5 f 0.9
(3.6
(2.1
(1.2
(2.3
"0
ns
ns
( 8 f 2 ~-2)
(2.4 f 0.3)(-l)
ro1
[Ol
ro1
101
100
100
420 f 90
6.4 + 0.7
a) The J'(3.23
Rev) = 2+ assigmaent
from the A = 58 compilation
This asslgmaent
was based on e,(d,p)
= 1 t 3 (72Ral7)
with
at J"(3.23
W)
but not in the
ps
+ 3/2-
+ 0
f 0.8)(-2)
( B f 2 )(-2)
(6.4 f l.l)(-2)
2.3 t 0.4
522
f 0.3)(-2)
i 0.4)(-2)
(4.6
4.6 + 1.2
17 f 3
610 t 130
(3.3
(2.5
“0
(l/2,3/2)-
0.77
f 0.02
=0
ps
5/2-
=0
to.19
? 1.6
12 + 5
0.65
0.20
1.7 f 0.3
(W.U.)
6.8 f 1.5
56 ?r 3
+ 3/2-
+ 0
+ 0
+ 0.28
0.84 * 0.28
9OY
11.4
+ 3/2+ 5/2-
S
Qtot
(I)
67 t 2
12.6 t 1.6
+ 1/2+ 3/2-
+ 0.40
BgZr
ps
-P 5/2-
+ 0
0.28
0.54
0.050
2.9 + 0.3
+ 1/2-
+ 0.22
+ 0.31
BIBr
+ 3/2+ 5/2-
6
5BCo(a-)
(2.6
f 0,6)(-l)
(9.6
i 0.3)(-3)
+ 2.60 MeV E2 transition.
$,(d.p)
= 3 one arrives
decay
(log
ft
= 6.09).
TABLE
579
Strengths of M2 Transitions
VII.
See page 552 for Explanation of Tables
Nucleus
Exi + Exf
Jf + J;
Total
'rn
branching
W-W
45SC
47SC
62c"
65Zn
67Zn
6gGe
0.012
+ 0
0.77 + 0
2.29 + 0.39
1.07 + 0
'lGe
72Ge
'3As
75As
0.60
0.40
[0.81
0.198
[2.51
0.43
0.304
+
+
+
+
-t
+
+
76Br
0.103
+ 0.045
“As
0.48 + 0.26
[0.63 + 0.22
+ 0.26
0.54 + 0.28
0.042 + 0
'IBr
83Rb
85Rb
0.51
0
0
0
0.175
1.46
0.067
0.280
+ 0
3/2+
3/2+
6g/2+
9/2+
9/2+
5/2+
9/2+
39/2+
9/2+
(o-4)+
9/2+
5/2+
+
+
+
+
+
+
+
-t
+
+
+
7/27/24+
5/25/25/25/25/22+
5/25/2-
+ (o-2)-
+
+
+
g/2+ *
9/2+ +
(7/2.9/2)+ +
5/23/25/25/25/25/2-
470 f 6
390 f 17
23.3
830
480
4.0
1.5
31.6
35
f
f
f
t
f
f
f
ms
ns
1.9 ps
40 ps
20 ns
0.1 lls
0.2 ps
1.4 ms
7
ps
8.1 + 0.4
11s
25.30 f 0.11 ms
2.15 f 0.03
167 f 6
s
PS
108 ?: 22
ps
52.0 +_ 1.4 ps
11.2
ms
1.38 f 0.02 PS
6
S
Otot
(46)
100
100
1.2
5t 1
100
100
58 + 2
100
59.2 ?: 0.7
100
92 2 2
100
96.7 f 0.3
50 f 4
30 f 4
100
100
100
Remarks
(W.U.)
=0
481
PI
=0
to.13 f 0.02
==O
FQO
to.13 f 0.03
SO
to.31 f 0.05
=0
-0.18 f 0.02
-0
-0
-0.087 + 0.019
to.290 f 0.009
a0
PO
WI
208
I89
9.8
0.08
0.05
40
(6.2
(3.2
(5.9
(1.1
(7.1
(6.6
( 5
(6.1
i
f
f
f
+
f
*
f
O.l)(-2)
O.l)(-2)
0.5)(-2)
0.2)(-l)
0.3)(-2)
0.2)(-2)
2 )(*l)l
0.3)(-2)
(2.9
+ l.O)(
0)]
a)
b)
(5.0 f 0.2)(-2)
(3.3 i O.l)(-2)
(2.0 2 O.l)(-4)
(2.5 f O.l)(-2)
( 7 * 3 11 011 b)
( 8 f 2 )(-1)
(3.6 f O.l)(-2)
3.7
(-2)
(4.8 f O.l)(-2)
a)
For comment see note ')';f
Table III.
b) These mixing
ratios
in
Ge and "As result
from 72Ga(s-T)
pectively.
The authors
do not comment on the ensuing
large
(74Ch07)
and "Ge(B-T)
(75Ch32)
T.T angular
correlation
which should be considered
suspect.
M2 strengths
work,
res-
P. M.
ENDT
Gamma-Ray Strengths, A = 45-90
TABLE VIII. Strengths of M3 and M4 Transitions
See page552 for Explanation of Tabies
Nucleus
Type
Exi + Exf
Jn + 3”
i
f
Total
'rn
branching
WV
M3
%o
+ 0
5+ + 2
+ 0
+ 0.037
2+ + 5
6oco
0.025
0.059
*OS,
0.086
‘lSe
82Br
84Rb
0.10 + 0
0.046 + 0
0.46 + 0.25
"Rb
0.11 -I. 0
M4
+
+
5- + 27/2- + l/2’
2- + 56- + (3,4)‘
(4-)
+ (13
6gZ”
0.44
+ 0
g/2+
+ l/2-
85Kr
B5Sr
0.30
0.24
-c 0
+ 0
1/2-
+ g/2+
875,
0.39
+ 0
1/2-
+ (7/2,9/2)+
+ g/2+
87Y
8gY
0.38
0.91
-+ 0
+ l/2-c l/2-
8gZ,
0.59
+ 0
+ 0
g/2+
9/2+
9OY
0.68
+ 0.20
(l/2,3/2)-
a) The Jr value of the initial
s,(d.p)
= 4 value of 65LiO8
an impossibly
The conversion
6
1/2- + g/2+
7+ + 3-
S
Yet
(X)
Ramarks
(W.U.)
13.20
f 0.14
h
100
r*O
2840
(5.4
f 0.2)(-l)
15.10
* 0.03
min
6.37
82.60
k 0.02
f 0.13
h
min
99.75
100
r*O
-0
44
305
(4.2
(5.9
99.9
-0
9.1
(4.4
f O.l)(
0)
f O.l)(-2)
i O.l)(-2)
8.85
f 0.12
min
-0
400
(2.9
f O.l)(
29.6
* 0.3
min
-0
0.90
11.5
(2.2
(7.3
f 0.6)(-3)
i l.l)(-3)
-0
0.05
(1.4
=O
-SO
0.51
2.1
(1.2
(1.5
f O.l)(
0)
f 0.1)(+1)
f O.l)(tl)
372 + 4
20.2
6.46
100.3
4.50
t 0.4
i 0.01
s
h
h
100
72 f 3
to.8
2.3 f 0.3
- 100
21.0
f 0.8
1.1
f 0.3
f 0.7 min
i 0.02 h
w 100
-0
0.22
(1.1
f O.l)(tl)
18.3
i 0.3
h
w 100
CrO
0.26
2.38
i 0.01
s
100
(3.0
(3.9
i O.l)(
f O.l)(
6.02
4.60
f 0.02
f 0.02
min
h
0.05
(1.2
f
O.!O
(1.6
f O.l)(
93.76
99.67
IOJ
f 0.06
f 0.03
101
-0
based on the (not
state is listed
in the A = 81 compilation'as
J’ = 7/2’,
and the measured conversion
coefficient.
The latter
would lead to 6(M4/E3)
very
a)
0)
b)
0)
0)
o.i)(tij
0)
convincing)
- to.177
i 0.01t4with
I44 component of (2.3 i 0.4) x lo4 W.U. and an exceptionally
weak E3 component
of (7.0 f 0.1) x 10
W.U.
(aK, oL ). however,
can almost equally
well be explained
by pure M3 character;
the resulting
M3 strength
is apparently
quite reasonable.
b) Although
of this transition
is determined
spins nor parities
of the initial
and final
states
are known, the W3 character
through
strong
data
a measurement
of the conversion
coefficient.
580
Atomic
Data and Nuclear
Data Tables.
Vol. 23. No. 6. June
1979
P. M. ENDT
TABLE
IX. Recommended
Gamma-Ray
Upper Limits
Strengths,
A = 45-90
in the A = 6-20, 21-44,
and 45-W
Regions
See page 552 for Explanation of Tables
Character
Number
a)
A = 6-20
of
Transitions
21-44
45-90
A = 6-20
(W.U.)
21-44
45-90
a
13
4
EIIV
E1lS
139
36
567
100
127
E21s
112
562
515
100
100
E21V
11
E3
16
10
37
45
10
100
10
100
100
E4
3
1
7
1
17
3
100
100
100
559
31
470
M1lS
135
13
M21V
a
37
4
15
4
1
7
EO
E5
%V
4
9s
M31V
M31s
“4
With
0.3
0.003
0.1
0.003
0.01
300
10
0.03
10
0.03
3
3
0.1
3
0.1
1
10
10
10
a
“5
a)
RUL
30
1
the
indices
1V and
1s denoting
isovector
and
isoscalar
character,
respective-
ly.
581
Atomic
Data and Nuclear
Data Tables.
Vol. 23. No. 6. June
1979
Gamma-Ray Strengths, A = 45-90
P. M. ENDT
REFERENCES
FOR TABLES
(in addition to those in the most recent Nuclear Data Sheets)
77%12
J.
Btycren
79Dox
P.
Doll
79P1X
V.U.
et
et
Pail
al.,
Phys.
al.,
J.
and
P..G.
of
Se”.
C g,
Pllys.
G s-,
Kulkami,
G.D.
Dmcoulis,
1323.
(1978)
see
79Dox
A -
D.C.
1421
Cm.
A
7SDr06
1704
-
V.N.
Polishchuk
et
7wao9
S.K.
Warburton,
J.U.
(1977)
C l8,
(1979)
J.
7SPoO4
Phys.
z,
1196
(1979)
79Pix
P.
Pintz
79G”lO
G.
Cuillaume
79pao1
se*
79Rao5
D.C.
and
A.R.
Polatti,
J.
of
Phys.
77k.06
Guichsrd,
B.
Baas,
G.
P.
253
I.0
(1977)
B.J.
Linard
79Ek03
L.P.
Ekatr&n
79llax
H.
7SMa35
P.A.
2&
709
79E.m
see
*
I3
W.
Senenson,
-
Taras,
J.C.
Kadford
et
al..
P.
see
.4 -
53
see
*
52
79TO05
N.
-
Toulemade
tl.
Nann.
Ilerdinger,
Phys.
and
P.A.
Nucl.
al.,
J.
Somshdj,
R.
Kev.
C l2.
SO6
Vaillsncourt.
(1975)
Nucl.
Phys.
76AdO4
Mando.
Pbys.
of
G.
AZ.
Phys.
and
and
214
G 2,
N.
Poggi.
Rud.
Phys.
Rev.
C l5.
76Ne04
(1978)
SO3
Bobertson,
(1975)
Phys.
40,
Nucl.
N.
I
Machi
et
C.P.
Neal
al..
J.
LO.
Nelson
J.
of
A 111.
193
Correia
et
Nathan,
J.Y.
Fe”.
see
7SKaO2
U.0.
Kampp
7Sta33
U.D.
Kmpp,
77Gi18
A.
Giormi
et
77Kel7
0.L.
8.
Taccetti,
and
G.
libereti,
Nuovo
Sickel
et
al.,
S.
Nucl.
Tanaka,
al.,
Kennedy,
Nucl.
S.J.
Phys.
150
Il.
Ada&i,
A 232,
Phys.
Phys.
Linsrd,
As,
Natsuzaki,
Phys.
Nucl.
200
AZ,
417
213
J.C.P.
Neggie.
and
E.R.
Cim.
Lecrare
Boloein,
(1977)
and
H.
Taker&,
J.
Phys.
SW.
Japan
7SNa11
H.
78!&09
J.C.
72Sa17
9,
Kasagi
snd
H.
Ohmma,
J.
Pbys.
Sot.
Japan
2,
Kasagi
and
R.
Ohnuma.
J.
Pbys.
Sm.
Japan
to
79pao1
J.E.
Park.
U.Y.
Daehnick,
and
M.J.
Balamurh
A -
Phys.
819
Cm.
J.
(1979)
Nucl.
I92
Tousley.
0.
Cline.
and
Spisak,
1099
be
Phys.
(1978)
published
Se”.
C a?,“2
(1979)
Sryeren
and
et
C.
al.,
Brow,.
Nucl.
B.N.
Horoshko.
Nucl.
Phys.
A -
paerwsle
A -
C.J.
Liseer.
2169
(1978)
and
R.G.
Kulkami.
Olness,
and
I73
Phys.
51,
(1976)
C 2.
A26’,
614
427
AZ,
E.K.
Phys.
(1976)
(1976)
322
Warburton,
(1977)
and
J.B.
McGrory.
(1977)
and
E.G.
et
Adelberger,
al.,
Phys.
Awl.
Phys.
Be”.
AZ&.
C l6,
513
928
(1977)
2.
Physik
(1977)
and
S.
guhl.
K.H.
167
2.
Physik
As,
Bodemiller,
A.
I17
Nngel,
(1978)
and
S.
Subl,
(1978)
Namn.
J.
A.
S&a.
Wells,
S.
Rbpaport,
and
Rarmn.
A.
25
S.
Raman,
Phys.
and
G.G.
Slaughter,
Trier,
T.A.
Be”.
Belore,
C I&.
1619
Phys.
sod
Y.S.
Se”.
(1978)
C c,
Dormbusch,
707
Nucl.
(1978)
Phys.
(1972)
77Ca28
S.
77Fu03
H.W.
Cavallsro
Pulbrighc
et
et
788035
H.N.
Baloein.
LB.
75
al..
Nucl.
al..
Phys.
Nucl.
AZ,
Phys.
Stuchbery,
I25
A 2&,
K.
Amos,
and
A 264.
132
(1977)
329
(1977)
I.
Ilorrison,
Nucl.
Phys.
(1978)
52
Nuel.
Phys.
A 250,
Phys.
A z,
A E.
295
I
59
381
(1975)
Uatson
Caseel.
Be”.
Phys.
Olness,
B.
A 263.
Phys.
A -
78Li21
G 2.
55
11 x,
A -
al.,
Bendjaballab
A E,
(1977)
J.
P.N.
(1979)
(1974)
J.
see
409
(1977)
79Kax
7SKa32
G 1,
(1974)
A 2X,
7SKa32
77Pa22
Rev.
(1979)
7md2
and
3.
Phys.
(1979)
Phys.
and
Nucl.
C 16,
(1978)
Tomita
D.L.
IS9
df
Phys.
Chagnon,
al..
J.A.
45
Sona,
et
A.N.
Phys.
Phys.
Nucl.
P.R.
7md2
D.P.
D.C.
C.Y.
Poletti.
(1979)
A=,
Micklinghoff,
al.,
and
N.
Y.
752006
511
Phys.
Polecti,
M.
77COl5
(1979)
Nucl.
B.C.
2631
77Se27
P.
74T010
369
de
A.R.
et
77Ba50
Mando,
-
and
Molho.
et
74Kil3
T.
J.
al..
and
79stx
A E,
77Ha22
A.R.
51
79Kao5
76&O
N.
Hansen,
Bud.
(1978)
rind
48
(1975)
Bimco.
2245
78L.i
1145
45
h.
‘LE.
2.
Nathan,
G 4,
75Ro28
75Eao3
al.,
et
-
Pi=.
A.M.
(1978)
ec
*
Yad.
Olness,
46
Sadford,
*
750~13
1637
al.,
(1978)
(1979)
76PiO5
N.
Pichevar
et
al.,
Nucl.
77ca14
Y.
Cauchois
et
al.,
Comptes
77Pa1S
R.C.
77ScO2
p.
77wSlO
E.K.
Psrdo
Sen
and
et
al..
C.
Sen,
2.
et
al..
Yarburrau
Pbys.
Phys.
Rendus
Rev.
65
370
(1977)
211
(1977)
C E,
Physik
A=,
Phys.
Rev.
(1976)
B 2,
C 16,
1027
(1977)
(1977)
53
J.
of
Phys.
G 2,
1245
A
(1977)
-
60
51
J.W.
I.P.
Johnstone,
Whys.
Kev.
751x.04
C I&
N.A.
trmsl.
582
lvmov
et
No.
Atomic
0 p.
al.,
Isv.
Akad.
Nauk,
Ser.
Pis.
2,
1695
(1975);
108
Data
and
Nuclear
Data
Tables,
Vol.
23.
No.
6. June
1979
P. M. ENDT
Gamma-Ray Strengths, A =
45-90
REFERENCESFORTABLES
(in addition to those in the most recent Nuclear Data Sheets)
77uUa10
76Pa03
7SNoo3
B.A. LOMB”. U.R. Dixon,
R.S. Stofey,
and A. Ljubi;ii.
Can. J.
Phys. 55, 142 (1977)
see A - 59
8. ~ausc et al,. .I. of Phys. G 5, 247 (1978)
E.S. Noman. C.N. Davida,
NJ. Murphy. and R.C. Pardo. Phys. Rev.
7BNno 5
)9x006
C II, 2176 (1978)
E.B. Norman. C.N. Davids.
and C.E.
G. Noysc tc al., Nucl. Phys. A la.
77LcQl
76SZ36
76SuO6
,7Ca14
77uao3
77yao7
77”115
7SnelO
78VaOP
S. 8oodberS.s
J.R. Uilliupe
R.N. gritton
G.A. Hurtlin
et
et
and
et
see A - 59
R. h'adsvorth
R. Uads”orth
B. Uadeuarth
et al..
et al..
et al..
Rev. CE,
75Rc.15
75waOS
76SrM
76Kz.09
102 (1978)
76SwGl
77Ca14
77Hz.13
77too3
77Pol8
al., Z. Phyaik A 2&
43 (1975)
al.. Hucl. Pbya. A@.
365 (1975)
D.L. b’strort, Nucl. Phys. AZ,
91 (1976)
al.. Nucl. Phys. A 263, 445 (1976)
Neyer et al.,
see A - 53
R.A.
J. of Phys.
J. of Phye.
J. of Phys.
Phys.
7BKoll
782e04
78WaO9
D.L. Kennedy, 8.8.
A ,os,
14 (1978)
see A - 53
Rev. C 11,
Solotim,
I.
J.C.
wells
er al.,
et al.,
J. of Phys.
Phys.
1127 (1978)
2162 (1978)
see
S.A.
see
K.S.
see
A - 61
Vender
A - 61
~rsne,
A - 63
and J.A.
S.S.
Car.eron,
Nuel.
nmenblum,
Phys.
and W.A.SCeyert,
see A - 59
A.G. Hartss et al., Nucl. Phys. A
P.R.C. Lornie
ec al,, J. of Phya.
V.N. Polishehuk
et al., Yad. Piz.
A. Kogan et al.. J. of Phyo. G 5.
332 (1975)
Ax,
Phys.
Se".
C fi,
650 (1976)
E,
413 (1977)
CJ, 493 (1977)
2, 20 (1977)
75s (1978)
see A - 63
A - 66
IS22 (1978)
7X+025
75rhO I
76Le03
76Nc06
77cat4
Morrison.
C 4.
Rev. C l8,
G 2, 35 (1977)
C 2, 833 (1977)
G 2, 1377 (1977)
A - 62
7Sull
D.N. Sinister
A - 65
61
A-
75Rol5
7SWi28
Woss, Phye.
236 (1979)
78SilO
7BWl5
and K. Amos, Nucl.
Phys.
see A - 61
see A * 64
W. Leitz et al..
77PUO3
77Mo20
see
see
see
C.
A - 64
* - 59
A - 58
&brand. 3.P.
77Ne05
3f& 1319 (1977)
see A - 64
Nucl.
Pbys.
Bruandet,
A z,
103 (1976)
A. Giarni,
and T.U.
Ghan, 3. de Phya.
A - 63
A - 67
76Br36
76DaO 1
76SvO I
77Br27
77chx
77PSl5
7SIla27
7Bwe17
7SXuO2
782~04
79tlUY
see A - 61
R. Dayras. B. bjec,
and I.H. Sdghy,
Nucl. Phye. A 257, II8
C.P. SWUM, Phys. Rev. C I,,
1104 (1976)
H.E. Brandan and U. Hpeberli,
Nucl. Phyys. A 2tJ. 205 (1977)
T.V. cbm et al., Proc. Plorenee
(1977) P. 536
C.T. Papadopouloa
et al., Phys. Rev. C 2,
1987 (1977)
A.G.
“arta
and D.H. “an Patter,
Nucl. Phys. A E,
379 (1978)
P.A.S. ,,etford,
T . Taylo,r.
and J.A. Car~erm, Hucl. Pbya. A MS,
0.H. nuscaffa
et al., J. of Phys. GA, 99 (1978)
8. Zeidman and J.A. Nolen,
0.X. Hustaffa
et a,., J.
of
75Ro25
77Abo2
(1976)
77A135
77LOO3
77tie04
210 (1978)
77PaoS
78A132
78Du04
7SIaO6
78HBIO
79200 I
Phys. Rev. C le. 2122 (1978)
Phys. G 1, 1283 (1979)
_A-64
732a07
1.1.
74-42
74HiOS
74-16
L.P. Hansen et aI., PhyyS. Rev. C’,
III,
(1974)
LA. Hinricha
and D.H. Patterson,
Phys. Rev. C IO, 1381 (1974)
R.G.H. Sabertson
and S.H. Auatin,
Phys. Rev. CL, 1801 (1974)
S. Raman, N.B. Gove, and T.A. Ualkievicz,
NYcI. Phys. A z,
73Ba28
75ThO I
76SrlZ
76Grl3
76yhOl
Zalyubovskii
et al.,
Irv.
Akad.
Nauk,
Ser.
Piz.
37.
see A - 5s
P.. Neuhausen,
Nucl. Phys. A z.
I25 (1977)
J.C. Yells et al., Phys. Rev. C la. 2259 (1977)
R.R. Bars,
N. Stein,
J.W. Sunier and C.W. Woods.
78SiO2
E, 47 (197B)
D.N. Simiater
et al.,
.I. of Phys.
G 4,
III
see A - 65
G.P. Neal. Z.P. Save.. P.P.
As,
161 (1977)
T . Paradellis.
Nucl.
Phye.
Venesia,
AZ,
and P.R.
Cba$non,
et al.,
Nucl.
Phys.
AZ,
Nucl.
Phys.
293 (1977)
A.“. Al-Naser
et al., J. af Phys. G 4. 1611 (1978)
R. Duffait.
A. Charvet,
md R. Chirp,
Pbys. Rev. C c,
P.&G.
Lomic et al., 3. of Phya.
G 5. 923 (1978)
see A - 61
V. Zabel
G 1,
2031
(1978)
165 (1979)
1076 (1973)
A - 68
131 (1975)
N.J. Throop, Y.T. Cheng., and D.K. ~cD.miela,
Nucl. Phya. A=,
333 (1975)
J.P. Sruandet
et al., J. de Pbys. Lererea 31, ‘-63
(1976)
P.W. Green and D.“, Sheppard,
Nucl. Phys. AZ,‘,
I25 (1976)
R. Nd,ausen.
Nucl. Pbys. A 263. 249 (1976)
D.C.s. Whitr,
W.J. l&Donald,
D.A. Llutehecm. and G.C. Neilson.
Nucl. Pbys. “260,
189 (1976)
see A - 59
77PUO3
77NcOS
77we10
78Be25
see A - 61
A.I.. Abu-Ghazaleh,
1.H. Naguib,
and G. Sewn, J. of Phyr.
253 (1977)
A.H.
bl-Nsser
et al., J. of Phys. G 1, 1383 (1977)
74NoOS
752iOt
76Br23
E. NOLW et al., 2. Physik 268% 267 (197L)
V.K. Tikku and S.K. Mukherjee,
J. of Phys. G 1. 446 (1975)
J.P. Smandee et al.. Phys. Rev. C 14. 103 (1976)
76Ne06
77C.14
see A - 64
see A .. 59
P. Guilbault
et al., Pbys. Rev. C ",
894 (1977)
see A - 66
see A - 64
B.C. Parda et al., Phys. Rev. C's,
181, (1977)
G. Rotbard et al., Pbys. Rev. C &, 1825 (1977)
77GuO2
7714020
77Ne05
77pa>3
778022
A - 69
Phye.
lett
S
72"aOl
75Eb02
(1978)
583
T.H. Bsu et al., Nucl. Phys. Ai,
SO (1972)
U. Eberth,
J. Eberth,
E. Eube, and V. Zobel, Z. Physik
411 (1975)
Atomic
Data and
Nuclear
Data Tables.
A Es
Vol. 23, NO. 6. June
1979
Gamma-Ray
Strengths,A = 45-W
P. M. ENDT
REFERENCES FOR TABLES
(in addition to those in the most recent Nuclear Data Sheets)
75P.21
T . P.rsdellis,
76SbOt
(1975)
0. Sbarth.
A. Xenoulis,
1. Sberrh,
md C.A.
E. Subc.
78p.08
78P.15
285
0.
T.
T.
7811014
79AlO8
472 (1978)
G. Borbard et .l.,
Phys. Se”.
A.A. Aleundrov,
W.P. Kudoysrov,
79suo2
NucL. Phys. A 121, 189 (1979)
8.8. Subb. Sm, J.S. crsvford.
792.02
(1979)
V. Zobel
7611009
Kslfss,
2. Physik
.nd Y. Zobel,
NucI.
&z,
phys.
269
*
d 257.
75c.37
(1976)
t&e,
S. Sh.stry.
p. Se”, md H. Bskhru, 2. Physik A276,
341 (1976)
Pmsdellis.
snd o. Vmrvopoulos.
Phys. Rev. c I& 660 (1978)
Psr.dellis,
I. c.1mmk.i‘.
snd c. Vaurwpoulos.
Nucl. Phys. Ax,
c la, 86 (1978)
I.K. Ic&zrS.
smd S.X.
and AA.
76RoO8
78Le22
79PiO5
Psst‘msk.
2. Physik
Nsrk,
76S.10
A=,
Phys.
Rev.
c 2,
75ze02
7681104
77Cu12
7R(o20
1.
77Bo28
77Tsx
78ClOS
78Rox
79T.X
K.L. Sobin‘on
B.O. Ten Brink
L. clecmmn et
R.L. Robinson
ouilbsult
sac A - 66
et ‘1..
Phys.
Bav. c 16,
1840 (1977)
765.07
76Scl3
et .l.,
Phys. Rrv. c 16. 2268 (1977)
et ‘1.. Proc. Tok,o (1977) p.279
.I.,
Phys. Sev. c 18, 1049 (1978)
et sl..
Bull.
Am. Phys. Sot. 2& 573 (1978)
1.0. Ten Brink,
to be Published
J. ~kkcrmans,
P. Vsn Ncs,
snd A. Verheul,
Nucl-
767004
77Ce02
77PrO8
7 7PuO4
PhW.
7ac.24
79Shx
74SiO8
742eo 1
S.11 et .l..
Nucl.
N. hsgcu et .l.,
Nucl.
J.C. Wls.,
S. Ssrasrd.
Shy..
A=,
Ph,..
J.A.M.
AZ.
Nucl. Pby‘. A 227. 399 (1974)
A. Kiecato
.snd P. D&d.
Nuel. whys. AZ,
1. Zeidun,
P.H. Siemssen, C.C. Norrison,
(1974)
T . Su+itsu,
MB (1975)
sea A - 69
Y.A. Yoh, S.B. Dsrdeo.
.nd S. San, Nucl. Ph,..
J.A. Biessk,
1. N.mt.struq”e,
s.d S.E.
Dsrden,
1333 (1977)
LT. klly,
K.S. ~rme,
P.V.
Ph,..
N. Ksto.
P.
Vs. de? Wmtc,
461 (1974)
snd L.L. Le..
76Eb02
76YaO4
778108
snd T . Kuroymagi,
or...,
smd J.A. Kuehner.
Rev. C 2, 2213 (1978)
A E,
Phys.
Nucl.
PhyS.
J.
770.18
77L‘lI
781~04
78Sc30
BaV.
Phys.
Sm.
7X.&8
76S.o I
76K.i I2
76M.20
77LiD6
78Sel3
H. chsn.
P.L.
G‘rdulski,
Phys.
A E.
73Ch26
61 (1977)
740cz.4
74SrIO
75h32
md Kc.
Vindmbeck,
Nucl.
Phys.
A=.
365 (1974)
768~13
762.03
J.E. m.par,
N.S.P.
Lir.g, end Y.C. qckoff,
Phys. nav. C 2, 948 0974)
J.H. llrd1ron
at ‘1.. Ph,‘. n‘". Idtt.
11, 239 (1974)
W.P. Nicsisa.
lad A.V. Waltzer,
2. Physik 261. 83 (1974)
P.J. Eli,,.,
I.P. &,er, J.C. 8er6strm,
snd B.C. C@m.
Nucl. phy‘. *
s
435
(1975)
K.E.C. Gb,,er
.t ‘1.. 2. Physik
AZ,
251 (1975)
J.H. ndltoa
at .I.,
my.. K.V. LSC~. 2, 340 (1976)
I[. Kiure,
N. Tekasi,
md II. Tanska, Nucl. Phys.
A 272. 381 (1976)
W.A.J. Nsriscotti
et al., Nucl. Pbys. AE,
109 (1976)
78KllO
7811012
791.x
19c.03
N.N. "‘rgn“
at ml..
Phy,.
1344 (1979)
75
Rev. C I",
Cim. h23,
390 11974)
P. Ilhsctschsryys.
Nuow Cim. A 2, 519 (1976)
N.8. Ssndanm
mtd B.C. Sulrrs-Cill,
Nucl. Phys. A 261. 93 (1976)
N. Sfhrsder,
8. Seiss, c. Bosner, snd N.V. Klspdor,
Nucl. Phys. A
x,
193 (1976)
see A - 71
Cellisrs
and P.V. Xoen, 2. Physik A=,
I59 (1977)
I(. Pmssd,
Cm. .J. Phys. 55, 2036 (1977)
V.S. Puri,
C.S. Khurens,
md H.S. S&ots.
J. of Phys. C 1.
P.J.
Y. Csuchois.
S.S. Abdalssir,
1. Ihbrouf.
Comptes Rendus 2&
211 (1978)
P.
Shsttschsryy*
et al., NUOVO CL. Ax,
1261 (1977)
md C. Schlo.sina+ll.r.
419 (1979)
76
M. Bchsr, A. Pilevich,
o. cmcls
8ermiid.a.
snd U.A.J. Hsriscorri,
Nucl. Phyr. A 2&. 331 (1977)
8. l.ecm~. et ‘1.. Nucl. Phys. A28.5.
123 (1977)
D.S. Lurders
et al.. Phys. S.V. C Q, 847 (1978)
Y.D. Schmidt-Ott,
A.J. Asucovirji
, snd U.J. Schrevc. 2. Physik
A*.
121 (t97a)
B.C.
A 3,
P.R.
LA.
8.N.
Ctmpr., P.N.
Tandon.
S.H.
461 (1973)
Pam. et 11.. Nucl. Phys.
Br.g. snd D.O. S.csstites.
(;herry snd M.L. Yiedenbaek.
Osvsrr,
md B.C.
Devsr.,
Nucl.
Ph,‘.
A230,
235 (1974)
Pi,,.. S.V. C 2, 1493 (1974)
Nucl. Phys. A”,
445 (1975)
S.W. Mt.1
l t sl.,
Ph,.. Pav. C l2. 63 (1975)
a. Nolra uld P. V~at, 2. Physik A 2.
33 (1975)
S“ A - 75
X.0. Zcll .L ‘1.. S. Ph,sik A2X.
371 (1976)
8.“. Ylu,,.r.
R.8. Ander‘ot,.
R.J. P‘t‘r‘m,.
sad B.A. ai‘tinen.
PI,,.. o 4. 1489 (1978)
LA. Mmr.struque
.t ‘1.. Nucl. Phys. As
29 (1978)
L.O. S.rbopoulo‘
et .l.,
Nucl. Phy.. CO be pub1ish.d
R.R. C.dm,., T.B. Cl.&,& 8.J. L”&iS,
snd B.A. “‘nd‘t,
N*,cl.
x,
165 (1979)
J.
Pb,‘.
of
Ir,
A - 78
Licb snd J.J. XolaLs.
Phyr. Bav. C 15, 939 (1977)
Ne1Lmeist.r
et .I.,
Phy.. Rev. C 1, 2113 (1978)
748.32
77Lcll
7ex.l I
76VaOS
C l9.
Phys.
*-77
‘es A - 69
K.P.
S.P.
SW.
snd S. Um.ro,
T . Sugimitsu,
Nucl. Phys. AZ.
199 (1974)
S. Yc,,kstsr.tn.m
snd V.‘L&ht&sr~y.,,a.
Nvovo
LO. Eel, et ‘1.. Z. Physik A z,
27 (1975)
419 (1976)
&v.
C la.
75W20
751101 I
74li.04
74NlO2
75RllO
Sm.
P. Psrdis.
A -
357 (1974)
De Villiers.
..d
c z, 409
Y. his&s,
J.pm, E,
74cbo7
74Dro2
P. Lmomte, S. Luldsberasr.
C fi.
2aOl (1978)
8.8.
Piercey
et sl..
Kys.
334 (1974)
75oao1
77-16
78KrO6
7aRo14
A=.
811 (1979)
74v.14
C.C.
N.C. Csdieggio.
G. Gemfa Berm6d.s.
snd H. Sebsr. a. Physik
I83 (1975)
“.L.
Sslb‘rt
‘t al., Nucl. Ph,.. Ax,
496 (1976)
8. 0rih.r.
er .I..
Nucl. Phys. ,267,
276 (1976)
B.N. Konninpen
et al.. Nucl. Phys. A=,
439 (1976)
* et sl.,
74
299
748~03
748~67
74Ivo3
74U.32
-
78%~
58 (1976)
584
N.S. Ssndmson,
J.C. Lisle.
snd J.C. Willmtt.
J.
II56 (1974)
see A - 76
S. Nersuki
et al.. Phys. LeLL. B 72. 319 (1978)
“a A - 70
Atomic
Data and Nuclear
Data Tables,
of
whys.
AL.
Vol. 23. No. 6, June
1070
P. M. ENDT
Gamma-Ray Strengths, A = 45-W
REFERENCES
FOR TABLES
(in addition to those in the most recent Nuclear Data Sheets)
N.P. Hellmeister
to be published
N. Sakemoto
et al.,
et al..
Phya.
Phys.
LcL~.
Lat.
B 85,
B 83.
34 (1979).
and Nucl.
39 (1979)
*179
78K110
78Li28
Bee A - 77
.J. Liptbk
and J.
Krigtiak,
Nw.1.
Phys.
“211,
421 (1978)
Phys.
7Je.UOS
72To16
730a2s
73coZS
74VaO2
I.P.
Subb,
S.I.H.
Nnqvi,
and J.L.
Wolfeon.
Wucl.
77*ra4
7SThOb
79SscJJ
S.E. knell
et el., NW,. Phys. A”,
72 (1977)
D.J. Thomas. 2. Physik *E,
51 (1978)
S.K. Basu. A.P. Patm, S. Want.
and V. Par,
J. of Phys.
77K&5
78Avo2
C. Korschinek
N. Avrigeanu
J.E. Yitching
see A - 78
R.P. Tocci et al.. Phys. Rev. C 6. 1686 (1972)
E. Sarmrd
et al., 2. Physik 260, 197 (1973)
J.R. Comfort,
J.R. hrsy.
and V.J. Sraithwaice,
E. Vacai et el., Nuel. Phya. *2’9,
595 (1974)
Pbys.
Phya.
A 161,
252 (1971)
Rev. C a,
1354 (1973)
C 2. 585 (1979)
h - 80
75*r19
75Pro4
77Le I 1
7al4e11
795.14
D. Ardouin
at a1., Phys.
B.C. Pricdcrichs
et al..
Rev. C 12. 1745 (1975)
Phys. Rev. L&r. 2.
745 (1975)
see A - 76
see A - 78
set A - 7S
7SKiOb
7SKaJJ
79se14
A-
et al., Z. Physik * 281, 409 (1977)
et al.. J. of Phys. C k, 261 (1978)
et al., Nucl. Phys. A=,
159 (1978)
*ee * - 70
a1
A - 88
65LiO8
K.K.
7SHoJ2
791008
K.
Lia.
see A - 77
Toyoshiru.
77LeJJ
see A - 76
7eMa11
795114
see A - 78
see A - 78
79sa14
Phys.
see A - 78
Rev. E,
B340 (1965)
75Valb
Nucl.
Phys.
“323,
61 (1979)
7bBuO5
1. “.rnall
and I. Rexmka,
R.L. BuminS,
Y.L. Talbert.
Rev. Cfi,
1577 (1976)
7711110
P.R.
Netrger.
Phys.
Nucl.
J.R.
Rev. C 2.
Phyn. *x,
McCmmell,
2253
75 (1975)
and R.A. Meyer,
Phys.
(1977)
* - 90
75SilJ
77Ju49
78Bel2
7SRaO5
585
P..P. SinShal
et al..
J. of Phya.
C 1, 588 (1975)
0. Hiwaer
et a,.. Hucl. Phys. *E>
248 (1977)
S. Beshai,
K. Pramson,
L.B. PrEberg.
and B. Sundatrim,
Nucl. Phys. *B.
151 (1978)
C.8. ileo end C. G&ther,
Phya. Rev. C I?, 1266 (1978)
Atomic
Data and Nuclear
Data Tables.
Vol. 23. No. 6. June
1979